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1. Introduction. In [6] and [10], Gaifman and Rowbottom independently

proved the following result : If measurable cardinals exist, then there is a non-

coristructible set of integers. In fact, Gaifman proved the following much stronger

result : Let a be an ordinal definable in L, the universe of constructible sets. (For

example, take a = X^.) Then a is countable. Subsequently, Silver showed how to

obtain these results under the weaker hypothesis that Ramsey cardinals exist [12].

(The definition of "Ramsey" will be recalled in §3. The least measurable cardinal is

Ramsey [3].)

In this paper we show that the various countable sets mentioned above are

A J. (Cf. [ 11 ] for the definition of a A£ set of natural numbers. There is an analogous

notion of a A£ subset of the power set of the natural numbers, which we shall use

below.)

Definition. An ordinal y is AJ if it is finite or if it is order isomorphic to some

A3 ordering R of w.

Our results are as follows. (We assume once for all that there is at least one

Ramsey cardinal.)

Theorem 1. The set ofGödel numbers of sentences true in L is a AJ set of natural

numbers.

Theorem 2. Let a be an ordinal definable in L. Then a is A3.

Theorem 2 has the following corollary.

Theorem 3. There is a A£ set of integers which is not constructible.

On the other hand we have :

Theorem 4. Every constructible set of integers is AJ.

The following theorem answers a question of Azriel Levy.

Theorem 5. There is a set of integers, A, with the following properties:

(1) A is Ah
(2) A is not constructible;

(3) AisA\inL[A\;

(4) L[A] has a well ordering definable in L[A].
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(Here L[A] is the class of sets constructible from A.)

To state our next result, we need the following definition.

Definition. Let A be a set of integers, and Y a set of sets of integers. X is

constructible from A if there exists a set-theoretical formula fax, y, z), and an ordinal

A such that

Y = {F £ « I faß, A, A) holds in L[A, B]}.

(This concept is due to Dana Scott.)

Theorem 6. There is a A3 set of sets of integers, X, which is not constructible from

any set of integers A.

Remarks. (1) Every A| set of integers is, a fortiori, ordinal definable. Thus

Theorem 3, for example, yields an ordinal-definable nonconstructible set of

integers.

(2) In each of the results given above, AJ is best possible. (I.e., it cannot be

improved to S| or Yl^.) This follows easily from the following theorem of

Shoenfield.

Proposition 1.1 [11]. (1) Let A(y) be a 22 predicate. (Here y ranges over sets of

integers.) Let 8 be a set of integers. Write ALm for the relativization of A to L[8].

Then if ye L[8], we have

A(y) * A™(y).

Theorems 1 through 4 were first proved under the stronger hypothesis that

there is a measurable cardinal. The proofs used ideas of Rowbottom and Gaifman

and were fairly complicated. The present proof uses ideas of J. Silver [12] and is

much simpler. It was discovered independently by J. Silver and myself in an attempt

to weaken the hypothesis in the original proof. (I am grateful to W. Reinhardt

for an illuminating discussion on Silver's work.)

This paper is organized as follows. In §2, Theorems 1 through 5 are deduced

from a certain technical lemma (Lemma 2.8). The proof of Lemma 2.8 requires a

detailed knowledge of Silver's work [12]. We review Silver's work in §3 and give

a proof of Lemma 2.8 in §4. §5 gives the proof of Theorem 6. It is amusing to note

that the proof uses Cohen's notion of a generic set of integers. This is probably the

first application of Cohen's method to set theory yielding an absolute result rather

than a relative consistency result.

1.1. At the referee's suggestion, we make a few remarks on the extent to which

this paper is self-contained.

The portions of Silver's thesis used in this work are reviewed in detail in §3.

Our principal omissions are the details of the implication (2) -*■ (3) of Lemma 3.8

and the details of the discussion in subsection 3.9. If the reader can fill these details

in, he will also be able to prove the following theorems of Silver on the basis of §3 :

(1) The uncountable cardinals are a set of indiscernibles for L.
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(2) If X0 < X < X', then the inclusion map

{£«-*!*<}

is an elementary embedding.

(3) Lemma 2.7.

He will thus be able to completely understand this work without explicit

reference to [12].

2. Proofs of Theorems 1-5.

•2.0. The proofs of Theorem 1-5 are based on the following fact, which is

Lemma 2.11 below. There is a countable ordinal A0 such that LAq is an elementary

submodel of L, and a A3 relation R such that the relational systems

<>;/?>   and   <LXo;e}

are isomorphic.

2.1. We assume that the reader is familiar with the theory of constructible sets

[7]. If a e On we let La={x | (3/3 < a)(x=F(ß))}. (Here F is the enumeration of the

constructible sets given in [7].) If x e L, let ord (x) be the least ordinal ß such that

x=F(ß). We define a well ordering < of L by x<>» = ord (x)<ord (y). Then (L, <)

and (On, <) are order isomorphic. Let G:L^ On give this isomorphism.

More generally, if (M, eM) is a model of Z-F+ V—L, then the formal definitions

of < and G yield a canonical ordering, <M, of M, and an order isomorphism

G: (M, <M)~(OnM, eM). When we speak of M as an ordered set, it will always

be this ordering that we have in mind. The ordering on M restricts to the usual

ordering on OnM. Thus M is well founded iff OnM is well ordered iff M is well

ordered.

2.2. We now define the set of integers 0#. Let -S? be a first order language with

predicates e and =, and for each positive integer «, a constant cn. We interpret JS?

as follows: (1) the variables shall range overL; (2) e and = have their usual mean-

ings; (3) c¡ shall denote the set X¡. (Caution: X¡ is the real cardinal and not Nf.)

In general if ¿£' is an interpreted language, we say that a sentence of .£?' is true

if it is true under the intended interpretation. (The interpretation may be indicated

by the context.)

Definition. 0# is the set of Gödel numbers of true sentences of S£ (under the

interpretation just given) relative to some Gödel numbering of & which we fix

once for all.

The reader familiar with the "undefinability of truth" may wonder if this

definition can be formalized in set theory. To handle this point, we use the following

lemma.

Lemma. Let X be an uncountable cardinal. Then the inclusion map {L^ -> L} is

an elementary embedding. (This is really a scheme of theorems.)
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This lemma is due to Gaifman in the measurable cardinal case [6], and to Silver

in the present context [12]. (Recall that we are assuming throughout this paper

that there is at least one Ramsey cardinal.)

The lemma shows that we get the same set of integers, 0#, if we interpret the

variables of £C as ranging over FNta rather than F. The altered definition can clearly

be formalized in set theory. Using this technique, Gaifman [6] shows that "satis-

faction-in-F" can be formalized in set theory. In the future, we shall use this

remark implicitly when we give definitions involving "true-in-F".

2.3. We wish to study the elementary submodel of F generated by

{^i, N2,..., Xn,...}.

