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1. Introduction. Let SL(n, q) denote the group of n by n matrices of determinant

1 over the field GF(c7) of q elements ; let PSL(n, q) be equal to SL(n, q) modulo its

center. The subgroups of PSL(2, q) were determined by Dickson [12]. Those of

PSL(3, q) were determined for odd q by Mitchell [19], using geometric methods.

(The results for even q are given by Hartley [18].)

In this paper we show that more modern group-theoretic methods can be used

for a new determination of the subgroups of PSL(3, q), at least when q is odd.

(For a result relevant to of the case of even q, see Suzuki [28].) Our major result is

Theorem 1.1. Let q=pa be a power of an odd prime p, and let & be a subgroup

ofPSL(3,q) of order > 1. Assume © has no normal elementary-abelian subgroup

of order > 1. Then © is isomorphic to one of the following:

(1) PSL(3,//);ß|«.

(2) PU(3,/>«); 2ß|a.

(3) in the case where 3 | (pe — 1) and 3ß|a, a group containing the subgroup of type

(1) with index 3.

(4) in the case where 3 \ (pß + 1) and 6ß\a,a group containing the subgroup of type

(2) with index 3.

(5) PSLÍ2,//) or PGL(2,/A with ß\a andp^3.
(6) PSLÍ2, 5), with q=±l (mod 10).

(7) PSL(2, 7), with q3=l (mod 7).

(8) A6, A7, or a group containing Ae with index 2, with p = 5 and a even.

(9) A6, with q= 1 or 19 (mod 30).

Moreover, PSL(3, q) has exactly one subgroup © of each type mentioned (for

each indicated value of q, ß), up to conjugacy in GL(3, c7)/Z(SL(3, q)).

Here GL(n, q) denotes the group of nonsingular matrices of degree n over the

field GF(<7); U(n,q) is the subgroup of SL(n, q2), and U*(n,q) the subgroup of

GL(n, q2), consisting of matrices A such that A "1 is the transpose of the matrix

obtained from A via the automorphism c -» c" of GF(<72). For any group ®,

P@ denotes ®/Z(@) where Z(@) is the center of ©. An, Sn denote the alternating

and symmetric groups on n letters.

We will give explicit representatives (in matrix form) of all conjugacy classes
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of subgroups satisfying the hypothesis of Theorem 1.1. (Actually, the inverse

images in SL(3, q) of these subgroups will be given; see Theorem 5.14 and the

lemmas of §6.) In §7 we classify the subgroups of PSL(3, q) not satisfying this

hypothesis.

Our treatment uses results of Brauer, et al. by which information about a group

© of even order may be obtained from information about the centralizer C(X)

of an element X of order 2 in @; see [3], [6], [7], [15] (particularly [3, equation (8)],

which gives information about the order of © and will be referred to as Brauer's

Formula). If ©£PSL(3, q) then C(X) is isomorphic to a subgroup of GL(2, q),

or of GL(2, q) modulo a scalar subgroup of order 3. Accordingly, we first determine

(§3) the possible types of subgroups of GL(2, q), and then, by considering each of

these types in turn, determine (§5) the possible simple subgroups of PSL(3, q) up to

isomorphism (these are all of even order, by [14]). In §6 we find the conjugacy

classes of these subgroups, and also their normalizers. Since any finite group of

order > 1 has a nontrivial normal subgroup which is the direct product of iso-

morphic simple groups, we can then obtain enough information about arbitrary

subgroups of PSL(3, q) to prove Theorem 1.1.

The author wishes to express gratitude to Professor R. Brauer for his invaluable

guidance, and thanks to Professors M. Suzuki and D. G. Higman for calling atten-

tion to items in the literature. In addition, the referee has made some helpful

suggestions for improving the paper.

2. Notations and terminology. Some of the notation used in this paper is not

standard. We here list all of the notations and terminology about which any

explanation is needed.

The notations GL(«, k), SL(w, k), U(n, k), U*(n, k), and P© were defined above.

(G¥(k))* is the multiplicative group of nonzero elements in the field G¥(k).

If © is any finite group, |@| is the order of ©. |© : §| is the index in © of

(a subgroup) §. Aut(@) is the group of automorphisms of ©. For any subset ©

of ©, {©} is the subgroup generated by ©.

For X £ ©, | X\ is the order of X. If | X\ = 2, X is called an involution. A group or

element, whose order is relatively prime to the positive integer r, is called r-regular.

Cr denotes a cyclic group of order r.

"Characters" are always complex characters unless indicated otherwise.

It will be important to distinguish between SL(3, q) and PSL(3, q). The natural

homomorphism of SL(3, q) onto PSL(3, q) will be denoted A, and the kernel of A

will be denoted 3; then |3| = 1 or 3 according to whether q^l or q= 1 (mod 3).

A diagonal matrix is one having zeroes everywhere except on the main diagonal.

A diagonal matrix with diagonal entries ax,...,an will be written \\ax,..., an\\.

A scalar matrix is one of the form \\a,a,...,a\\=al (where I denotes the identity

matrix). An anti-diagonal matrix is an n by n matrix whose entries aif are zero

except when i+j=n+ I; such a matrix will be written [aXn,.. .,anX], displaying
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the diagonal entries reading from top right to bottom left. (This type will occur

mostly for n = 2.)

In much of the paper, © denotes a (variable) subgroup of some fixed linear

group F. If ¡Q is in turn a subgroup of®, N(£x) and C(£l) will denote the normalizer

and centralizer of ¡Q in ©, whereas N(£i), C(£i) are the normalizer and centralizer

of O in the larger group F. Similar conventions apply to centralizers of elements

of®.

If Ce© is fixed, the inner automorphism Z-> X' = GXG~i is called conju-

gation by G, and we say that G maps X into X'; this is also written G: X-^- X',

or X' = Xa. G fixes X if G: X-> X; G inverts X if G: X-> X'1. Two elements

conjugate in © will be called ©-conjugate.

Multiplication in the symmetric group Sr will be taken as left composition;

e.g., (123X234) = (12)(34), not (13)(24).

"R.A.A." (reductio ad absurdum) means "contradiction." We fail to under-

stand why this abbreviation is so rarely used in mathematical writing, in contrast

to the wide use of "Q.E.D."

A direct product of cyclic groups of orders rlt..., r„ is called abelian of type

(rlt..., rn), elementary-abelian if all rt are equal to the same fixed prime. A group

9ß generated by two elements A, Bis dihedral, semidihedral, or generalized quater-

nion if it has generating relations of (respectively) the form (a), (b), (c) as follows :

(a) A2k = B2 = l;BAB~1=A~1,       (k^l)

(b) A2m + 1=B2=l;BAB-1 = A2m-1,       (m>l)

(c) A2r = Bi = l;B2 = Ar;BAB~1 = A-\       (r>l).

Note that the four-group is included in (a) (case k= I). If r = 2 in (c) we have the

(ordinary) quaternion group.

Finally, the following notation will be fixed throughout this paper : (p is a fixed

odd prime and q =pa is a fixed power of p). Only if the notation (p, q, a) is kept

in mind will statements be comprehensible.

3. The subgroups of PSL(2, q), SL(2, q), and GL(2, C7). In this section we find

the subgroups of GL(2, q) (Theorem 3.4). These subgroups are not difficult to

obtain once those of PSL(2, q) are known, and the latter are given by Dickson [12].

Dickson's results can be summarized as follows:

Theorem 3.1. Let & be a subgroup of PSL(2, q). Then one of the following

occurs :

(a) © ii isomorphic to (i) A5 with p^ 5, or (ii) 54 or A±.

(b) ® is cyclic and p-regular.

(c) @ is dihedral and p-regular.

(d) ©={D, X} where C/{1} is a p-group and XeN(Q,) is a p-regular element.

(e) ® is conjugate in GL(2, c/)/{-7} to PSL(2, //), ß|a, pe > 3.

(f) q=l (mod4); up to conjugacy in GL(2,q)l{ — I}, @ contains

® = PSL(2,//)
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as a subgroup of index 2 (2j8|a, pß > 3), and is generated by Ä and the diagonal matrix

||c, c_1| where c2 generates (GF(pe))*.

Parts of the proof of Theorem 3.1 can be simplified by the use of more modern

methods, in particular by using the Brauer-Suzuki-Wall characterization of

PSL(2, q) [11]; details of such a proof can be found in [1].

Theorem 3.2. Let & be a subgroup of SL(2, q). Then one of the following occurs:

(a) @/{-7} is isomorphic to A5 with p^5, or to Aé or 54.

(b) © is cyclic and p-regular.

(c) @ is generalized quaternion and p-regular.

(d) ©={B, X} where Cl/{1} is a p-group and X e TV(O) is p-regular.

(e) © is conjugate in GL(2, q) to SL(2, //), ß\a, pe > 3.

(f) q=l (mod4); up to conjugacy in GL(2,q), © contains § = SL(2,pß) as a

subgroup of index 2 (2ß\a, pe>3) and is generated by § and the matrix \\c, c~1\\

where c2 generates (GF(pß))*.

Proof. Observing that the scalar matrix — I is the only involution in SL(2, q),

it follows easily that, if | © | is even, then © is the inverse image of a subgroup of

PSL(2, q) under the natural homomorphism of SL(2, q) onto PSL(2, q). The

theorem then follows easily from Theorem 3.1.

Lemma 3.3. Let § be a subgroup ofGL(2,q) containing —I. T/§/{ — 1} is iso-

morphic to Ai, then the 2-Sylow group 93 of £> is the quaternion group. T/§/{ —7} is

isomorphic to S5, then /» = 5.

