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Introduction. Let n*(Y) denote the /^-primary component of nm(Y). In this

paper Yl^(0(n)) is determined, together with its image under /, for all n, all odd

primes p, and all m < 2p(p — 1)—2.

Since Yl*l(0(n)) = Yl*l(0(n-l))©Ylï,(Sn~1) wnen « is even, it is only necessary

to discuss odd values of n. This is done by studying the homotopy exact couple of

the fiberings 0(2/— 1) -> 0(2/+1) -*■ V2j+1,2 using an isomorphism np(F2/+12)^

nj,(F4i_1). The associated spectral sequence converges to the known stable

homotopy groups of 0, and calculation of the differentials yields the desired

results. Only one differential presents any trouble.

Let 8m+n-m be the group of isotopy classes of homotopy w-spheres embedded in

Fm + n. Associating with each element of 8m+n-m, m ^ 5 and n ä 3, its normal bundle

we have a homomorphism fl"»+"•"•-> nm_x(F0(n)); denote its image by N(m,n)

and the/»-component of N(m, n) by Np(m, n). N"(m+l, n) is determined for all n,

all odd primes p, and m<2(p — l)-2. These follow easily from the results on

npm(0(«)).

The results are taken from my Ph.D. thesis (1965), University of Chicago, and

I thank Professors M. G. Barratt and A. Liulevicius for their guidance. Some

unpublished results of Barratt on the homotopy of spheres are extensively used

in the paper. I am indebted to the referee whose suggestions very much improved

the presentation.

Statement of results. Let p be an odd prime, and let i: 0(n) -*■ 0(n+1) be the

inclusion.

Lemma A. Yl>m(0(2k))^ Yl*m(0(2k- lpn^2"-1).

This is easy ; the groups are embedded by obvious maps of 0(2A: — 1), S2k ~l to 0(2A:).

Hereafter n will be odd and m<2p(p—Y)—2, unless otherwise stated.

Theorem B. (i) Yl\q(O(n))=0 for all q

(ii)   n?s_1(0(n))=O/or allq, alln<2q+l.

(iii) Yllq_x(0(n))^Yllq_x(0)=Zfar allq, alln^2q+l.

The image of / in the last case has been determined by Adams.

Theorem C. nj,+1(0(/i))=O except that, for each r, k such that r^2k>0,

Yll(0(n))=Zv if m = 2rp-2(r-2k)-3, and 2k+l gn^2kp-p+\. These groups

are annihilated by J, and mapped epimorphically by (i)2 when n ̂  2k +1.
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Now suppose ni = 2 (mod 4). It is convenient to define t=tm by 2tp S m< 2(t + \)p,

and to write Am for the least positive integer congruent to \m+2 (mod (p — 1)).

Theorem D. (i) n*(0(n))=0forn<Xm and »£$M+1

(ii) ns,(0(«))=Zp»+i when Xm+s(p-l)^n<Xm+(s+l)(p-l) and n<\m+2

except that the group is only Zp> if s~¿,\m — (t+ X)(p—1)^0.

(hi) These groups are mapped monomorphically by (i)2 when n < \m, and anni-

hilated by J when p^3.

Remark. In (ii), the exception only arises when 2(r+l)(/>-l)^«i<2(r+l)/».

As n increases, the group builds up from Zp when n = Am to Zp', the exponent of p

increasing by 1 whenever « increases by (p — 1), except for the only value of «

congruent to p+2 (mod 2p) and to \m+2 (mod (p— 1)).

For completeness we state the following Proposition E without proof.

Proposition E. The nonzero groups 11^,(0(27+1)) and their images under J are

given for m ̂ 10 by the table.

«1 = 3,7^1    «7 = 6,7=1    «1 = 7,7^2    «i = 9,7=l    »2=10,7=1,2

Tl3m(0(2j+l)) Z Z3 Z Z3 Z3

Im 7 Z3 Z3 Z3 0 Z3

generator ax a^ a2 — axa2

This may be well known. The calculations use the following data from [2].

Proposition F. The group nj,(52i_1) is zero for m—2j+ \<2p(p— 1) —2 except

that

(i) if is Zp, generated by the stable generator at, for all j^2 when m — 2j+l =

2t(p-l)-l;

(ii) it is Zp, generated by

&r =  {«1, • ■ -, «1, ar-j + l}

(where 8f = axaT_x, and d'T is a j-fold Toda bracket when j>2), when m — 2j+\ =

2t(p—l) — 2. Here B{ is annihilated by double suspension.

Proposition G. Let i:ril(S2k-1)^Yil(0(2k)) be the embedding. Then

J(<p(a)) = + [i, i]E2ka. This is well known.

The following result is true for all m^2p and congruent to 2 (mod4); let

m = 4k—2 and « be odd.