In order to do this we enlarge the language £C by adding description terms (or

/¿-terms as we will call them later). The language ¿¡Pu may be characterized as

follows :

(1) the predicates of ¿¡?u are e and = ;

(2) each constant of .S? is a constant of H?u ;

(3) let fay) be a formula of Sfu containing free at most the variable y. Then

pyfay) is a constant of ¿¡fu.

(4) J£?# has precisely those constants required by clauses (2) and (3).

To each term / of £C^ we assign a nonnegative integer which is the height of /.

If t is a term of =£?, the height of t is zero ; if t is pyfay), the height of t is

1 +max {height (/') : t' appears in fay)}.

We now extend the interpretation of ¿¡f to an interpretation of S£a by giving a

denotation to each constant term of -S?„. We do this by induction on the height of

t. Namely, let t=pyfay). By our inductive assumption, we know the meaning of

all terms appearing in fa. If (3y)fay) is true, let pyfay) be the least element xeL

such that fax) ; otherwise, let pyfay) he 0. (Here 0 is the empty set.)

2.4. Let <f> be a sentence of J£?a. We show how to construct a sentence fa of &

with the same truth value. The construction of fa from <j> will be recursive (given

suitable Gödel numberings of & and .£?,,).

Let n be the maximum height of any /x-term appearing in fa. We shall define a

sequence of sentences, <j>0,..., fa, equivalent to fa. Each term appearing in fa, will

have height ¡5/ If we can do this, then fa will be the desired sentence fa of S£.

Put fa=fa. Suppose now that fa.+1(tx, ■ ■ -, tm) has been constructed. Here

tx,...,tm are the ¿¿-terms appearing in fa + 1. Say tr = (py)6r(y), 1 <^rfim. We write

6't(y) for «,Cv) &(z)(z<y-^-\ei(z))

and fa(y) for 8¡(y) .v.[(z)~\8i(z) &y = 0]. Then py8t(y) is the unique z such that

fa(z). We take the following sentence for fa.:

(Zx, ..., zm)(fa(zx) &■■& fa(zr) & • • • i/>m(zm) .->. fa + 1(zx, • • •, zm)).

Clearly all terms in fa. have height ^j and fa. is equivalent to fa+1.
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2.5. Definition. Let (M; eM~) be a model of Z—F+ V=L and let A be a subset

of M. Let N be an elementary submodel of M. We say that A generates N (or that

JVis the elementary submodel generated by A) if (1) A^N; (2) if TV' is an elementary

submodel of M such that A^N', then N^N'.

N is uniquely determined by A. It is well known that every subset A of M

generates an elementary submodel. (The generated submodel consists of the elements

of M definable from A. Cf. the proof of the lemma below.)

Let D be the set of denotations of all terms of JS?„. Then we have the following

lemma.

Lemma. D is the elementary submodel ofL generated by {X¡ : 0 < i < cu}.

Proof. Let D' be an elementary submodel of L containing X¡ for 0<z<oj.

One checks easily by induction that the denotation of each p-term lies in D',

i.e., D ST)'.

It remains to prove that D is an elementary submodel of L. By examining the

standard proof of the Skolem-Löwenheim theorem, we see that D will be an

elementary submodel of L if the following criterion is satisfied. Let <f>(x0,..., xn)

be a set-theoretical formula with free variables x0,..., xn. Let dx,...,dn be

elements of D. Suppose that (3y)(f>(y, dx,..., dn) is valid in L. Then for some d

in D, <f>(d, dx,...,dn)is valid inL.

To see this, let r¡ be a term of JS?A denoting dt. Take d to be the denotation of

py<t>(y, h,..., r„).

This suffices.

2.6. Let M be a model ofZ—F with universe \M\; M=(\M\; eMy. For each

new, let gM(n) be "the integer n in the model M." Thus gM:a>->\M\.

Lemma. Let D be the elementary submodel of L described in Lemma 2.5. Then

there is a model M=<a>; R} isomorphic to <7); e> such that R is recursive in 0#.

Moreover, the map

g M : tu -> ü)

described above is recursive in 0#.

Proof. Pick some fixed Gödel numbering for J?H. In the following proof we

identify a term or formula with its Gödel number.

We can effectively determine whether a number « is the Gödel number of a term

of JSfw. If tx and t2 are terms of JSfw we can effectively determine from 0# the

truth values of "r1 = r2" and "tx e t2." Consider, for example, "tx = t2." This is a

statement of ¿¡?u. The procedure outlined in 2.4 yields a sentence <f> of ¿? with the

same truth value. One then looks up the truth value of <j> in 0#.

It is now easy to construct a function/(recursive in 0#) such that (1) for each «,
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f(n) is a term of JS?„; (2) "f(n)=f(m)" is valid iff n=m; (3) if t is a term of ^fw,

then " / =/(n) " is valid for some n. If we put

F = {<r,5>:"/(r)e/(*)"isvalid},

then F is recursive in 0# and <co; F> is isomorphic to <F»; e>.

Let fa(y) be a recursive sequence of formulas of -S? with one free variable such

that fa defines the integer n in F. I.e., the sentence

(z)(A(z) =■ z = w)

is true in F. Then ¿fM(") is the least integer r such that "f(r) = pyfa(y)" is valid.

This proves gM is recursive in 0#.

The proof that gM is recursive in 0# has the following corollary:

Corollary. There is a function h, recursive in 0#, with the following property.

Let r be the Gbdel number of a set-theoretical formula, fay), with one free variable.

Then if {^y) fay) is valid in L, then fah(r)) is valid in <cu; K).

It is clear that the proofs of the lemma and its corollary are effective. We could,

if we desired, explicitly describe Gödel numbers for F, g, and n in O*.

2.7. As an elementary submodel of F, <F»; c> is well founded. Thus it is iso-

morphic to a model FAo for a certain countable ordinal A0. (Since A0 is order

isomorphic to OnD, it is uniquely determined.)

The following result is due to Silver [12].

Lemma. The inclusion map {FÄ0 -*■ L} is an elementary embedding.

2.8. We now state the fundamental lemma. This lemma will be proved in §4.

Lemma. There is a Yl 2 predicate A(y) such that

(y)(A(y) = y= 0#).

(Here y ranges over sets of integers.)

2.9. Lemma. 0# is AJ.

Proof. We have

(1) n e 0# = (3y)(A(y) and ney);

(2) neO# = (Vy)(A(y) -* » 6 y).

(Here A is the Yl2 predicate provided by Lemma 2.8. Equations (1) and (2) show

that 0# is respectively 23 and IIJ.)

2.10. The following result is due to Kleene. (Cf. [8, §5.2].)

Lemma. Let y, 8 be sets of integers. Suppose that y is recursive in 8 and 8 is A3.

Then y is A3.