Proof. Assume £>/{ — 7}^/i4. 93 is not elementary-abelian (since ©SGL(2, q))

and hence 93 has an element F of order 4. Since At has no element of order 4,

P2 = —I. Since all involutions of At are conjugate, all elements of 93 different from

± 7 are conjugate to ± P and hence have order 4, whence 93 is the quaternion

group. If instead §/{ — I} = Sb then an element of § of order 5 is conjugate to four

of its powers, which is possible in GL(2, q) only if p = 5.

Theorem 3.4. Let %bea subgroup of GL(2, q). Then, up to conjugacy in GL(2, q),

one of the following occurs:

(1) © is cyclic.

(2) © =Q9Jc where ¡Q is a subgroup of the p-group

(3.1)
1   0

T       1
: t £ GF(q)

and 351 £ TV(iD) is a subgroup of the group % of all diagonal matrices.

(3) ®={CU, S} where u\q2-l, S: Y^ Y" for all YeCu, and S2 is a scalar

2-element in Cu.

(4) ©={9Jc, S} where 9fts$> and S is an anti-diagonal 2-element; |@ : 9Ji| =2.
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(5) @={SL(2,/A V} ("Case 1") or ©={SL(2,/), V, \\b, eb\\} ("Case 2")
where V is a scalar matrix, e generates (GF(//))*, pß > 3, ß\a. In Case 2,

|@:{SL(2,//), F}| =2.

(6) ©/{ —7} is isomorphic to St x Cu, Aé x Cu, or (with p^ 5) As x Cu, where Cu

is a scalar subgroup of GL(2, q)\{ — I}.

(7) © is not of type (6), but ©/{ —7} contains AtxCu as a subgroup of index 2

and A^ as a subgroup with cyclic quotient group ; Cu :> as in type (6) with u even.

Proof. Let § = © n SL(2, q); then ^ is a normal subgroup of © and ©/§ is

cyclic of order dividing q— 1. § is one of the types (a)-(f) of Theorem 3.2; we

consider each type in turn.

(a) If $J{-I}~St, then @/{-7}^S4xCu by [17, Theorem 6.4.1], where

CuS©/§ is cyclic of order u dividing q-l. The inverse image of Cu in © must

be a scalar subgroup, since in GL(2, q) the centralizer of any nonscalar /»-regular

element is abelian. Thus @ is of type (6) above.

Similarly, suppose i>/{ — I}~Ar with r=4 or 5 (and p^5 if r=5). The inner

automorphisms of ®* = ®/{ — 7} yield automorphisms of §* = §/{ —7} and this

gives us a homomorphism

f:®*-+Sr = Aut(Ar)

under which §* -* Ar. The inverse image £* =/" \Ar) is thus a subgroup of ©*

of index ^ 2. Then/maps S* onto Ar with kernel ©*, the centralizer of £* in S*.

Since <£*n £>*={!} and |£*| = |$*|-1©*|, we have S* = §*xÊ*. As before, the

elements commuting with £>* must be scalar. Now the only groups containing

Ar with index 2 are ATx C2 and Sr; since ©*/£>* is cyclic, it follows that © is of

type (6) or (7) of Theorem 3.4. Indeed, in the case r = 5, the reasoning used in

Lemma 3.3 shows that/(©*) cannot be S5, so that ©* = £* and we have type (6)

rather than type (7). If u were odd in type (7), we would actually have type (6).

(b) If § is a scalar subgroup, then © is abelian, since §sZ(@) and ©/© is

cyclic. In this case © is of type (2) with ¡Q={1}, or of type (1).

If £ is cyclic,/7-regular, and nonscalar, then C(§) is a subgroup of Cr (r=q2—Y)

or of ® (modulo a conjugation), and

I© : Cm = |7V($) : C(£)| è 2.

If @ = C(§), © is of type (1) or type (2) with 0={1}. Otherwise, choosing

S e N(§), S $ C(§), we may assume (replacing S by an odd power of S if necessary)

that F is a 2-element. If C(©)e®, S is anti-diagonal and hence S2 is scalar;

© is of type (4). If instead C(§) = Cu, u \ q2 -1, we may assume u \ q — 1 ; a conju-

gation over GF(t72) maps the generator of Cu into a matrix of the form ||a, a"\\

and hence S into an antidiagonal matrix, so that again S2 is scalar; © is then of

type (3).
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(c) Let £ be of type (c) of Theorem 3.2. If |§| >8 then § has a unique cyclic

subgroup {A} of index 2. {A} is then normal in © and the analysis is like that of the

preceding paragraphs. Suppose instead that |£|=8. Let 9JÎ be the normalizer of

§ in SL(2, q); then 9JÎ/{ — 7} is a group of automorphisms of §, i.e., a subgroup of

Si. Thus 9Jc is a 2-group or else 9Jc/{ —7} is isomorphic to Ai or SV In the latter

case the argument of paragraphs (a) can be applied to (®9Jl, 9JI) instead of (@, §),

so that ©9JÎ is of type (6) or (7). Moreover, in this case © n 2ft = § so that

|©a» : ®| = |9Jc : §| = 3 or 6.

Hence ©=933 where 93 is a 2-group and 3 is a scalar subgroup. On the other

hand, if 271 is a 2-group, let 93 be a 2-Sylow group of TV($) containing 9JÎ. Since

|TV($) : 9K| divides q— 1, a cardinality argument shows that

TV(§) = 93-Z(GL(2,<7)),

and © is a subgroup of this. In either case, © is of type (3) or (4) depending on

whether q= ± 1 (mod 4).

(d) Suppose §={£1, X} as in Theorem 3.2(d). We may assume D is a subgroup

of the group 93 of (3.1). Evidently ¡Q is characteristic in § and hence normal in

©, so that ©sTV(0)sTV(93). By Hall's Theorem [17, Theorem 9.3.1], © has a

subgroup 9JÍ such that @=D9J? and |SK| divides (q—l)2. Applying Hall's Theorem

to TV(93) instead of ©, 9JI may be assumed to be a diagonal subgroup, so that ©

is of type (2).

(e)(f) Finally, if § satisfies Theorem 3.2(e) or (f), then SL(2,/»") is a normal

subgroup of ©. Now every element of SL(2, p8) of the same order as 5= ||e, e_1||

(where e generates (GF(pB))*) is conjugate in SL(2, /»") to a power of S. On the

other hand, any conjugacy in GL(2, q) between powers of 5 takes place in SL(2, pe).

Hence, if G e ©, there is an element Fin SL(2, //) such that YG fixes S. Evidently

YG maps the matrix (3.1) (with t = 1) into a matrix with coefficients in GF(pB).

Direct computation gives YG= \\b, cb\\ for some b e GF(q), c = en e GF(ps). If n

is even then YG (hence also G) is congruent modulo SL(2, pß) to a scalar matrix.

It easily follows that © is of type (5). This completes the proof of Theorem 3.4.

For the sake of completeness, we include the following result, which gives further

precision to cases (6) and (7) of Theorem 3.4.

Theorem 3.5. In GL(2,q),

(a) There exist subgroups © such that (3¡{ — I} = Ai,for all values ofq.

(b) There exist subgroups © such that ©/{ — I} = St, if and only ifq^5 (mod 8).

(c) There exist subgroups © as in Theorem 3.4(7) if and only ifq= 1 (mod 4).

(d) There exist subgroups © such that &I{ — I}^A5 (with p¥:5), if and only if

q=±l (mod 10).

Since Theorem 3.5 is not needed for our further work, we omit the proof,

which consists of computations with matrices.
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4. Preliminary group-theoretical results. We need two theorems about abstract

groups. The first of these is the following theorem of Schur [20] :

Lemma 4.1. If a finite group © has a faithful representation of degree n (over the

complex numbers) whose character is rational-valued, then any prime p divides | © |

with exponent at most e„, where

eP = 2 \nl(pk+1-pk)l
fc = 0

brackets denoting the greatest-integer function.

Our second theorem is the main result of this section. For convenience in stating

it (and also for future reference), we shall say that a 2-group P is of "Type B"

if it has generating relations of the following form :

P = {Sx, S2, T}; ST = ST = T2 = 1       (n * 2),

SxS2 = S2Sx; T: Sx -> S2; {Sx} n {S2} = {1}.

The 2-Sylow group of GL(2, q), q = 1 (mod 4), is of this type.

Theorem 4.2. Let P be of Type B, with the generating relations (4.1). Let % be a

nonabelian subgroup of P, such that 5ß has no cyclic subgroup of index 2. Let

0=$ n {Sx, S2}.

Then, far suitable elements A, B, S, R, we have

* - ÍA F},

(4.2) O = {A, B} ; {A} = Z(«ß) ; F e 7V(0), F2 e O,

{y4}n{F} = {F}; |F| £ \A\ > \S\.

Moreover, let & be a group having $ as its 2-Sylow subgroup, and assume ^ is not

itself of Type B. Then S'# 1.anc7 the unique involution X in {S} is not %-conjugate

to any other element ofty. If, in addition, we assume that

(4.3) C(X) = C(A) in ©;

(4.4) any two elements o/O conjugate in C(X) are conjugate in %,

then © has a normal subgroup of index 2.

Proof. Clearly $ ={0, F} where F £ {Slt S2}, R e 7V(D), F2 e O. The elements

of Q which commute with F are precisely those powers of J=SxS2 which lie in $,

and hence Z(*B) = ($) n {/} is a cyclic subgroup {A}. Since D/{yl} is isomorphic to a

subgroup of {Sx, S2}/{J} and is thus cyclic, we have &={A, B} for some element F.