Theorem H. njfc_2(0(n))=Zp« for 2k+p+2^n<2k where pl is the highest

power of p dividing (2k—l)\. These groups are isomorphic under (i)2 = i.

The following three theorems are true for all «, even or odd, p=£3, and

m<2p(p-l)-2.
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Theorem I. Np(m+ l,n)=0ifm = 3or0 (mod 4).

Theorem J. 7Vp(4a+2, n)=0 except that for each r, k such that r^2k>0,

Np(m+l,n)=Zpifm = 2rp-2(r-2k)-3and2k+l<n^2k-p+l.

Let Am and t=tm be the same as in Theorem D.

Theorem K. (i) N"(m+l, ri)=0for n¿¡Xm andn^^m + 2.

(ii) Nv(m+l,ri)=Zp'*i when Am+s(/>-l)<« = Xm + (s+l)(p-l) andn<\m+2

except that the group is only Zv> if s^\m — (t+ l)(p—1)^0.

It is immediate from Proposition E that Tv"3(«i+1, n)=0 for «j^IO except that

7V3(10,4)=Z3.

1. Preliminaries. The fibering 0(«)-*- 0(n+ l)-»-SB gives rise to the exact

sequence

(1.1), -> Um+x(S") -Ï* Um(0(n)) X nm(0(n+1)) ^U Eys»)-*- •••

Lemma (1.2). This splits at 0(«+l) when n + l is even, modulo 2-torsion; hence

n>m(0(2k))?n*m(0(2k-i))@n»\(s2k-1).

Proof. Let iq generate n^S"). According to ([10], p. 120), the composition

nn+iOsn+1) -^- nn(0(«+i)) -£-* nn(sn)

is zero if n +1 is odd, and multiplication by ± 2 if « +1 is even. Let « +1 be even,

and let £„= ±kn+x(in+x) be so chosen that7„(£„)=2in. Then

(£n)*:nn(S")-*nn(0(«+l))

has the property that /,(£„)* is an automorphism (modulo 2-primary torsion groups),

for

7n(£n)*(«) = (2l)«,

and this is 2a if a has odd order, and differs from 2a by at most an element of order

2 in general. Hence

(1.2) nUO(n +1)) Si inni(0(n))®ttn)*n>m(S»),

where in, (£„)„. are monomorphisms.

By tensoring (1.1)„ with the rationals Q for all «, an exact couple is obtained;

the associated spectral sequence converges to II*(0)(g> Q, and it follows at once

that, for odd «,

Lemma (1.3). IIp(0(«)) is a finite p-group, except that Uiq_ x(0(n)) has a summand

Z for each a and n 2:2a +1.
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In view of (1.2) it is only necessary to compute nm(0(n)) for odd n. The homotopy

exact sequences of the fiberings 0(n) -*■ V„i2 form an exact couple C=(D, E, i, j, k~}

where

Dk,q = Yl2k + q(0(2k+l)),       EKq = n2fc + 1(F2k + li2).

Lemma (1.4). There is a map <pk : 54fc_1 -*> V2k+1,2 inducing an isomorphism of

homotopy groups, modulo 2-torsion.

For, V2k + x,2 is an S2fc_1 bundle over S2k in which the boundary A(i2fc) of i2k is

±2i2Jc_1. If P :Ylif(Slk-1)->Ylif(S2k) is obtained by composition with the

Whitehead product [i2k, i2k], we have

Yl*m(S2k) = EYl^x(S2k-í)®PYl-m(Sik-í),

where AF is ± 2, an automorphism for m > 2k. The lemma quickly follows.

In future, Yl^S*"'1) and Yl^(V2k + 1,2) will be identified by (<pk)*. There is, there-

fore, a spectral sequence {Fr, dr} converging to 115.(0), with

F1     — TIP      ('Ç4'c-1^ dr •  F'    -^. F'

2. Calculation of Yl^(0(n)). In view of the identification (<pk)*, the following

Theorem (2.1) determines / : Yllk_x(SO(2k+1)) -> Yllk_x(V2k+i,2).

Letjafe : Ylik _ x(SO(2k +1) -> Uik _ 1(Sik) he induced by the fibering SO(2k +1) -»

S2k and consider the corresponding homomorphism

8: Ylik(BSO(2k+1)) -^ Ylik^(S2k)

on the classifying space. Let a generate the infinite cyclic group in Ylik(BSO(2k+1)).

Theorem (2.1). d(a) = X[h<] + E8 where X = (n(k)(2k-l)\)/% and r¡(k) = l or 2

according as k is even or odd.

Proof. Let f: Sik ^- BSO(2k+l) be a representative of a and the bundle

induced by/be

Id
S2k-> S2k

l g
Y->BSO(2k)

Y f      V
Sik->BSO(2k+l).