If we combine this lemma with Lemma 2.9, we get the following corollary.
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Corollary. Let y be a set of integers recursive in 0#. Then y is AJ.

2.11. Lemma. Let Lho be the elementary submodel of L introduced in 2.7. The

model<LAo ; e> is isomorphic to <a>; R)for some&\ relation R. Moreover, ifg: oj ->- on

is the canonical enumeration of the integers of the model <co ; R}, then g is AJ.

Proof. By definition, <LAo ; e> is isomorphic to <D; e>. Lemma 2.6 and Corollary

2.10 complete the proof.

2.12. Proof of Theorem 1. Each set-theoretical sentence is, a fortiori, a sentence

of SC. Thus the set of Gödel numbers of L-true sentences is recursive in 0#. (Cf.

Definition 2.2.) Corollary 2.10 completes the proof.

2.13. Proof of Theorem 2. Let a be an infinite ordinal definable in L. Since LAo

is an elementary submodel of L, aeLho. Moreover, the order relation on a is

{<ß, y> : ß e y and y e a}.

By Lemma 2.11, there is an isomorphism

fa(LK;ey ~ (oj;R},

R is AJ. We put

A = {me w. mR(f>(a)}

and Ti={<«j, n>: mRn and nR<f>(a)}. Then <a; e}~(A; B}. Letff.ai^-A be the

enumeration of A in increasing order (without repetitions). Then if

S = {<m, «>:</(«*),/(«)> eTi},

then <cu; S}~(A; B}~(a, e>. Since A, B,f, and S are all recursive in T?, they are

AJ by Lemma 2.10.

2.14. Proof of Theorem 3. By Theorem 2, there is a A3 well ordering of a>, S,

isomorphic to Ki. Assume first that S is constructible. Then, a fortiori, every

constructible subset of a> has an S-least element. Thus S well orders a> in L; there-

fore there is in L an isomorphism <f>: <u>; S}~(£; c> for some constructibly count-

able ordinal £. But this contradicts the fact that <cu; S} is isomorphic to <Nj; c>.

Thus S is not constructible.

Put

A = {n | « = 2*3* and xSy}.

Then A is a AJ-subset of oj. Since 5 is not constructible, neither is A.

2.15. Proof of Theorem 4. Let R be the A| relation on a> given by Lemma 2.11.

Let

«¿:</.A0;e>~O;/*>

be an isomorphism. By Lemma 2.11, the map g = <f>\u> is AJ.

Let A be a constructible set of integers. It is shown in [7] that A=F(t¡) for some
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f<Ni. Since FAo is an elementary submodel of F, Xf eFAo. Therefore f <N£< A0,

so A eL^o. Then

A = {n | n e A} = {n | g(n)F^(^)}.

Thus A is recursive in g and F and therefore is AJ.

2.16. On ine effective versions of Theorems 1-4. We consider, as a sample,

Theorem 4. We sketch a proof, omitting many details, of the following "effective"

version of Theorem 4. Let fax) be a set-theoretical formula with one free variable.

Put

A = {n | fan) holds in L} ;

here n ranges over cu. We show how to effectively construct from </> a SJ predicate

C(n) and a n3 predicate D(n) such that for all new,

ne A = C(n) = D(n).

The proof of Corollary 2.10 is effective, as can be seen by inspection. (Recall

that Lemma 2.8 is proved in §4 and Lemma 2.10 in [8, §5.2]. It is necessary to

inspect these proofs as well.) Thus, given a Gödel number, e, of A in 0#, one can

effectively construct the desired predicates C and D.

It remains to compute the Gödel number e from fa The proof of Theorem 4 in

2.15 shows that A is recursive in 0# but it is not effective. (There is no way to

compute faA).)
We get around this difficulty using Corollary 2.6. Namely, let r be the Gödel

number of the formula

(x)(x e y .=. x e tu and ^(x)).

Then

A={n\ g(n)RhC)}.

From this description, it is easy to compute a Gödel number of A in G#. (Here n

is the function defined in the last paragraph of 2.6.)

A similar discussion can be given for Theorem 2. Effective versions of Theorem 1

and Theorem 3 follow trivially.

2.17. Proof of Theorem 5. We take A to be 0#. We already know that 0# is

AJ. Our proof of Theorem 3 shows that some set recursive in 0# is not constructible.

A fortiori, 0# is not constructible.

Next let A(y) he the II| predicate guaranteed by Lemma 2.8:

(3) (y)04(y) = y=O#).
Proposition 1.1 shows that (3) relativizes to F[0#]. The proof of Lemma 2.9 now

shows that 0# is AJ in L[0#\

It remains to show that L[0#] has a well ordering, definable in L[0#]. In general,

if a £ ¿u, L[a] has a well ordering definable within L[a] from a. But <9# is AJ in L[0#]

and, a fortiori, is definable in L[0#].
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3. An axiomatization of G#.

3.0. Introduction. In this section, we give a series of axioms for the set of

Gödel numbers, G#, and show that they characterize 0#. The axioms are theorems

of Silver [12]. It is fairly easy to extract from Silver's work analytical properties of

0# which are equivalent to the axioms. In this way, one gets a proof of Lemma 2.8.

We now describe the axioms on 0#. First let tj be an ordinal. We let Y(0#, rj)

be the elementary submodel of L generated by the cardinals

{X1 + a;c¡ < r¡}.

(The proof given below will use a different definition of T(0#, r¡) from that given

in this sketch.) Let

be defined by j„(a) = Xa + x. Then the pair Y, j has the following properties :

(b) Y(0#, rj) is well founded for each ordinal -n ;

(c) Let X be an uncountable cardinal. Then the ordinals of Y(0#, X) are order

isomorphic to X ;

(d) The map /, imbeds r¡ as a closed subset of the ordinals of Y(0#, rj).

(With the definition of Y(0#, rj) just given, (b) and (d) are clear, but (c) is not.)

As the notation suggests, the model Y(0#, r¡) can be reconstructed (up to

canonical isomorphism) from a knowledge of r¡ and 0#. (This will be discussed in

3.3.) There is a simple arithmetical criterion, (a), on a set of integers t such that

for t satisfying (a), the model

is defined for all ordinals r¡. The properties (a)-(d) of G# are the categorical set of

axioms for 0# referred to above.

It turns out that axiom (b) can be expressed asallj condition on 0#. Moreover,

there are arithmetical properties (c') and (d') such that for t satisfying (a),

(b)and(c) = (b)and(c');

(b) and (c) and (d) = (b) and (c') and (d').

Thus (a) and (b) and (c') and (d') will give a n2 axiomatization of 0#.

Once one tries to extract a IIJ characterization of 0# from Silver's work, the

answer practically leaps to the eye. This is a tribute to the power of Silver's ideas;

the original Gaifman-Rowbottom style proof was much less transparent. All the

results in this section are due to Silver. My goal has been to present [12] in enough

detail to make Lemma 2.8 clear.