Replacing F by F^4 if necessary, we may assume \B\ ̂  \A\. Let F be a generator

of {A} n {F}; then |^4| > |F| since otherwise Q is cyclic, contrary to assumption.

Thus the Relations (4.2) are all valid.



1967] THE SUBGROUPS OF PSL(3, q) FOR ODD q 157

We may write R = ET where Ee{Sx, S2} and F is as in (4.1). A computation

shows that BRBR'1 and R2 lie in {7}, and hence in {A}, so that

(4.5) RBR1 = B~xAm   (somem);       R2e{A}.

We now assume 93 is not of Type B. If \B\ = \A\ and \S\ = I, then T? commutes

with no power of B except 1 (since C(R) n {B}={S}), so that m must be odd in

(4.5). Hence R2=A~rm for some r. Since then \BrR\ =2, {B} n {T*-Mm}={l}, and

D,={B, B~1Am}, (4.5) implies that 93 is of Type B, R.A.A.

Hence either |2?| > \A\ or £# 1 ; in either case, letting X be the involution in {Ti},

X is the unique involution which is a power of an element of ¡Q of maximal order.

Hence any automorphism of £l leaves X fixed; in particular, T? fixes X and thus

Xe {A}, showing that Xe{S} and hence S/ 1. We now let © be a group having 93

as its 2-Sylow subgroup.

Suppose X is ©-conjugate to an involution We£i. Then some G e © maps

X-+ W, 93 -> m. where 9t is a 2-Sylow group of C(W) containing ¡Q. If \B\ >2\S\,

then G, is the unique abelian subgroup of 93 of index 2; the same must be true of O

as a subgroup of 9Î, so that G: ¡O ->D and hence G: X-> X. If |J5| =2|5| then A'

is the unique involution which is the square of an element of 93 ; the same must be

true for X as an element of in, and again this implies G : X -> X. In either case,

we see that X is not ©-conjugate to any other element of ¡Q. If X were conjugate

to an element V e 93 not in C, then some T7 e © maps X -► V, 93 -+ © where ©

is a 2-Sylow group of C(F) containing A. Then A' (being a power of A) is a square

in ©. However, the pre-image of A' in 93 (under the mapping T7: 93 -> ©) lies

outside D (by the result above), and hence is not a square in 93, R.A.A. We have

thus shown that X is not %-conjugate to any other element o/" 93.

Now assume (4.3) and (4.4). The above result then implies:

(4.6) Any power of A is ©-conjugate to no other element of 93.

It remains to be shown that © has a normal subgroup of index 2. Assume the

contrary; then it follows from transfer theory that

(4.7) 93 ={C'XD : Ce93, De%, C~ D},

"~" denoting ©-conjugacy. We shall show that (4.7) leads to a contradiction.

Any relation of ©-conjugacy between elements of 93 must, of course, be one of

the following three types :

I.       BrAsR ~ BUAV,

(4.8) II.       BTAS ~ BUA\

III.       BrAsR ~ BUAVR.

Suppose first that m is odd in (4.5). As before, we obtain |TirT?|=2 for some r;

hence we may assume R2 = I. If \B\ = \A\, the left and right sides of (4.5) do not

have the same order; thus |fi| > |^|. By (4.7) we must have a relation (4.8) with
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r — u odd, and this relation must be of type (I) since conjugate elements must have

the same order. Squaring both sides and applying (4.6), we get

J2s + mr  _  ß2UA2v

so that B2u = A2<-s~v)+mr; since r—u is odd, this implies either |F|^|y4| or

A e {B}, R.A.A.

Thus m must be even. Let m=-2k, B' = BAk. Then (4.5) implies that

F: F'->(F')_1. Clearly &={A, B'}, and we may replace F by B' in (4.2). (We

thereby lose the inequality |F|^|/4|, but this will not be used again.) We now

have

(4.9) RBR-1 = B-\

The involution in {B} is the only power of B (except 1) which is fixed by F (i.e.,

which lies in {A}); thus {A} n {B}={X}.

By (4.7) there must exist a relation (4.8,1). Squaring both sides and applying

(4.6), we obtain A.2is~v)R2 = B2u; since A ${B}, R2 must be an even power of A.

Replacing F by AnR for suitable n, we may assume R2 = 1. (4.9) now gives

(BrAsR)2 = A2s       (all r, s).

There can be no relation (4.8,111) with s—v odd, since the elements are not of

the same order. If a relation (4.8,11) occurs with s—v odd, then X must be a power

of at least one of the two elements involved, and hence (4.4) and (4.6) imply that

the given relation occurs in $ itself, R.A.A. Hence, by (4.7), we must have a

relation (4.8,1) with s — v odd. Squaring both sides and applying (4.6), we get

F2" = A2is~v> e {A} n {B} = {X}

and hence \A\ =4. Furthermore, since ^/{F, AR}, (4.7) implies the existence of a

relation (4.8,1) for which s-v is even. Squaring this relation gives B2u = l, Fu=l

or X. The right side of (4.8,1) is then a power of A, contradicting (4.6). Thus we

have the desired contradiction', and the proof is complete.

5. The simple subgroups of PSL(3, q). In this section we show that any simple

subgroup of PSL(3, q) of even order is isomorphic to one of a set of known simple

groups. (The actual occurrence of all of these groups as subgroups of PSL(3, q)

will be shown in the following section.)

The following notation will be used throughout this section (in addition to that

introduced in §2). © will be the inverse image in SL(3, q) of a simple nonabelian

subgroup of PSL(3, q) of even order. (There can be no such subgroups of odd order,

by [14].) Then © contains 3, the center of SL(3, q). If p±3, tj will be a primitive

cube root of unity in GF(c72) and W is the diagonal matrix ||1, -n, -n2\. X denotes

the diagonal matrix ||1, — 1, —1||. We assume that X lies in the center of a 2-

Sylow group % of @. (We may do this since all involutions of SL(3, q) are conju-

gate.) The subgroup C(X) of © can be naturally identified with a subgroup of
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GL(2, q) and thus is one of the types (l)-(7) of Theorem 3.4. (All references in

this section to numbered " types" will refer to these seven types, although "Type B"

refers to (4.1).) Thus any matrix A in GL(2, q) will be identified (without further

explanation) with the corresponding matrix

0   0

0

0

in SL(3,q), where d=detA. We observe, incidentally, that AC(X) = C(X)/3 is

the centralizer of AX in A© = @/3, and that © and A© have the same 2-Sylow

group.

By "blocks" we shall always mean 2-blocks of ordinary characters, unless

otherwise indicated.

Lemma 5.1. 93 is either dihedral, semidihedral, or of Type B.

Proof. 93 is contained in the 2-Sylow group P of GL(2, q2), and the latter is of

Type B (to express P as in (4.1), take Sx, S2 to be diagonal and F=[l, 1] anti-

diagonal). Then Z(fy) consists only of scalar matrices ||a, a|| if 93 is nonabelian;

it easily follows that (4.3), (4.4) hold for 93 in this case. By Theorem 4.2, it follows

that 93 is abelian, or of Type B, or has a cyclic subgroup of index 2.

If 93 is abelian of type (2m, 2m) with m ^ 2, then A© cannot be simple (Brauer

[4]) ; while if 93 is cyclic or of type (2n, 2m) with n^m, then A® cannot be simple

by Burnside's Theorem. Hence if 93 is abelian it must be the four-group (i.e.,

dihedral). If 93 is nonabelian but has a cyclic subgroup of index 2, then by [17,

Theorem 12.5.1] 93 is either dihedral, semidihedral, generalized quaternion, or

of the form

93 = {A, B}; A2"'1 = B2 = 1, BAB'1 = A1+v>~2

with w^4. In the latter case it is easy to show that (4.7) cannot hold, R.A.A.;

and 93 cannot be generalized quaternion by [10].

Lemma 5.2. All involutions of 93 are (^-conjugate. All involutions of 93 different

from X are C(X)-conjugate unless 93 is dihedral.

These assertions are a consequence of (4.7). For the detailed arguments corre-

sponding to the three cases of Lemma 5.1, see respectively [15], [6], [7].

Lemma 5.3. Let T be an involution in 93 with T^X; let ®={A', T} and let dt

be the maximal normal subgroup of C(®) of odd order. Assume 93 ̂ $>. Then

(a) |TV(®) : C(S>)| =6, and there exist elements Se® which interchange T, XT.



160 D. M. BLOOM [April

(b) Let S be any element as in (a); let i, f be the number of elements of SR respec-

tively inverted and fixed by S. Then i=f or 3/=/. If either f or i is divisible by 3 then

q=l (mod 3).

Proof. After a conjugation in C(X) = GL(2, q), we may assume that

T= I — 1, — 1, 11|. Then CÇS>) is a diagonal subgroup. If 5ß is dihedral, (a) is proved

in [15]. If $ is not dihedral, then by Lemma 5.2 there exist elements Ze @ and

SeC(X) with Z: X-+ T, 5: T-> XT. There is an element Ve C(T) which maps

the 2-Sylow subgroup Z$Z ~ * of C(T) onto a 2-Sylow group D of C(T) containing

X and T. Then G=VZ maps X-> T, $ -> £}. By Lemma 5.2, all involutions of £1

different from F are conjugate in C(T) ; hence there is an element 77 e C(T)

which maps GTG1 -* A\ Letting M=HG, we have

Af : JST-+ F^ A-, ZF-^ A'r,
(5.1)

5:F^AT^F, X-+X,

and hence 7V(2>)/CC2)) £ 53, proving (a).