It can be determined that Y=S2k U8a eik u eek and that p1* : Hik(S4k) ->

Hik(Y) is an isomorphism; denote the generators of both the group by hik.

Since the Hopf Invariant of da is 2A we have (h2k)2 = 2Xhik where h2k generates

H2k(Y). It is known that p*(pk) = x2 where pk is the Pontrjagan class in

Hik(BSO(2k+1); Z), and x is the Euler class. It is easy to see that g*(x) = 2h2k and
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hencef*(pk) = 8 Xhik. Butf*(pk) can also be computed from the following homotopy-

commutative diagram.

/
Sik-► BSO(2k+1)

where a>(k) and p(2k) generate Uik(BSO), and Uik(BU) respectively. Theorem 1*

in [3] states the commutativity of the top triangle and the commutativity of the

lower triangle follows from Bott Periodicity Theorems. Now

8A«4fc =f*(Pk) = <»{k)*(pk) = r,(k)p(2k)*(C2k)

= r,(k)(2k-l)\ hik,

C2k being a Chern class.   Q.E.D.

Hence it follows that Ulk_2(0(2k — l))=Z„i where/j' is the highest power of p

dividing (2k—1)1 Notice here that Ylpk-2(0(n)), n>2k—l, does not contain p-

torsion because it becomes stable. The groups n4fc_2(0(«)) are isomorphic under

i for 2k+p+2^n<2k since nm+s(5"1) has no /»-torsion if m<2p — 3. This proves

Theorem H.

Corollary (2.2). 7« the spectral sequence (Er, dT), the subgroup ofUik_ x(Sik~x)

generated by Xiik_x converges to Uik-X(0) and the corresponding quotient group

of order X is annihilated.

The principle underlying the determination of /»-torsion in flm(0(«)) is as follows.

Suppose b, in lVm(0(2k+1)), is not in i(l~lpm(0(2k-1))); then j(b)¿0. We know b

is unstable; suppose (i)r(b)^0 and (i)r+1(b)=0 which would imply that (i)'(b)

belongs to the image of k. Since a differential dr+1=j(i)~rk, the nonzero differen-

tials correspond to elements of np(0(«)). As we are interested in nonzero differen-

tials we can replace Il4(c_1(5'4'£_1) in the spectral sequence by a group of order /»'

generated by iik _ x where // is the highest power ofp dividing (2k — 1) ; see Corollary

(2.2). The calculations are based on knowledge of the homotopy of spheres as

given in Proposition F.

We state an easy lemma without proof.

Lemma (2.3). 7« the spectral sequence, if ds(t)=0 for s<r and dr(i) = «, then

d'(Eß) = d'(t)ß.

Theorem (2.4). Ifm<2p, nm(0(«)) has nop-torsion.

Proof. For a given m<2p, suppose « is the smallest such that nm(0(«)) has

/7-torsion. Then j : I1P(0(«))-^ np(S2n~3) is a monomorphism on the /j-torsion

and Um(S2n~3) has no/»-torsion if m—2n + 3<2p—3. The theorem follows.
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Theorem (2.5). u§p(0(n))=Zpfor 3 ̂  n ̂ p, and the groups are isomorphic under i.

Proof. This follows at once from the fact that ax in Yl%p(S3) can be annihilated

only by i2p+i and hence da(i2vJrl) = ai where 2s+l=p.

Theorem (2.6). If m<2p(p-l) and m = 3 or 0 (mod 4), then Ylm(0(n)) has no

p-torsion.

Proof. For a specific m in the given range let n be the smallest such that IIm(0(n))

hasp-torsion. Then/ : n*(0(n)) -> Yl'¡¡l(S2n~3) is a monomorphism while the latter

group hasp-torsion only if m — 2n + 3 is of the form 2t(p— 1)— 1 or 2t(p—l) — 2.

Note that we consider only odd values of n.

Theorem F is proved by 1.4 and 2.6.

We can determine how ng,(54r_1) is annihilated in the spectral sequence for all

m^2p(p —1)+3. If we determine how the unstable elements are killed, then it

would become clear that there would only be one possible way in which the stable

elements could be annihilated. Then the determination of p-torsion, stated in

Theorem D, would be a straightforward computation.

Consider the unstable elements 82k in Yl^S*"-1), m=2r(p-l)-2+4k-l, for

all k and r such that p>r^2k>0. Recall that 82k is the 2A>fold Toda bracket

{«!,..., alt ar_2k + i} if k> 1 and 8f = a1ar_1. Let r — 2k+l=q.

Proposition (2.7). The stable element aq annihilates 82k.

This implies Theorem C, except for the action of /. The J homomorphism will

be considered in the next section.