3.1. We first recall the definition of a Ramsey cardinal. We assume the reader

is familiar with the notion of a relational system. Let ¿&=(X; Rx,..., T?n> be a

relational system. X is the universe of ¿& and Rx,..., Rn are finitary relations on X.

Let Sid be the first order language associated to the relational type of j/; !£&

has an equality predicate =, together with a predicate P{ corresponding to each

of the relations T?¡ of ¿é. If <f>(xx,..., xn) is a formula of HP^ containing at most
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Xx, ■ ■ ■, xn free, and yu ..., yn is a sequence of elements of Y, then faylt..., yn)

has a definite truth value in s#(2).

s/ is an ordered relational system if Fj linearly orders Y. In that case, we write <

in place of Rx or Px.

Definition 1. Let Y be a linearly ordered set. An n-tuple of elements of Y,

<Xl, • • •, *n)

is ordered if xt < x} when 1 ¡S i <j ^ n.

Definition 2. Let stf be an ordered relational system with universe Y. A subset

Y of Y is a set of indiscernibles for sí if for every formula faxx,..., xn) of JSf^

and every pair of ordered n-tuples

<ji,■■■,yn>, <y'i,...,y'n>

of elements of Y, we have

fayi,---,yn) ■ ¿Cv!,■■•, vi,).

Remarks. 1. It is a theorem of [12] that the (true) uncountable cardinals

form a set of indiscernibles for the constructible universe.

2. The following special case of Definition 3.1 is worth noting. Let y, y' be

members of the set of indiscernibles Y, and let fax) be a formula of 3?&■ Then

M = #/);
i.e., y and y' are indiscernible with regard to properties expressible in if^.

Let K and A be infinite cardinals with k ̂  A. We say that

if each ordered relational system whose universe has cardinal k possesses a set of

indiscernibles, Y, of cardinality A. (This definition is equivalent to the one given

in [4].)

Definition 3. An infinite cardinal k is Ramsey if

k —y (k)<ko.

Remarks. (1) An uncountable cardinal k is measurable if there is a two valued

measure

p:S(K)~> {0,1}

(here S(k) is the algebra of subsets of k) such that: (1) the measure of any one-

point set is zero ; (2) the measure of k is 1 ; (3) if J5" is a family of sets of measure

zero, and SF has cardinality less than k, then

p(U ¿n = o,
(i.e., p is K-additive). Every measurable cardinal is Ramsey [3].

(a) The conscientious reader will detect an "abuse of language."
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(2) Every Ramsey cardinal is strongly inaccessible [3]. (In fact, a Ramsey

cardinal is weakly compact.)

(3) Silver has shown that the arguments of the present section can be modified

so that the proof of Lemma 2.8 can be deduced from the existence of a cardinal

k such that

«:->(X1)<«o.

From now on, k denotes a fixed Ramsey cardinal.

3.2. We first describe the property (a) mentioned in subsection 3.0. Let t be a

set of integers. The property (a) is the conjunction of the following five conditions

on t:

(1) If « e t, n is the Gödel number of some sentence of ¿£.

(We shall not usually distinguish between a sentence and its Gödel number.)

(2) t is a complete consistent theory.

(3) t extends the theory Z-F+ V=L.

(4) Let (jx,..., /„> and (Jlt.. .,jn} be ordered (cf. Definition 3.1.1) «-tuples

of positive integers. Let </>(xx,..., xn) be a formula of SC containing at most

Xi,..., x„ free and not containing any of the c¡'s. Then the sentence

<Kch,---,cin) = <f>(ch,...,cin)

lies in t. (In effect, (4) says that the c¡'s are a set of indiscernibles. Cf. Definition

3.1.2.)

(5) The sentence

cx < c2

lies in t. (Here < is the ordering of L discussed in 2.1.)

The property (a) is clearly an arithmetical property of t.

Lemma 1. The set 0# satisfies (a).

Proof. For all the clauses except (4) this is clear from the definition of 0#

(Definition 2.2). For (4), we quote the theorem of Silver that the uncountable

cardinals are indiscernible in L.

We pick a model M for the theory t. Since M is a model of Z—F+ V=L, the

interpretation of Jíf in M extends to an interpretation of .£?„, exactly as in 2.3.

(We can do this even though the model M may not be well ordered by <. The

point is that it is a theorem of Z-F+ V=L that "if there is a y such that <f>(y),

then there is a least such y (with respect to <).") It follows from clause (4) of (a)

that the elements of M denoted by the c¡'s form a set of indiscernibles for M. Thus

the following lemma is clear.

Lemma 2. Let <jx,..., /„> and (jx,.. .,jn} be ordered n-tuples of positive integers.

Let 4>icix, • • •> cin) be a sentence of -£?„ containing at most ct ,..., cin among the
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ct's. Let facjv ..., cjn) be the sentence resulting from facti,..., cin) by making the

indicated substitutions. Then the sentence

faCiV--,cO = fach,...,cin)

holds in M.

We introduce the following conventions. If we say "let fach,..., cin) be a

sentence of S£" then it is understood, first, that <!/ ..., in> is an ordered n-tuple,

and second, no other c¡ than ch,..., cin appears in fa The sentence fach,..., cjn)

is the sentence resulting from facil,..., cin) after simultaneously substituting clr

for cir for 1 ¿ r ^ n. A similar remark applies to terms of ^Cu and to the language

&A,u to De constructed in a moment.

3.3. Let t be a set of integers satisfying (a). Let A be an ordered set. We are

going to construct the following:

(1) A model Y(t, A) of Z-F+ V=L.

(2) An order-preserving map

j:A^\Y(t,A)\.

(\Y(t, A)\ is the underlying set of Y(t, A).)

(Recall from 2.1 that each model of Z—F+ V=L is canonically ordered.)

The construction will have the following properties:

(a) j[A] is a set of indiscernibles for Y(t, A).

(b) Let faxx,..., xn) be a formula of JSf, and (ax,..., a„> an ordered n-tuple of

elements of A. Then

Hnt.A) faj(cix), ■ ■ ■ J(an)) = facx, ...,cn)et.

(Here " \=jsrfa' means that <f> holds in the relational system sJ.)

(c) T(i, A) is generated by j[A\. (Cf. Definition 2.5.)

It will be clear from our construction that the pair (r(i, A),j) is determined

up to canonical isomorphism by (a)-(c).

We first construct a language S£A. S£\ will be first order language with two two-

place predicates, e and =, and for each a e A a constant ca. We enlarge SCA to a

language JSf'Aiil with ¿¿-terms, analogously to 2.3.