Let Af, F now be any elements of © satisfying (5.1). The group C(%) is a diagonal

(hence abelian) subgroup, so that any element which commutes with 2) also com-

mutes with C(%). S must be an anti-diagonal matrix in GL(2, £7) = C(A"). Af and S

induce automorphisms of C(®) (hence also of 9Í) of order ^ 2, and hence

(5.2) in = 5(F) x 9(5) = 5(Af ) x 9(Af )

where 5(F), 9(5) are the subgroups of fR respectively fixed and inverted by S,

and similarly for Af. Now 5 acts on C(®) in the same way as (MS)M(MS)'1

which is conjugate to Af in 7V(®) = A(C(®)). Hence

(5.3) |5(5)| = |5(M)|.

The elements of 5(5) are scalar elements of GL(2, q), which (except for the ele-

ments of 3) do not commute with M since Af £ C(X). Similarly, the elements

||a, c7-1|| in 9(F) do not commute with M~XS (unless a=l) and hence are not

inverted by Af. Thus

5(Af) n 5(F) = {1} or Q; 9(A7) n 9(5) = {1}.

Combined with (5.2) and (5.3), this implies that i'=/or 3i=f. If 3|/or 3|i then we

must have q = 1 (mod 3) since 5(5) and 9(5) are diagonal subgroups.

Lemma 5.4. C(X) is not of type (I). IfC(X) is of type (2), then A®^A5.

Proof. The first assertion follows from Lemma 5.1. Suppose that C(X) is of

type (2); then C(X)=C2Ji where D, and Tt are as in Theorem 3.4(2). ty is clearly

abelian and hence is the four-group. We have

COP) = 501 = $©
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where |©| is odd. Also, since TV(93) ¥= C(93), TV(93) must have an element of the

form

(5.4) Z =

0 a 0

0 0/3

c   0   0

(abc = det Z = 1)

which must then map every element |r, s, t\\ of 9JÏ into ||j, t, r\\. We then have

|TV(93) : C(93)|=3 and TV(93) n C(X) = C(ß). It follows from block theory that

there is a one-to-one correspondence between the blocks of C(X) of defect 2 and

the characters of ©, and a one-to-one correspondence between the blocks of ©

of defect 2 and the TV(93)-associate classes of characters of®. C(X) has |@| blocks

of defect 2, each containing four characters (cf. [8]); these must be precisely the

190t | characters of degree 1 given by

x   0

z   y hió ;i)
where 9 ranges over the characters of 9JÎ.

Suppose first that ©^3- Then some character of© has three distinct associates

in TV(93); the three corresponding blocks of C(X) "induce" the same block B

of ©. One can deduce that the matrix of generalized decomposition numbers for

B consists entirely of entries ± 1, and that the four characters in B all have the

same degree/. Applying Brauer's formula [3], one can then compute

|®| =/|2Jc|-|jQ|3.

On the other hand, if l,f2,f3,fi are the degrees of the characters in the principal

block of ©, Brauer's formula gives the well-known result (see [5] or [1])

(5.5)

where

Thus we obtain

|@| = 87r|C(A)|3/|C(93)|2 = 87r|3R|.|D|

/k/àTi
(Á+iX/a+sXA-i)' 8 = ±i;/* = 1+/2+S/3.

(5.6) / = 8/a/aM/i + l)(/3 + 3)(/4 - 1).

Here/and the/, are odd and > 1. (Even if @^@', we would then have ©/©' of

order 3 whereas there are four characters of degree / so that /> 1 ; and the /,

are # 1 since these characters, being in the principal 2-block, contain 3 in their

kernel.) The only integral solution of (5.6) consistent with these conditions is

if2, Í3, ft) = (5, 3, 3). The character of degree 5 has no conjugates and is hence

rational-valued. Thus |@/3| divides 22-32-5 = 180 (Lemma 4.1), and hence @/3

is isomorphic to AB.
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On the other hand, suppose @=3- (5.5) is still valid, with [50t|=4 or 12; and

since the/j are > 1, one easily sees that 77^ 15/8. If |D| = 1 then |@| ^ 180; since

|5B|=4, |@|^168 and hence A©^5. Assume |0|>1. Let d=ba~\ e=bc~1 in

(5.4) ; then a computation shows that the most general element of the set

Oz-O.D,z2.iDz.£l

1 tve te

(r + u)d   l+rtvde   rtde

sud        s + v 1

where the elements (3.1) (r = r, s, t, u, v) lie in O. Distinct choices of r, s, t, u, v

with t^O give distinct elements (5.7), and hence

|©| > |0|*(|0|-1).

Comparing this with (5.5), and noting that |50î| >4 only if q= 1 (mod 3), we find

that |0|=/7í¡13. Since DZD generates a /»-subgroup strictly larger than itself,

/?3=|0|3 must divide |@|, and hence 8tt is an odd integer. This integer can only

be 15, with

(/2,/3,/4) = (3,3,5).

It follows as before that A@£/*5.

Remark. The results of [16] are applicable to the case treated in Lemma 5.4.

Since these results are quite difficult, we have avoided using them. The special

case @=3 is also covered by [15].

Lemma 5.5. If C(X) is of type (3) or (4), then A© is isomorphic to A7 or to

PSL(2, k) for some odd k^5. 7/A©s A7 then p = 5 and a is even.

Proof. Any subgroup of GL(2, q) of type (3) is conjugate over the extension

field GF(t72) to a subgroup of GL(2, C72) of type (4) (cf. proof of Theorem 3.4);

hence we may assume C(X) is of type (4). Thus C(X) = {M, 5} where 501 is a

diagonal subgroup of GL(2, q) and 5 is an anti-diagonal 2-element in GL(2, q).

If £1 = 5)3 n 501, then O is an abelian subgroup of 5ß of index 2 and is normal in

C(X). Using (4.7) and Lemmas 5.1 and 5.2, we can conclude that 5B is dihedral.

Since the normal 2-complement @ of C(X) is abelian, the results of [15] imply

that A© is isomorphic to A-, or to PSL(2, k) for some odd k^ 5. If A© 2 A7 then

an element of order 5 in © is conjugate to four of its powers, and this is possible

in SL(3,c7) only if/? = 5. From the structure of A7, the group C(%) of Lemma 5.3

(which may be assumed to be diagonal, as in the proof of Lemma 5.3) must con-

tain a 3-element, so that q = 1 (mod 3) ; with p = 5, this implies that a is even.

Thus Lemma 5.5 is proved.

We remark here that Lemma 5.5 can be proved without using the results of [15].

The general idea is as follows: let 9, 5 be the subgroups of© respectively inverted

has the form

(5.7)
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and fixed by S. If O is cyclic, or is the four-group with |9| = 1, one can easily show

that A© satisfies the assumptions made in [11 ], and hence is isomorphic to PSL(2, k).

(The argument is given in [1] for q^äl (mod 3); only slight modifications are

needed if #=1 (mod 3).) If O is the four-group with |9f| > 1, an application of

Brauer's formula to the principal block gives |@ : g|=2520, |$|=3, \% : 3| = 1

or 3. (Some of the calculations may be found in [I], but not this result since the

restriction q£l (mod 3) is imposed. See also [27].) If 3=3, the results of [26]

are applicable to A© and we have A© s A-,. If |fy : 3| =3, one can apply Brauer's

formula to a nonprincipal block of A© of defect 3, and show that this block must

have a character of degree 1, R.A.A.

Lemma 5.6. T/A@=ïPSL(2, k) as in Lemma 5.5, and if k is not a power of p,

then k = 5, 1, or 9. The case k = 9 does not occur ifq^l (mod 3).

Proof. Suppose rjtp is the prime factor of k. The r-Sylow group ¡Q of A© is

elementary-abelian, and is hence conjugate to one of the following :

(i) a cyclic group of order dividing q2— 1 or q2+q+1 but not q— 1 ;

(ii) a diagonal subgroup of PSL(3, q);

(iii) the group A({ W, Y}) of order 9, where F is a permutation matrix

of order 3 and q= I (mod 3).

In case (iii), clearly k= |B| =9. In cases (i) and (ii), consideration of characteristic

roots shows that ¡Q contains an element Z^ 1 which is ©-conjugate to exactly

1, 2, 3, or 6 elements of ¡Q. Since this number equals (k—1)/2 from the structure

of PSL(2, k), we have k = 5, 7, or 13 (not 3 since PSL(2, 3) is not simple). The case

k=l3 is impossible, for in this case C is cyclic (since |D| = 13) and (A:— l)/2 = 6,

whereas no /»-regular element of PSL(3, q) is conjugate to six of its powers.

Lemma 5.7. IfC(X) is of type (5), then we have "Case 2" of Theorem 3.4(5):

C(X)={SL(2,pß), V,\\b,eb\\}.

Moreover, if the 2-Sylow group ¡Q ofSL(2,pß) has order 2m + 1 and the element V

has order 2nu (u odd), then either 93 is of Type B with n = m, or 93 is semidihedral

with « = 0.

Proof. Since 93 contains D (which is generalized quaternion), 93 cannot be

dihedral, and hence is semidihedral or of Type B.

Suppose 93 is semidihedral. Then 93 has a cyclic subgroup of index 2. This is

consistent with the structure of 93 obtained from Theorem 3.4(5) only if n^l;

since X=\\-l, -1|| already belongs to SL(2,pe), we may say n = 0. Since 93 ̂ C

it follows that the element ||¿», e¿>|| must appear.