Proof of (2.7). Proof is by induction on r. If r=2, then k=l and 0i = a1a1

generates n?p_3(53). If Ul e Ylip_2(S2p+1), ds(a1)=d'(i-a1) = d>(fa = a1a1 from

(2.5) where 2s +1 =p. Since Q\ is the only unstable element for r=2, this starts the

induction. Suppose the proposition is true for 2, 3,..., and r — 1.

Case 1. Suppose q>l, that is, r>2k. Then from induction hypothesis ax

annihilates 02£. It is an easy computation then to show that aq = {ax, pi, aq _j}

annihilates 82k = {82%,pi,aq_1}.

Case 2. Suppose q=l, then r=2k. In the spectral sequence the candidates for

annihilating 82k are as, 1 Ss<r. We will show that £(as) = 0 for 1 <s<r; then it

follows that dn(as)=0 for all n and s such that 1 <s<r.

k(as) = ¡¿(i o ocs) = ¡¿(fa = £(i){ai,/H, a„_x}

= {¡¿(fa, pi, as_i}.

Using induction hypothesis in the form of Theorem C we get ¡¿(fa=0. That proves

the proposition.

3. J homomorphism. The stable J homomorphism is completely known; we

consider J : nj,(0(n)) -> nj,+n(Sn) on p-torsion only. In view of (1.2) and Propo-

sition G we need to consider only odd values of n.
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Theorem (3.1). / restricted to the torsion group in IIp(0(«)) is zero provided

p>3 andm<2p(p— 1)—2.

Proof. Suppose «j is not congruent to 2 (mod 4). Then II*+n(Sn) is either zero

or stable if n is odd. Hence J is zero.

Suppose «1 = 2 (mod 4). Then ïlpl+n(Sn)=0 unless «j is of the form 2t(p— 1)—2

and «g2r-l, p>t^2. We can assume that m=2t(p-l)-2 and «g2r-l. Let

y generate the cyclic group fl|'j,_6(0(/»)); then J(y)=0 if p>3. So the result is

true if f=2; assume t>2. Now Upm(O(n))=0 if «</» and np(0(«))=Zp if pèn^

2p—l from Theorem D; since the latter groups are isomorphic under i and since

E2J=Ji, E2 being double suspension, it is enough to show that J is zero on

nm(0(F))- It can be seen from the exact couple that/: Tlpl(0(p))^Tlpl(S2''-3);

the latter group is generated by at_x={ax,pi, at_2}. It is an easy computation to

show that np(0(/»)) is generated by {y,pi, at_2} since j(y)=ax. It follows that

JÜY,Ph <*t-2Í) = 0

since J(y)=0. That proves the theorem.

4. The group Np(m + l,n). Let G„ be the space of maps S"'1 -> S"-1 of

degree +1 and F„ be the subspace of Gn + X of maps which preserve a base point.

Then Gn<=Fn<=Gn + 1. The composite of inclusions w. SO(n) -> Gn-+ Fn induces /

on homotopy groups. J. Levine [7] obtained, among other things, a formula for

N(m+l, n); N(m + l, n) consists of the unstable elements of IIm(S0(«)) which also

belong to the kernel of a>(m, n) : flm(SO(n)) -> Um(Gn).

The bundle map of inclusions of the bundles SO(n-1) -*■ SO(n) -> S""1 and

Fn_j -> Gn -*• S1"-1 gives the commutative diagram:

(4.1)»

n„

n.

(5-1)-* Tlm(SO(n-1)) -> nm(50(«)) -> n^s"-1)

Id

-► nm(i-n_a)-

o(m, ri)

■nm(Gk)

Id

lus-1)-

The two rows are exact homotopy sequences of the bundles.

Lemma (4.2). Let £ : n^S8*-1) -*■ n»(0(2)k)) ¿e the embedding. Then w(m, 2k)

restricted to (pfl^S2"'1) is a monomorphism.

This follows immediately from (4.1)2fc. It is obvious from (4.2) that TV^m + l, ri)

is a torsion group since the unstable infinite cyclic groups in llm(0(«)) occur as

direct summands, (pYln_x(Sn~1), when « is even and «i=«+l. Hence Theorem B

implies Theorem I.

Lemma (4.3). Let i e ll^Ofr)) and i does not belong to the image of

i:Um(0(n-l))->Tlm(0(n)).
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Suppose J(0=0, (z')r+1(!)=0, and (iy(£)¥=0. Then (i)s(Q belongs to the kernel of

w(m, n + s)for l^s^r but w(m, n)(£)^0.

This follows easily from (4.1)n with appropriate values of n. The hypothesis

of (4.3) is typical of the elements of nj,(0(n)). Theorems H and K follow from

Theorems C and D respectively by repeated application of (1.2), (4.2), and (4.3).
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