Now fix a model, M, of the theory r. We define an equivalence relation on the

set of terms of & A,n as follows. Let <aj,..., an> be an ordered n-tuple of elements

of A, and (iu ..., /„> an ordered n-tuple of positive integers. Then we put

A(cO!> ■ • •, con) = f2(Cax> • • •, co„)

iff the statement

fl(cix> • • •> cin) — f2(Cix, • • -, C(„)
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is valid in M. (We use the letter/to denote terms of languages such as 3?u. We

think off as a "Skolem function.")

By a previous observation, clause (4) of (a) makes the particular choice of an

ordered «-tuple, (ix,..., /„>, irrelevant. Using this, it is easy to check that = is

an equivalence relation.

The universe of Y(t, A), \Y(t, A)\, will be the set of equivalence classes of terms

of &A.U under the equivalence relation just defined. We shall denote the equivalence

class of the term/by [/]. The map

j:A^\Y(t,A)\

is given by the formula

M = [Ca].

The £-relation on T(r, A) is determined in a similar way: We put

[fx(cai,..., caJ] e [f2(cai,..., caJ]

iff

\=m fi(eh,..., cin) ef2(ch,..., cln).

It is not difficult to check that this definition is valid (i.e., that the various choices

made are irrelevant).

Lemma 1. Let (ax,..., an} and (flt..., /„> be respectively ordered n-tuples from

A and the positive integers. Then if<f>(cx,..., cn) is a formula of ¿¡?u, we have

\=m </>ich, ■■-, cin) = \=ra.A) <t>icax, • • -, caJ.

Proof. Left to the reader. (The proof proceeds by induction on the number of

logical operators in fa In handling the quantifiers, /¿-terms play a vital role.)

We remark next that the model Y(t, A) is independent of the choice of the

model M. For if <£(cai,..., caJ is a sentence of ¿?a,u, let fa(cai,..., can) be the

formula of ¿¡?A resulting from eliminating it-terms. (Cf. 2.4.) By Lemma 1, Y(t, A)

is a model of Z—F+ V=L. Thus the following sequences of statements are equiva-

lent to one another.

(1)   hr(t,A)^(Cai>---'Ca„);

(2) |=hM)¿'fan»•••>£<*);
(3) \=MfaiCi,...,cn);

(4)fa(cx,...,cn)et.

Applying this observation to atomic fa we see that r(r, A) depends only on t

and A.

We leave the verification of the properties (a)-(c) of r(r, A) discussed above to

the reader. They follow easily from Lemma 1. (The proof of (c) is similar to that of

Lemma 2.5.)
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3.4. We next discuss the functorial properties of the construction Y(t, A) in A.

Let A, A' be ordered sets and n: A -*■ A' an order-preserving map. We define a map

h*:\Y(t,A)\-+\Y(t,A')\
by the formula :

h*[f(cai,..., caJ] = [f(ch(ai),..., <:„<„„))].

Using Lemma 3.3.1, it is not difficult to prove that n* is well defined.

Lemma. The map n* is an elementary embedding. The following diagram is com-

mutative
h

A -► A'

Ja

"*

Ja-

\Y(t,A)\-^\Y(t,A')\

Proof. This follows immediately from Lemma 3.3.1.

Using this lemma, it is not difficult to show that

{A^Y(t,A)}

is a functor from the category of ordered sets (and order-preserving maps) to the

category of models of set theory (and elementary embeddings).

3.5. Now let A be a model of Z—F+ V=L, and let Y£ \N\ be an infinite set of

indiscernibles. The set |7V| is canonically ordered (cf. 2.1) and we give Y the induced

ordering. We define a set of integers, tx, as follows : tx is the set of Gödel numbers

of sentences facly..., cn) of ¿if such that if <Xi,..., xn> is an ordered n-tuple of

elements of Y, we have

\=N faxx, - - •, *n).

Since Y is a set of indiscernibles, the following lemma is clear.

Lemma 1. tx has property (a).

We now interpret ■ä'x.u in H in the obvious way. (cx denotes x, for x e Y.)

In this way we get a map

fa. \Y(tx, X)\ -> \N\

by sending [f(cx¡,..., cxJ] into the element of N denoted by f(cXl,..., cXn).

Lemma 2. The map <\> is an elementary embedding. Its image is the elementary

submodel of'TV generated by X.

(The proof is similar to the proof of Lemma 2.5.)

Using Lemma 2 it is not difficult to check that r(0#, r¡) is canonically isomorphic

to the elementary submodel of L generated by

{K8| 1 g « < 1+ij}.
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(It is necessary to use Silver's result that the uncountable cardinals form a class

of indiscernibles for L. If r¡ < to, Lemma 2 does not quite apply, but the result is

still true and easy to check.)

3.6. The following lemma says, in effect, that Y(t, A) is uniformly recursive in

t, A. We consider the following situation: (1) t is a set of integers satisfying (a);

(2) R is a linear ordering of tu. (We use wR as a notation for the ordered set (w; R}.)

Lemma. There is a relation S on to and a function h : to -> to such that

(1) <to; 5> is a model ofZ-F+ V=L,

(2) h induces, by passage to quotients, an isomorphism

«*:r(r,toß)~<to;S>.

(We think of terms of¿¡fa¡li as being identified with their Gödel numbers. Then «* is

given by the formula

«*([/]) = «CO

forfatermof£?a¡ll.)

(3) S and « are uniformly recursive in t and R. (Note that the map

«* °jaR' u^-oj

is uniformly recursive in t and A. In fact,

«* °/»„(«) = KCn)-)

Proof. (Similar to the proof of Lemma 2.6.)

3.7. The following lemma is the key step in proving that (b) expresses an

analytical property of t.

Lemma. Let t be a set of integers satisfying (a). Then the following conditions are

equivalent.

(b)   For every ordinal X, Y(t, X) is well founded.

(b') For every countable ordinal r¡, Y(t, rj) is well founded.

Proof. We sketch the proof and refer the reader to [12] for details. Suppose

for some ordinal A, we can find a decreasing sequence of ordinals {an} of the model

T(r, A). We find a countable subset N of A, with inclusion map i: N —>■ A such that

for all n, an is in the image of the map

i*:Y(t,N)^Y(t,X).

It follows that r(r, N) is not well founded. Let r¡ be the ordinal order isomorphic

to N. Then r¡ is countable and r(í, r¡) is not well founded.

Let k be a Ramsey cardinal and X a set of indiscernibles for <LK ; e, = > of power

^Ki. Define tx as in 3.5. Using Lemma 3.5.2, one checks easily that tx has
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property (b'). It follows from the Lemma that Y(tx, r¡) is well founded for all

ordinals -n.

3.8. Let A be an ordered set and / a set of integers satisfying (a) and (b). We

put

On(t, A) = {x e \Y(t, A)\ : \=t9.a) x is an ordinal}.