On the other hand, if 93 is of Type B, then |93|=22'c+1 where 2k is both the

order of Z(93) and the maximum order of any element of 93 which is 93-conjugate

to its inverse. Hence m¿k and n¿k. Since 22,c + 1 = |93| equals 2m+n or 2m+n + 1, we
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can only have m=n=k, |5ß|=2"*+n+1 so that the element ||6, ¿F|| appears. This

proves Lemma 5.7.

If C(X) is of type (5), we thus have four possible cases :

Case I.     pB = 1 (mod 4); 5ß is of Type B.

Case II.    pB = 1 (mod 4); 5R is semidihedral.
(5.9)

Case III.   p» = -1 (mod 4); 5B is of Type B.

Case IV.   pB = -1 (mod 4); 5ß is semidihedral.

Lemma 5.8. 7n Cases I anrf IV 0/(5.9), either (a) or (b) (as follows) occurs:

(a) C(X) = GL(2,pB).

(b) q= 1 (mod 3); C(X)={GL(2,pB), V} where V is a scalar element of GL(2, q)

oforder3(p»-l).

Proof. In Case I, if t is an element of order 4 in (GF(q))* then ||t, —1|| is in

SL(2,pß) and ||t, i|| e {V} (using the notation of Lemma 5.7 and its proof), so that

the product

r-K.-1-M-l-UI
lies in C(X). In Case IV, some odd power of \\b, «¿>|| is a 2-element, and hence

of the form ||c, ± c|| since (/?"—1)/2 is odd (in fact, by the first assertion of Lemma

5.7 we must have ||c, — c||). Then ||c, — c||2 is a scalar 2-element in {SL(2, p"), V}

and hence equal to ± 7 (since n=0), so that c=±l or ± t. If c = +1 then

5ß = {O, ¡e, -c||}

(with O as in Lemma 5.7) is contained in the 2-Sylow group of SL(2, p2B) which is

generalized quaternion, R.A.A. Hence c=±l so that again F=|| — 1, 1|| is in

C(X).

In either case, letting/ i be as in Lemma 5.3(b), we have here/=w (cf. Lemma

5.7), while / is the number of odd-order diagonal elements in SL(2, pB). It follows

at once, by Lemma 5.3(b), that |F|=2"m equals pB—l or 3(pB — 1) (replace F by

— V if necessary in Case IV). In Case IV it follows at once that

C(X) = {SL(2,/A V, T} = {GL(2,/A V}.

In Case I the same conclusion follows by considering the structure of the abelian

(diagonal) subgroup of 5$ of index 2. Moreover, if | F| =pB — 1 then V e GL(2, pB).

Lemma 5.8 follows at once.

We now consider the structure of C(X) in Cases II, III of (5.9). In either case,

q = 1 (mod 4) (true in Case III since 5ß is of Type B).

Discussion of Case II. Here | V\ is odd. We may replace \\b, eb\\ by an odd power

Af= ||c, 8cI which is a 2-element. Then C(X) has the 2-Sylow group 5ß={C, Af}

where O is the 2-Sylow group of SL(2, pB). Hence 5B has a diagonal subgroup ®

of index 2, and 5ß ={■£>, /} where /=[1, -1]. If F=||-l, 1|| lies in "33 then also

11, (||=r||—i, t|| is in ®, contradicting n=0 (Lemma 5.7). Hence X is the only
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involution in ®, and ® is cyclic. Since 93 is semidihedral of order 2m + 2 where

// — 1 =2mk (k odd), ® must be generated by an element

j II on _ 1 [l
^4 = || Vf, w^     x||

where w2m = Det A = — \. In particular, 2m + 1 divides </-l so that 2j8|a. Letting

B = AJ=[w, w'1], B is an involution, fy={A,B}, and the element S=\\i, —1||

of SL(2, pß) maps Ti -» XB -> 77. A computation shows that C(X, 5) consists of

matrices of the form

e    w2d

d     e

Such a matrix is inverted by S if and only if it has determinant 1 as an element of

GL(2, q); the number of these matrices in C(X) is pe +1 (see [12]) and the number

of them of odd order is (pt+1)/2. It follows from Lemma 5.3 that the order of V

as an element in C(X) is (pß + l)ß or 3(pß + l)ß. The latter clearly can occur only

if q = 1 (mod 3). Now let

Xp    p
-A    1(5.10) G =

where A, p have orders 2(pß +1), 2(pB — 1) in (GF(ç))*. Then a computation shows

that G maps the subgroup of U*(2,pß) of determinant 1 onto SL(2,/»i), V->V,

and

l-MI-tfcp-1]- \\pw-\wp-1\\-[w,w-1]eC(X).

Thus C(A-) is conjugate to {U*(2,pß), V}.

Discussion of Case III. Here again 2j3|a, since q=l, pB = — l (mod 4). The same

argument as for Case IV (Lemma 5.8) shows that

C(X) = {SU2,pß),V,\\c,-c\\}

where ||c2, c2|| is a 2-element in {V}. Let p" + l =2mk with k odd. If c2"1 = 1, then

we would have (det M)2m' ' = 1 for all ATe93; since |93|=22m + 1, 93 would then

have a subgroup ¡Q of order 2m+2 contained in SL(2, q) and thus cyclic or general-

ized quaternion. This is inconsistent with the structure of 93 as a group of Type B.

Thus we must have |c| =2m + 1. Writing i = c2"'1, the element

B= M-[1,-11- [«.-•]

is an involution in C(X), and the elements Ti, XB are interchanged by an element

of the form

d      e

e    -d
S =

in SL(2, pß). C(X, B) consists of matrices of the form

a   b

-b   a
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Just as in the discussion of Case II, the elements of C(X, B) inverted by 5 are those

of determinant 1, while those fixed by 5 are scalar. It follows in the same way as

before that the order of V in C(X) is (pB +1)/2 or 3(pB +1)/2. If G is as in (5.10)

then G maps

[p-2, l]-+\\p-\ -p-'W e{V, ||c, -c||} S C(X)

and as in Case II we deduce that C(X) is conjugate to {U*(2,pB), V}.

Combining the results for Cases II and III with Lemma 5.8, we obtain

Lemma 5.9. If C(X) is of type (5), then C(X) is conjugate to ® or {Ä, V}, where

® = GL(2,p") (ß\a) or U*(2,pB) (2ß|a) anc7 V is a scalar element ofGL(2,q) such

that V3 e t.

In connection with Lemma 5.9, note that if q=l but pB£l (mod 3) and

$ = GL(2,//), then 3Í Ä, and hence C(X)={®, V}. In this case AC(X)={®, F}/3

coincides with Ä. Similar considerations apply to the case where pB ̂  — 1 (mod 3)

and Ä = U*(2,pB). Hence Lemma 5.9 gives the following for AC(X):

Lemma 5.9A. If C(X) is of type (5), then AC(X) is isomorphic to one of the

following:

(a) GL(2,//), withß\a,pBel (mod 3);

(b) U*(2,pB), with 2ß\a, pBï-l (mod 3);

(c) GL(2,//)/3 or{GL(2,pB), F}/3, with ß\a,pB = l (mod 3);

(d) U*(2,pB)l3 or {U*(2,pB), V}/3, with 2ß\a,pB = -l (mod 3).

(Here V is as in Lemma 5.9.)

The further treatment of type (5) depends on the following group-theoretic

lemma.

Lemma 5.10. Let § be any group containing an involution X in the center of its

2-Sylow group. Assume that in §,

(i) C(U) = C(X)for all i/#l in Z(C(X));

(ii) C(X) has any one of the structures (a), (b), (c), (d) of Lemma 5.9A;

(iii) 4? contains an element G which maps A1 —>- F —>- XT, where T e C(X) is the

matrix || — 1, 11 (or, in cases (c) and (d), the residue class modulo 3 of this matrix).

Then |§| is uniquely determined by the structure of C(X), with three exceptions:

(1) C(JI0 = GL(2, 3), |$| = S616 or 7920; (2) C(X) = GL(2,1)13, |§| = 1876896 or

2328480; (3) C(X)=U*(2, 5)13, |$| =68400, 85680, or 126000.

Proof. If 5ß is of Type B, the conclusion is stated by Brauer in [7] with much

weaker assumptions (in fact, only (4.7) is used, and that is implied here by (iii)).

If 5B is semidihedral, the method of proof involves application of Brauer's formula

to the principal block of §, and also to a block of defect 2 of § which is induced by

three distinct blocks of C(X). (The "exceptions" occur only when no such block

exists.) If C(X) has the structure of Lemma 5.9A, case (a), the argument is given
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in detail by Brauer [6]. The argument in all the other cases is similar, and we omit

it in order to keep the length of this paper within reason. The characters of 5Î,

which are needed in the proof, are found in [25] for ÎÏ = GL(2, pB) and in [13] for

ft=U*(2,pB). (Alternatively, the characters of U*(2,pB) can be computed as

follows: those of degrees 1, q, q+l are obtained by considering the characters

induced by linear characters of the normalizer of a /»-Sylow group, while those of

degree q— 1 may be found by an argument like that used in [25].)

Lemma 5.11. IfC(X) is of type (5), then © is conjugate in GL(3, q) to

(a) {SL(3,//),3}, withß\a;or

(b) {U(3,pB), 3}, with 2ß\a.

Proof. C(X) is given by Lemma 5.9. By Lemma 5.3(a), © must contain an

element Z of the form (5.4). Let us first suppose that C(X) = GL(2, /»"). After

conjugation by a suitable element of the form \\y, z, z\\, we may assume a=l,

b = c~1. But then, letting S=[l, 1] £ C(X), the element

zsz
c       0   0

0       0   c-

0    -c   0

lies in © n C(X) = GL(2,pB), so that c e GF(pB).

Suppose instead that C(X)={GL(2, pB), V} as in Lemma 5.8(b). The same

reasoning as above gives c £ GF(pB) or ctt £ GF(pB) where tt has order 3(pB — 1)

in (GF(<7))*. In the latter case, we may say V= \tt, tt\\ ; if we conjugate by the element

y= ||7T, 1, 1|| in GL(3, q) and then replace Z by ZV'1, we find that we may still

assume the coefficients of Z lie in GF(pB).

Similar arguments can be used if Ä = {/*(2,/»") in Lemma 5.9; here we find

that the coefficients of Z satisfy ak = bk = ck=l, k=pB + l.

Again assume C(X) = GL(2, pB). With Z as above, let

©! = {C(X), Z};    ©2 = {SL(3,pB), 3}.

Then ©xS© and &x^&2. Since the assumptions of Lemma 5.10 are satisfied

simultaneously by all three groups A®, A©!, A®2 (with the same C(X)), it follows

that ©! = © and ®x = ®2, so that @={SL(3,//), 3}- If C(X)={GL(2,pB), V},

similar argument gives ©={SL(3,/»i), V}; here if pß = l (mod 3) then A© is not

simple, while if pB&l (mod 3) then V e {SL(3, //), 3} and thus @={SL(3,//), 3}.

Similar arguments apply when $= U*(2,pB).

Lemma 5.12. IfC(X) is of type (6), then p = 3 and © ¿j conjugate to SL(3, 3).

Proof. Using the notations of Theorem 3.4(6), let u = 2mv where v is odd. By

Lemmas 5.1 and 3.3, 93 is semidihedral or of Type B. Suppose the latter. If

|93|=22n+1, then Z($¡{X}) has the form C2xCk, fc-2""1, which is consistent

with Theorem 3.4(6) only if n = 2, m = l, S4gC(A)/{J!f}. In this case, if G £93
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corresponds to the permutation (1234) in <S4, then (by Lemma 3.3) G2 is an element

of order 4 = 2n conjugate in % to its inverse, and this is impossible. Hence 5ß must

be semidihedral. %¡{X} is then dihedral of order ^ 8, so that u is odd and

SiCC(X)l{X}. Thus

C(X)I{X} ̂ SixCy,       (w odd).

Let G, Te C(X) correspond to the permutations (1234) and (13) in 54. Then

|C| = 8 and |F| =2, since all six elements of 5B of order 4 correspond to even permu-

tations (cf. Lemma 3.3). Since 5ß is semidihedral and T is not a power of G, G2

interchanges Fand XT. Lemma 5.3 applies here with %ci = Cw and S=G2. Clearly

no element of Cw is inverted by 5, and hence Lemma 5.3(b) implies C„=3,

AC(X)I{X} £ Si. This, combined with the structure of 5(5, is enough to determine

the structure of AC(X); we find that AC(X)^GL(2, 3). Brauer's results [6] now

show that either (a) A@sPSL(3, 3), or (b) A© is simple of order 7920. In case (b),

each element of © of order 11 is conjugate to five of its powers (so that p= 11)

and each element of order 5 is conjugate to four of its powers (so that p = 5),

R.A.A. Hence we must have A@sPSL(3, 3).

The group A® has a faithful (modular) projective representation 3ê of degree 3

in the obvious way. The tensor product of 3/t with its contragredient is a faithful

representation (not projective) of degree 9 ; let ^ be its character. Since the non-

principal ordinary irreducible representations of A© all have degrees > 9 (cf. [25]),

it follows that the characteristic p must divide |©|. Hence/» = 3 or 13. If p=3,

it can be shown by a short computation (details given in [1]) that C(X) is conjugate

to GL(2, 3) in GL(2, q). The proof of Lemma 5.11 now shows that © is conjugate

to SL(3, 3).
We must still show that the case p= 13 cannot occur. If p= 13, the character ^

is a nonnegative linear combination of irreducible modular (with respect to the

prime 13) characters fa of A@^PSL(3, 3). The fa must belong to the 13-blocks

which consist of ordinary characters xi °f degrees prime to 13, since all modular

characters not in these blocks coincide with the ordinary characters of degrees

divisible by 13 whereas deg i/»< 13. By a standard result from block theory, the

fa, restricted to 13-regular elements, are linear combinations of the xi with integer

coefficients. However, if G e A© is an element of order 8, then x/G) = x/G2) for

all such xi (cf. [25]), whereas faG) = 3, faG2)=l*faG), R.A.A.

Lemma 5.13. IfC(X) is of type (7), then p = 3, a is even, and © is conjugate to

the subgroup U(3, 3).

Proof. C(X)I{X} has an elementary-abelian subgroup of order 8. Hence 5ß

can only be of Type B, and q= 1 (mod 4). Writing w = 2mi; (v odd), |5R| =2m+i and

|Z(5ß)| =2m+1, so that m= 1, u = 2v. Up to conjugacy in C(X) we have

(5.11) * = {||.,i||, ||i,.|, [i,i]}
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where as usual i2 = — 1. By Lemma 3.3, some element o of order 2inAt corresponds

to an element Ti of order 4 in the diagonal subgroup of 93, such that Ti is inverted

in 93. Evidently we may take T?=||i, —1||. Since 0 commutes with no element of

odd order in At, the odd-order diagonal subgroup of C(X) must consist only of

scalar matrices ||a, a||, and hence (by Lemma 5.3) is just 3- Thus C(X) has a

subgroup § with

(5.12) \C(X) : $| = 2;   A$/{*} ~ AtxC2.

The results of [7] give

|®:C(JQ| =P2f2(f2+f+l),

\àC(X)\ = p.etyf(f2-l),

where p, t, f are odd, f= 5 (mod 8), and e=//|/| = ± 1. Since here \AC(X)\ =96,

the only solution is/=-3, p.=t=l, |A@| = 6048. By a result in [24], the only

simple group of this order is Í7(3, 3). Since | © | is divisible by the prime 7 to exactly

the first power, the results of Brauer [2] show that © cannot have a faithful ordinary

representation of degree 3. Hence the characteristic /» divides |©|, i.e., p = 3 or 7.

In the case p = 3, a short computation (done in [1]) shows that, after replacing

C(X) by a conjugate subgroup, we have exactly the situation of (5.9), Case III.

The former reasoning still applies with//= 3, and we conclude (as in Lemma 5.11)

that © is conjugate to U(3, 3).

Suppose instead that/» = 7. By (5.11), 93 contains the elements A'=| —1, —1||,

F=||l, -1||, B=\\í, -tf, F=[l, -1] (identifying GL(2,q) with a subgroup of

SL(3, q) as usual). These matrices also belong to U(3, 3) ; we may assume (after

a conjugation and possible replacement of 1 by — t) that they correspond to them-

selves under the isomorphism of A© -> (7(3, 3). (We here regard 93 as contained in

A© rather than @.) If E is the element of A© which corresponds to the element

1 1       l-i

-(1 + 0   (l + i)     0

1 1       t-1

of (7(3, 3), then

(5.13) |£| = 7; \EXT\ = 3; |XE\ = 7;  Y ~ TE; E ~ EB

where these relations are taken in A© rather than ©, and "~" denotes conjugacy.

In A@sPSL(3, T), an element of order 7 has trace 3 (strictly speaking, this means

that one of its pre-images in SL(3, T) has trace 3), and the traces of conjugate

elements differ by at most a factor 2m (here r¡ = 2 is a cube root of unity). Hence

from (5.13) we get five equations for the three diagonal coefficients of E. A compu-

tation shows that these equations have no solution in GF(7a). Thus the case

p = l does not occur, and Lemma 5.13 is proved.
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Remark. A similar method can be used to exclude all of the cases where p

does not divide |@|, without the necessity of using the results of [2].

Summarizing the results of this section, we have

Theorem 5.14. Let © be the inverse image under A of a nonabelian simple sub-

group of even order of the group PSL(3, q) = PSL(3, pa). Then one of the following

occurs:

I. © is conjugate (in GL(3,t7)) to {SL(3,pB), 3} with ß\a, or to {U(3,p»), 3}

with 2ß|a.

II. A© is isomorphic to PSL(2, pB) for some ß.

III. A© is isomorphic to A5 or PSL(2, 7).

IV. A© is isomorphic to A6, with q=l (mod 3).

V. A© is isomorphic to A7, with p = 5 and a even.

(Note that PSL(2, 5) is isomorphic to A5, and PSL(2, 9) to Ae.)

6. Proof of Theorem 1.1. It is clear that subgroups of SL(3, q) as in Theorem

5.14(1) occur for each value of ß. In this section we determine the conditions under

which subgroups of the other types mentioned in Theorem 5.14 will occur. We

also determine the GL(3, <7)-conjugacy classes of these subgroups, and their

normalizers in SL(3, q). Theorem 1.1 will follow easily.

As in §5, © will denote the inverse image under A of a simple subgroup of

PSL(3, q), and JT=||1, — 1, —1|| is an involution in the center of the 2-Sylow

group 5ß of ©.

Lemma 6.1. If ®={SL(3,pB), 3} with ß\a, then N(®)^® if and only if both

3\(pB-l) and 3ß|a; in this case, 7V(@)/@ is generated by a matrix V= \\a~2, a, a\\

such that V3 e ©.