If 7] is an ordinal, On(t, t¡) is well ordered by (b). Let \On(t, t¡)\ be the ordinal

order isomorphic to On(t, A).

Lemma. Let t be a set of integers satisfying (a) and (h). Then the following proper-

ties of t are equivalent.

(1) For each uncountable cardinal X, \On(t, K)| =X. (This is property (c).)

(2) We have t — txfor some set of indiscernibles, X,for

<FK;e, =>

of power k.

(3) The following recursive set of sentences lies in t: (This is property (c').)

(i) every sentence of the form

f(cx,...,cn) < cn + 1.

(Here/(cl5..., cn) is a term of JSfu. Strictly speaking, the sentence associated to

this by eliminating p-terms should lie in t.)

(ii) Every sentence of the form

j(Cx, ..., cn, cn + il,..., cn + tlc) < cn —> j(Cx, ..., cn, cn + il,..., cn + tk)

= J(cl, ■ - -, cnt cn + jx> - - •' cn + jk)-

Here (fu ..., ik} and </,... ,/> are ordered k-tuples of positive integers.

Proof. Again we sketch the proof and refer the reader to [12] for details.

(l)->-(2). We have Y(t,k)~LK by (1). The isomorphism takes the image of

j onto a set of indiscernibles for LK, say Y. It is easy to see that t=tx.

(2) -> (3). We interpret S^KU in LK so that X is the set of elements denoted by

the cA's. Consider first an element /(c1}..., cn). Surely for some rj < k, /(cl5..., c„)

< cn and T) > n (since Y is unbounded in k). Since the cA's are indiscernibles, we

must have

f(cx, •••,<•„) < cn+1.

The proof that every sentence of type (ii) lies in t is more difficult. To illustrate the

idea suppose

f(cx, c2) < ex.

We shall show that

f(cx, c2) = f(cx, c3).
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If f(cx, c2)^f(cx, c3), then

{fici, c„) : 1 < ti < k}

would have power k. This is absurd since

/(ci, c„) < cx

and the set of elements of LK less than cx have power less than k. Thus

f(cx, c2) = f(cx, c3).

(3) -* (1) Let X be an uncountable cardinal. Then by (i), the set {c„ | r¡ < X}

forms a cofinal subset of length X of Y(t, X). If r¡ < X, then if x e Y(t, X) and

x<c„, x can be written in the form g(cai,..., can, c„ + 1,..., c„+fc) where

ax < ■ ■ ■ < an ̂  Ti. It follows that there are fewer than X predecessors to c„. So

|r(f, X)| is an ordinal of power X such that every proper initial segment has power

less than X. Thus |r(r, X)| = X.

Remark. Let X and X' be uncountable cardinals with X < X'. Let

/*:r(f,X)^r(r)X')

be the map induced by the inclusion of X in X'. The arguments presented above

show that i* maps Y(t, X) onto a proper segment of Y(t, X') if t satisfies (a) and (b).

It follows that the inclusion map

Lk~►Ar

(which may be identified with /*) is an elementary embedding. This is a result of

Silver which we mentioned earlier.

In a similar way, one can show that the elementary embedding of Y(0#, w)

into Y(0#, Xx) induced by the inclusion of o> in Xt may be identified with the

inclusion map

L\0 -*■ FXl.

This is how Lemma 2.7 is proved.

3.9. Let k be a Ramsey cardinal. Then there is a set of indiscernibles for LK

consisting entirely of ordinals. Indeed let X^LK be an arbitrary set of indiscernibles

of power k. Let G: Lk~k be as in 2.1. Then {G(x) : x e X} is a set of indiscernibles

for LK of power k which is a set of ordinals.

If Zs k has power k and A < k, it makes sense to speak of the Ath member of X.

Following Silver, we let X0 be a set of ordinal indiscernibles for which the toth

element is as small as possible. Silver showed that tXo (which by earlier results

satisfies (a)-(c)) has the following additional property:

(d') (1) The sentence

"cx is an ordinal"

is in t.
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(2) Suppose that the sentences

"/(c1(..., cn+k) is an ordinal"

and

j(Cx, • • -, cn + k) < cn + 1

are in t. Then the sentence

J(Cx, • ■ -, cn, cn+jj,..., cn+ik) = J(Cx,..., cn, cn+j1,..., cn+jk)

lies in r.

(Note that (d') (2) is a strengthening of (c') (ii) of 3.8 in a special case.)

The idea behind the proof of (d') (2) is exhibited in the following special case.

Let {xA: A<k} be the elements of Y0 arranged in their natural order. Suppose

that/(cj) is a term such that the statements "/(Ci) is an ordinal" and "/(c1)<c1"

lies in tXo. We show that the statement

f(cx) =f(c2)

also lies in tXo. This is equivalent to a special case of (d').

If "/(ci) >/(c2)" lies in tXg, then {/(Xi)|i< to} is a strictly decreasing sequence of

ordinals, which is absurd. Thus

"f(cx)= Al-

lies in tXo. If "f(cx)<f(c2)" lies in tXo, then

{/(xA): A < k}

would be a set of k indiscernible ordinals whose toth member is strictly smaller

than the toth element of Y0. This contradicts the definition of Y0. Thus the sentence

"/(A)=/(c2)"

lies in tXo. (If we apply this to the term/(cj) = "the cardinal of cu" we conclude

easily that the statement "cx is a cardinal" lies in tX().)

Lemma. Let t be a set of integers satisfying (a)-(c). Then the following are

equivalent:

(1) t satisfies condition (d').

(2) For every ordinal rj, the image ofj: r¡ -> \Y(t, t¡)\ is a closed subset of On(t, r¡).

(3) t=0#. (In particular, since tXo satisfies (a)-(c) and (d'), it follows that

tx0 = 0# so 0# satisfies property (c).)

Proof. Once again, the result is essentially contained in Silver's work so I omit

some details.
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(1) -+ (2). We interpret S£n¡¡¡ in r(r, 7?) in the obvious way. Let A be a limit

ordinal less than r¡. We must show that

7(A) = l.u.b. {7(0): 0< A}

where the l.u.b. is computed in On(t, rj). Suppose that this is not so. Then for some

term/(cai,..., c„k), the following sentences hold in r(r, 17):

(1) For each 9 < X, ce <f(cai,..., caic) ;

(2)f(cai,...,cak)<cx;

(3) f(cai,..., cttk) is an ordinal.

Using part (2) of condition (d'), and the fact that A is a limit ordinal, one can

show the following:

There are ordinals ßx < ß2 < ß3 < ■ ■ • < ßk < X such that

(4) f(cai ,...,caJ =f(cSl,..., cBk).

But (2) and (4) yield

cßk +1 < ficex, ■ ■ ■, cBk).

This contradicts the fact that t has property (c). (Cf. clause (i) of the definition of

property (c') in Lemma 3.8.)

(2) -> (3). By property (c), there is an isomorphism

V:Y(t,K)~<LK;e}.

Let 8 be the image of k under Y °j. By (2), 6 is a closed subset of On of power k.

Moreover the proof that (3)->(l) in Lemma 3.8 establishes the following: Let

r¡ be an infinite ordinal less than k. Let A be the cardinal of r¡. Then there are at

most A ordinals less than Y °j(rj). It follows that if X is an uncountable cardinal

less than k, and -n < X, then

71 á?«^,) < X.

Since 6 is closed, we have X in 6. Thus 6 contains all uncountable cardinals. (This

is the argument Silver uses to show that the uncountable cardinals form a set of

indiscernibles.)

Now let <f>(cx,..., cn) be a sentence of if. Since 6 is the image of j[k] under the

isomorphism Y, we have

(cx, ...,cn)et = (X1(..., Xn) holds in (LK, e>.

Since the inclusion map i: LK-> Lis an elementary embedding, we have

<f>(cx, ...,cn)et= \=L ̂ (Xi,..., Xn).

In other words, t=0#.

(3) -> (1). We have to show that 0# satisfies (a), (b), (c), and (d'). Let X0 be the

set of indiscernibles introduced above. By Lemma 3.8, tXo satisfies (a)-(c). By the

result of Silver previously cited, tXo satisfies (d').
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It follows now from the part of the Lemma already proved that tx¡¡ = O*. Thus

if t=0#, t=tXo so t has property (d').

4. Proof of Lemma 2.8.

4.1. The following statement is an immediate consequence of Lemmas 3.7,

3.8, and 3.9.

Lemma. A set of integers t is equal to 0# iff it satisfies conditions (a), (b'), (c'),

and (d').

Conditions (a), (c'), and (d') are arithmetical properties of t. To complete the

proof of Lemma 2.8 it suffices to show that condition (b') is Yl2.

4.2. If F is a set of integers, let Ê be the following binary relation on to :

F = {<w,n>: 2m3neto}.

(We say that Â is the binary relation determined by F.)

It is well known (cf. [13]) that there is a Yl\ predicate Px(R) such that

Px(R) = Ê is a well ordering of to.

4.3. Lemma 3.6 can be used to construct an arithmetic predicate Bx(A, t, m, ri)

with the following property : If t has property (a) and A determines a linear ordering

Â of to, then

{<w, n>: B1(A,t,m,n)}

is a linear ordering of w order isomorphic to r(r, Â).

It follows that there is a IIJ predicate P2(t, A) such that if / has property (a) and

Â linearly orders to,

P2(t, A) = Y(t, A) is well founded.

4.4. By Lemma 3.4, r(r, n) is isomorphic to an elementary submodel of r(r, cd).

Thus (b') is equivalent to the following proposition (for t satisfying (a)):

(A)[P1(A)^P2(t,A)].

4.5. We write n}(,4), for example, to indicate an} predicate containing the

variable A free. The reader may verify that (b') is equivalent to a predicate of each

of the types listed below:

(^)[n}(^)^n}(f,^)]

(A)YZ\(A)V Yl{(t,A)]

(A)Yll(t, A)

n2(0-

Thus (b') is Yl\. This completes the proof of Lemma 2.8.
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5. Proof of Theorem 6.

5.1. We shall need the relative version of the results of §§1-4. Let aSto be a set

of integers. Let L[a] be the class of sets constructible from a. One can define a

function Fa(A) in close analogy with the function F(A) used to enumerate the

constructible sets. (For example, one can modify Gödel's definition of F by

introducing, as a new fundamental operation, the intersection of a set with a.)

We have

L[a] = {Fa(y)\yeOn}.

If A is an ordinal, we put LK[a] — {Fa(y) \ y<X}.

We introduce a first-order language if' as follows. The predicates of ¿£' are

e, =, and a unary predicate A. For each positive integer i, there is a constant, c,.

We interpret if' as follows. The variables of if' shall range over JL[a]. The pred-

icates e and = shall have their usual meaning. We interpret the predicate A so

that

Ax = x e a       (for x e L[a]).

Finally, we let c¡ denote the (true) cardinal X¡.

Definition 1. a# is the set of Gödel numbers of true sentences of if' (under the

interpretation just given).

As we indicated above, all of the results proved in §§1-4 have relativizations to

results about L[a]. In 5.2, we list the relativizations that we shall use below. For

the most part, relativizing the proofs is routine; we discuss one slightly tricky

point in 5.3.

(We remark that if 0 is the empty set, then 0# and G# are recursive in each

other. Thus, for all practical purposes, they can be identified.)

5.2. Lemma 1. The set a is uniformly recursive in a#.

Proof. Let Yn(x) be a recursive sequence of formulas with one free variable

such that

Km WC^nix) = x = n).

Then « e a iff the sentence

(3x)(Yn(x) & Ax)

lies in aß.

Lemma 2. Lei a be an ordinal definable in L[a]. Then a is countable in L[a#].

Proof. By relativizing the proof of Theorem 2 one sees in fact that a is recursive

in aß.

Lemma 3. There is a Yl\ predicate Rx(x, y) such that

Rx(a, b) = b = aß.
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Proof. This is just the relativized version of Lemma 2.8.

5.3. Let J( be a transitive model of Z-F+V=L. Then one can define the

function F within J(. Moreover, if A is an ordinal of J(, then

F(A) = F*(A).

Moreover, if Jix and Jt2 are transitive models of Z—F+ F=F and Onj<x =On^2,

then Jtx=J(2. These facts played an important role in the proofs of results about

L given in §§1-4.

The following theory, Ta will substitute for Z — F+ V=L in the proofs of the

results about L[a] quoted in 5.2. The theory Ta has as predicates e, =, and a one

place predicate A. In the following description, we use symbols for w and the non-

negative integers. These must be eliminated in some standard way to get the actual

axioms in Ta.

Axioms for Ta. Group I.

(1) If <f> is an axiom of Z—F, <f> is an axiom of Ta.

(2) Let n e to. Then if ne a, An is an axiom of Ta ; if n £ a, then ~]An is an

axiom of Ta.

(3) The following is an axiom of Ta :

(3y)(y £ to A (x)(x evo Ax)).

The axioms of Group I allow us to define the function F0 in the theory Ta. The

following axiom completes the description of the theory Ta :

(4)(Vx)(3AeOn)(x=F0(A)).

If M is a transitive model of Ta, then for all ordinals A e J(, we have

Fa(A) = Ff(X).

If J(x and Jt2 are transitive models of Ta and On^i = On^2 then J(x=^2. (The

proofs are quite similar to the proofs of the corresponding facts about Z—F+

V=L.) Thus Ta can substitute for Z—F+ V=L in the proofs of results cited in

5.2.

5.4. We now describe the subset of F(to) (the power set of to) used to prove

Theorem 6.