Proof. Let 5 e 7V(@). Since all involutions in © are ©-conjugate, there exists

an element G e © such that G5 commutes with X; i.e., GS e C(X). Moreover,

GS normalizes ©, hence also

®nC(X) = {GL(2,pB),3},

hence also SL(2, pB). The argument used in the last paragraph of the proof of

Theorem 3.4 then shows that GS has the form PV where F 6 GL(2, pB) = ® and

V=\\a~2,a,a\\, aeGF(q). Thus Se®V. Similar argument shows that Se®R

where R= \\b, b, b'2\\, b e GF(q). Hence FF"1 e ®, so that a3 e GF(pB) and thus

V3 e ®. Conversely, any matrix V of this form (with a3 e GF(pB)) does in fact

normalize @. The lemma easily follows, if we observe that V is already in ® unless

//— 1 and (q—l)l(pB—l) are divisible by 3 (which is equivalent to 3 | (pB-l),3ß\a).

Lemma 6.2. If ®={U(3,pB), 3} with 2ß\a, then N(®)¥=® if and only if both
3 | (pB+1) and 6ß|a; in this case, 7V(@)/® is generated by a matrix U= \\b, b, b~2\\

such that U3e®.
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Proof. Let S e TV(©). As in the preceding proof, there exists an element Ge<ë

such that GS lies in GL(2, q) and normalizes

C(X) = {U*(2,pB),3}.

Hence there is an element 77 e C(X) such that R = HGS commutes with ||1, it, irk~1\\

(where |ir| =k=pB+1 in (GF(q))*), and maps the element (5.4) (with a=b = c= 1)

into an element of ©. This implies (via a short computation) that T? has the form

\\a,b,a~1b~1\\ where a3k=b3k=l. Such a matrix R will in fact normalize © if

and only if (ab~1)k = l, so that Re®U where U=\\b,b,b~2\\. As before, the

lemma easily follows.

Lemma 6.3. If A© ~ PSL(2, pß) for some ß, then ß\a and © = ©0x3 where

©o = PSL(2, pß). For each value of ß dividing a, such subgroups ©0 exist and are all

conjugate in GL(3, q). One such subgroup ®0 (for given ß) is the image o/PSL(2, pB)

under the isomorphism

a2       2ab      2b2

ac    ad+bc   2bd

c2\2       cd       d2

where D = ad—bc. The same mapping gives an isomorphism ofPGL(2,pB) onto a

subgroup ®j of SL(3, q), and TV(@) = ©x x 3-

Proof. By Schur [21], the representation group of PSL(2, k) is SL(2, k) for

k¿9, which implies that if |3| = 3 and ®/3 S PSL(2,/) then ©¿®' and hence

© S PSL(2,//)x3.

(The latter is still true if pB=9, since here |3| = L) If such a subgroup © exists,

then © contains elements of orders (pB — l)¡2 and (/»" +1)/2; each of these elements

is conjugate to its inverse, and hence its order divides q— 1 orq+l. Thus (p2B —1)/4

divides (p2a—l)/2, so that ß\a. Conversely, for any ß dividing a, it is verified

directly that the mapping (6.1) is an isomorphism of PSL(2,/»i) onto a subgroup

©o of SL(3,q), and of PGL(2,pB) onto a subgroup ©i2©0; moreover, &x n 3

={1}. It must still be shown that all subgroups isomorphic to @0 are conjugate,

and that TV(©0) is no larger than ©i x 3-

The group ©0 obtained via (6.1) corresponds to a faithful representation J5" of

PSL(2, pB) of degree 3 over GF(q). ^ must be irreducible, since PSL(2, pB) has no

nonprincipal irreducible /»-modular representation of degree < 3. (This fact

follows either from Theorem 3.4 or from the classification in [9] of the /»-modular

representations of PSL(2, /»").) In fact, the results of [9] show that any irreducible

/»-modular representation 3^i of degree 3 is obtained from ¡F by applying a fixed

automorphism 0 of GF(pB) to all matrix coefficients in the representation &.

Under this automorphism, it is clear from (6.1) that the group ©0 is mapped into

(6.1)
a   b

c   d
D
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itself. Hence all FK give the same subgroup ®0 of SL(3, q), and the assertion about

conjugacy follows at once.

Let e have order (pB-Y)\2 in (GF(/))*; then5=||e, 1,«_1|| lies in ®0. Let

VeN(®); then by the usual argument there exists Ge® such that Y= VG com-

mutes with 5. If pB>5 (i.e., |5|^3), F must be a diagonal matrix ||a, b, c\\ in

SL(3,q). Since YeN(®), and any matrix ||ai;|| in @ satisfies 2a11a13=a22, it

follows easily that, modulo 3, b = l and a = c~1, from which Y is the image of

|l,c|| ePGL(2,pB) under (6.1). Thus 7V(@) is given correctly by Lemma 6.3.

This still holds for pB = 5, since no element £3 of SL(3, q) centralizes ®, whereas

the automorphism group of PSL(2, 5) is PGL(2, 5).

Remark. It is possible (although we have not done so here) to avoid represen-

tation theory entirely in the proofs of Lemmas 6.3 through 6.6. (This is done in

[1] for Lemmas 6.3, 6.4, and 6.5 by use of generating relations and computations

with matrices.)

Lemma 6.4. Assume />#5. 7/A@sPSL(2, 5) (i.e., to A5), then @ = ©0x3 with

®o = A5; such subgroups © exist if and only if q= ± 1 (mod 10). 7n this case,

© =7V(@) and ©0 is conjugate in GL(3, q) to the image of Ah under the isomorphism

defined by (345) -> B, (13)(24) -> T where

(6.2) T= 1-1,-1,111; F =

-1/2    1/2-/      -t

r-1/2       t        -1/2

t        -1/2    1/2—/

and t satisfies the equation 4r2 —2r—1=0. Moreover, under this isomorphism we

have (234) -> 5, (12)(34) -+ X, where

(6.3) 5 =

0    1    0

0 0    1

1 0   0
IL -1, -1|

The two choices for t yield conjugate groups ®.

Proof. If T, B are as in (6.2), then F2 = F3 = (FF)5 = 1, and these are generating

relations for As [12, p. 290] which are satisfied by F=(13)(24) and F=(345).

One can then obtain (6.3) using the relations S=TB~1T(BT)2, Ar=5"1F5. (Note

that the equation 4i2-2/— 1 =0 has a solution in GF(q) if q= ± 1 (mod 10).)

Conversely, if A@^^5, then © = @0x3 with ©0 = ^5 by the same argument

as in the proof of Lemma 6.3. Here if/? ^3, @0 corresponds to an ordinary faithful

representation of A5 of degree 3, which must be irreducible as before. The ordinary

character-table of As can be found in [21]; the degrees are 1, 3, 3, 4, 5. If xi, X2

are the characters of degree 3, their values generate the field of 51'2. Since a modular

irreducible representation can be written in the field of the character, it follows that

subgroups ®0 = A5 exist if and only if 51'2 exists in GF(q), i.e., q=±l (mod 10).
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(In this case, we have already found one such @0 explicitly, above.) Moreover,

y2 is obtained from xi via an outer automorphism of A5 which permutes the two

classes of 5-elements ; the same must be true of the representations, and hence the

two representations of degree 3 yield the same group ©0, proving the assertions

about conjugacy. As for the case p = 3, the 3-modular characters of As can easily

be found by using the results of [2, I]; they coincide with the ordinary characters

of degrees 1,3,3, 4, and the same argument as above still works.

Finally, since no element £ 3 of SL(3, q) centralizes @, we must have

7V(@)/3 £ Aut (©) £ SB.

If TV(©)/3 = Ss, 7V(@) contains an element of order 5 conjugate to four of its

powers, and this is impossible if/» ̂  5. Thus TV(@) = @, and the proof of Lemma 6.4

is complete.

Lemma 6.5. Assumep ± 7. T/A© s PSL(2, 7), then © = ©0 x 3 with ©0 ~ PSL(2,7) ;

such subgroups © exist if and only if q3=l (mod 7). In this case, @=TV(@), and

@o is conjugate in GL(3, q) to the image o/PSL(2, 7) under the isomorphism defined

by[l,-l]^X,

1    0

1    1
E =

r       1/2       -1/2

r     -1/2       1/2

0   r+1/2   r+1/2

where X=\\l, —1, —1|| as before, and r satisfies the equation 2r2 + r+l=0. The

two choices for r yield conjugate groups ©.

Proof. If X, E are as above, then X2 = E1 = (EX)3 = (XE3f = 1 and these rela-

tions generate PSL(2, 7) [12, p. 303]. Hence the given mapping is an isomorphism

of PSL(2, 7) onto a subgroup ©0 of SL(3, q), provided that the equation

2r2 + r+ 1 =0 has a solution, i.e., ( —7)1/2 exists in GF(q) ; this will occur if and only

if q3= 1 (mod 7). The remainder of the proof is like that of Lemma 6.4; there are

two ordinary characters xi, X2 of PSL(2, 7) of degree 3. Their values generate the

field of (—7)1'2, and xi -*■ X2 under the outer automorphism 6 of PSL(2, 7) which

maps X-> X, F->- E'1. For p = 3, the 3-modular characters of PSL(2, 7) coincide

with the ordinary characters of degrees # 8. The restriction on q and the assertions

about conjugacy now follow just as in the preceding proof. So does the assertion

about TV(@): if TV(@) > © then TV(©)/3 must be isomorphic to PGL(2, 7)=Aut(©0)

and hence contains an element of order 7 conjugate to six of its powers ; this is

impossible if p^ 7.