If a £ to, let

a0 = {x e to | 2x e a}   and   ax = {x e to | 2x+1 e a}.

Then the map

a -+ (fio, ßi>

sets up a 1-1 correspondence between F(to) and F(to)xF(to). Let

W = {a\ax is constructible from (a0)#}.
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We shall show that W is AJ but W is not constructible from any set of integers b.

This will establish Theorem 6.

(The definition of a subset of F(to) being constructible from a given set of integers

is given directly before the statement of Theorem 6 (in §1).)

5.5. We show first that W is AJ. Recall first that there is a 1,2 predicate T?2(x, y)

such that

R2(x, y) — y is constructible from x.       (Cf. [1].)

We have

a e W = (3b)(b = a$ & ax is constructible from b)

= (3éX*i(a0, *) & R2Íb, «i»

= (36)(nè(a,6) &22(a,¿0)

= 2|(a).

Similarly,

a e W = (V6X/li(ao, *) "► *a(*. ax))

= (V*)(ni(a,è)->2è(a,è))

= (Vè)(EKa, ¿))

= n|(a).

Thus we have proved the following lemma.

Lemma. W is a AJ subset ofP(<a).

5.6. We now sketch the proof that IF is not constructible from any set of integers

a. The proofs will be based on Cohen's notion of a generic set of integers. (Cf.

[2], [5].) It will turn out that there are sets of integers, b, generic over L[a] such that

b is constructible from a#; there are also b generic over L[a] such that b is not

constructible from a#.

Now suppose that W is constructible from the set of integers a. By definition

this means there is an ordinal A and a set-theoretical formula fafx, y, z) such that

beW= (=IIOiW fa^a, b, A).

Recalling the definition of W, one deduces the existence of a formula <f>2(x, y, z)

such that

(1) b is constructible from aß = Kio.w faia, b, A).

(Take <£2(x, y, z) to be the formula :

j>£to&x£to& (3w)(w0 = x & wx = y & fa(x, w, z)).)

Now let b be generic over L[a] and constructible from a#. By (1), we have

Ktoitw ̂ (a, b, A).
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Since b is generic there exists a condition F true of b which forces fa(a, b, A) :

(2) P\\-fa(a,b,X).

We now select V generic over L[a] such that (a) F is true of b' and (b) b' is not

constructible from a#. In view of (2) and (a), we have

(3) Ktaiun <f>2(a, b', A).

In view of (1), we conclude that b' is constructible from aft. But this contradicts

property (b) of V.

To complete the proof we shall do the following :

(1) Show how Cohen's techniques can be adapted to study extensions of L[a].

(To do this, it is necessary to assume the existence of Ramsey cardinals.)

(2) Prove the existence of b generic over L[a] such that b is constructible from

a#.

(3) Prove that if F is a condition, there is a set of integers b', generic over L[a],

such that (a) F is true of b' and (b) V is not constructible from a#.

5.7. Let Ji=L[a\ We seek to enlarge Ji by adding a set of integers b generic

over J(. The present situation differs from that considered by Cohen in two

respects: first the model Jt does not satisfy V=L; second, the model J( is not

countable, and in fact is a proper class.

In [9] it is shown how to adapt Cohen's method to an arbitrary countable

standard model J( of Z-F. Thus the fact that V=L fails in J( causes no problems.

We next show how to handle the uncountability of J(. The key tool will be

Lemma 5.2.2.

The definition of forcing takes place within Ji and all the usual formal properties

of forcing are true. (A condition on b is a finite consistent set of sentences of the

form neb, or n^h. Here b is a symbol used to denote the set b to be added to JÍ.)

Let 0* he the set of conditions. Following [15], we make the following definitions:

Definition 1. A subset Y of & is dense if

(1) For all Pe0>, there exists Q=P such that Q e X;

(2) ifPeX,Qe0>, and F£ Q, then QeX.

Definition 2. An increasing sequence of conditions,

F0 £ Px £ F2 £ • • •

is complete if for each dense subset Y of 0>, lying in J(, we have

FneY

for all sufficiently large n.

(It is not clear, a priori, that any complete sequences exist.)

Let {Fn} be a complete sequence of conditions. We say that {Fn} converges to

the set of integers b if m e b iff the statement " m e b " appears in Fn for n sufficiently

large. It is easy to see that every complete sequence converges to exactly one subset

of to.
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Definition 3. A set of integers b is generic over M if there is a complete

sequence {Pn} converging to b.

The connection between forcing and truth may be proved in the usual way. In

particular we have the following lemma. (Cf. [15, §2].)

Lemma. Let {Pn} be a complete sequence converging to a generic set of integers b.

Let </>(x, y, z) be a set-theoretical formula (containing free at most x, y, and z). Let

X be an ordinal. If \=jrm </>(a, b, A), then for n sufficiently large we have Pn \ \- <f>(a, b, A) ;

conversely, ifPn\\-<j>(a, b, X)for some n, then Krtw <f>(a, b, A).

5.8. Lemma 1. There are only countably many dense subsets of' 0* lying in J(.

Proof. Let a be the cardinality of the power set of 0^, as computed in J(. By

Lemma 5.2.2, a is countable. (In fact, a = (2K<>)-<*.)

Lemma 2. Let P be a condition, and let {b¡} be a countable sequence of subsets of

to. Then there is a complete sequence {Pn} converging to a generic set of integers b ;

moreover, we have P0=P, and b=¡tb{for any i e u>.

Proof. By Lemma 1, we can enumerate the dense subsets of 0* in a sequence,

{Xn}. We define {F,} inductively so that (1) P0=P; (2) P2n + Xe Xn (possible by (1)

of Definition 5.7.1); (3) For some integer r, P2n+2 decides whether or not reb,

and

rebn = "r£b" isinP2n + 2.

This sequence has all the desired properties.

Lemma 3. Let P be a condition. Then there exists b' generic over L[a] such that

(1) P is true ofb'; (2) V is not constructible from aß.

Proof. By Lemma 5.2.2, there are only countably many subsets of œ in L[a#].

Thus Lemma 3 follows from Lemma 2.

Lemma 4. There is a set of integers b constructible from a# but generic over L[a].

Proof. By Lemma 5.2.2, every ordinal definable in L[a] is countable in L[a#].

Thus the construction of a complete sequence given by the proof of Lemma 2

can be carried out in L[a#]. This proves Lemma 4.

Lemma 5.7 and Lemmas 3 and 4 complete the proof of Theorem 6 sketched in

5.6.

Remark. It is clear that the proof of Lemma 2 provides a general technique for

constructing Cohen extensions of uncountable models JÍ. The technique applies

when the family

{X\ XeM andX^S3}

is countable. (Here 01 is the set of conditions relevant to the class of Cohen ex-

tensions at hand.)
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