Lemma 6.6. Assumep^3. 7/A© is isomorphic to PSL(2, 9) (i.e., to A6), then

(6.4) © ©';       |3| = 3;       @/3 S Ae

and (6.4) determines the structure o/© uniquely. Such subgroups © exist if and only
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if either (a)q = 5a, a even; or (b) q= 1 or 19 (mod 30). 7n either case, ® is GL(3, q)-

conjugate to the subgroup {©0, 3, V), where ©0={F, B) as given explicitly by (6.2)

(without the restriction p ^ 5), anc7

(6.5) V =

-10        0

0 0 -77

0        -T72 0

(v3 = i * v)-

The two groups © determined by the two choices for r¡ are conjugate in GL(3, q).

In case (b), 7V(©) = ®. 7n case (a), \N(®) : ®| =2 and N(®)j® is generated by the

matrix

(6.6)

where £=772—1.

U

7}       0

o   I
o w

0

Cv
■t

Proof. Assume that q has one of the values (a) or (b). Then q m 1 (mod 3) so

that the element V of (6.5) exists in SL(3,t7). Let ®={©0, 3, V} where ®0 is as

above. Let Ax = S, A2 = X(as in Lemma 6.4), A3=B'1TBS, At=V, and K=r¡Ie 3;

then the At and K generate ®, and it is a direct computation that these elements

satisfy Schur's generating relations [22, p. 242] for the representation group ft

of A6. (We write At instead of Schur's Cf since we have used Cu to mean something

else.) Hence ® is a factor group of ft. Since ft=ft', |Z(ft)|=6, ft/Z(ft)=^6,

|Z(®)| = |3|=3 and ®2®0^^5, it follows that © satisfies (6.4). Since by [22]

A6 has just one representation group, (6.4) must determine the structure of ©

uniquely (cf. [21, pp. 96-99]).

Conversely, suppose ©sSL(3,17) with A®^A6. Then q must have one of the

values (a) or (b), by Theorem 5.14 and Lemma 6.4. Clearly © must contain (up

to conjugacy) the subgroup ®o = A5 which is generated by the matrices (6.2),

(6.3). Also, © contains an element V of order 2 which corresponds (homomor-

phically) to the element (34)(56) of A6. Then V maps X->- X, F->- XT, showing

already that V has zeros in the proper positions (cf. (6.5)); in addition, |F|=2,

(SV)2 e 3, and VB is conjugate to B (modulo 3) and hence has trace zero. It

follows that V is given correctly by (6.5); clearly ®={®0, 3, V}. Moreover, let

y 1, V2 be the two elements (6.5) corresponding to the two cube roots t]=-nx, 772.

Let ®j, ©2 be the corresponding subgroups of SL(3, q). Then the matrix

-(r,f + 27?1f)    0 0

0

0

1 Vi

Vi    -Vi

maps F-> F2, Fj -> F, F ^ BxtV2BV2(t¡2I) and hence ©j.

is proved except for the assertions about A^©).

©o. Thus the lemma
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© is generated by elements Y of order 2, cf. [22, p. 242]. If 6 e Aut(@) and B

induces the identity automorphism of @/3=/*6, then 0(F) lies in F3 and has

order 2, so that d(Y)=Y and hence 6=1. By [23, §11.4], Aut(^6) has index 4

over the inner automorphisms. In view of the assertion already proved about

conjugacy, it follows that, if |TV(@) : ©|=»c, © has at most 4/A: distinct faithful

representations of degree 3 over GF(^) (such representations must lie in SL(3, q)

since © = ©'). In case (b) of Lemma 6.6 these coincide with the ordinary repre-

sentations ; by [22, pp. 242-244] there are four such representations of ©, and hence

k=l, TV(©) = ®. (The characters lie in the field generated by 51'2 and the cube

roots of unity, and these quantities exist in GF(q).) In case (a) with /» = 5, the

methods of [2, 7] give only two 5-modular representations of degree 3, since here

two pairs of ordinary representations coincide over GF(5a). Hence in this case,

4/A:^2 and |TV(@) : ®|^2. On the other hand, the element (6.6) does produce

an outer automorphism of ©, namely

(6.7) X^X,        V^T,       T-+V,       B-+BXTVB(ifI)

and hence indeed |TV(@) : ©| > 1. The entire lemma is thus proved. (The mapping

(6.7) is not inner since Ti corresponds to a 3-cycle in Ae while its image does not.)

Remarks. (1) The argument of the last paragraph could have been used to

obtain TV(@) in Lemmas 6.4 and 6.5 also. (2) It follows from this argument that ®

has as many automorphisms as Aa, and thus Aut(@)=Aut(/*6), an interesting

result in itself.

Lemma 6.7. If q = 5" and a is even, then SL(3, q) has subgroups © such that

A®^/i7. All such subgroups © satisfy

(6.8) © = ©';       131 = 3;       ®/3 S A7

and are conjugate in GL(3, q) to the subgroup {®0, 3, V, W} where ®0, V are as in

Lemma 6.6 and W= ||1, r¡, r¡2\\. For such ©, TV(©) = ®. (6.8) determines the structure

of® uniquely.

Proof. If the elements A{, K are as in the proof of Lemma 6.6 (first paragraph)

and we let A5 = VW, then by direct computation the elements Ax,..., A5, Ksatisfy

Schur's generating relations [22, p. 246] for the representation group of A1. The

same argument as in Lemma 6.6 then shows that ©={©<,, 3, V, W} satisfies (6.8)

and that (6.8) determines the structure of ©. Conversely, if A®^/47 then by

Lemma 6.6 © must contain (up to conjugacy) the subgroup {©0, 3, V} together

with an element corresponding to (567) e An. This element must commute (modulo

3) with the elements X, T, and S of Lemma 6.4, and hence is equal (mod 3) to W

or W'1, showing that © is given correctly by Lemma 6.7. Finally, since /»^7,

reasoning as in Lemma 6.4 gives TV(©) = ®.

Combining Lemmas 6.1 through 6.7 with Theorem 5.14 (and, of course, the

result of [14]), we see that the simple nonabelian subgroups A® of PSL(3, q),
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and the normalizers of these subgroups, constitute precisely the list of subgroups

given in Theorem 1.1. Now consider an arbitrary subgroup £>/{l} of PSL(3, q),

and let ft be a minimal (nontrivial) normal subgroup of §. Then ft has no proper

characteristic subgroup except {1}, and is hence the direct product ft = @! x • • • x @r

of isomorphic simple groups. If § has no normal elementary-abelian subgroup

¥={1} then the ®¡ are non-abelian. Thus ©( is one of our groups A®, and

|ft : ©J ^ I7VÏ©!) : ©J ^ 3

so that r=l, ft = @1, SqçN(®x), i.e., § is equal to ©j. or N(®x). The proof of

Theorem 1.1 is complete.

7. Subgroups not satisfying Theorem 1.1. In this section, changing notation,

we use © to represent a subgroup of PSL(3, q) and #@ for the inverse image of ©

in SL(3, q).

The subgroups © of PSL(3, q) not covered by Theorem 1.1 are those having a

normal elementary-abelian subgroup § different from {1}. £> is then either a p-

group or one of the three cases (5.8). In case (i) of (5.8), C(£>) is cyclic and

I© : cm Ú |7V($) : C($)| á 3

since a generator of § is conjugate to at most three of its powers.

Suppose § is instead a diagonal subgroup (case (ii)). If § contains an element 77

with three distinct characteristic roots (it is clear what we mean by this even though

77 is in PSL(3, q), not SL(3, q)), or if § is the four-group, then #C(§) is diagonal

and #N(íq)I#C(Sqí) is generated by permutation matrices. If every element of ©

has two equal characteristic roots but |$| ^4, then it is not hard to show that the

root which only appears once must occur, in the same position in each element of

§, and hence © = N($) = C(£>) is a subgroup of GL(2, q)/3-

Consider case (iii) of (5.8), §=A{W, Y}. Let ©* be the full normalizer of $

in PSL(3, q3); then i>£@ç@*. It is easy to show that § is its own full centralizer

in PSL(3, q3); hence ©*/§ is isomorphic to a subgroup T* of the group

r = Aut(C3 x C3). Letting a = (l— t/)-1 and letting e be a cube root of -n in GF(q3),

the matrices

A = \\e,e,e-2\\;    *«fl.|^-W-»| (/,_/= 1,2,3)

(which do have determinant 1) act on § as automorphisms of order 3 and 4 and

hence generate the derived group I" of T (cf. Theorem 3.2; clearly T, I" are

isomorphic to GL(2, 3), SL(2, 3) respectively). On the other hand, T* is not all

of T, since no matrix maps W-> W, Y-> Y'1 (not even mod 3)- Hence T* = F,

and @/£ is a subgroup of T'. (If q^ 1 (mod 9) then A $ SL(3, q), but F and its

r^-conjugates still lie in SL(3, q) and generate the quaternion subgroup of r*.)

Finally, suppose © is a/?-group. We may assume §£A@ where

© = {||a„|| : al2 = a13 = a23 = 0, an = a22 = a33 = 1}.
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For any A e#£ and fi=|2»y|| e#TV(§), we have ABeB(S, which implies (after

a computation) that Z»13=0. This is true for any element Ti of #© and hence for

all products of such elements, from which it follows that either b23 = 0 (all B e #©)

or ¿>12 = 0 (all Ti e #©). Thus, up to conjugacy by the matrix [-1, -1, 1] and/or

the inverse-transpose isomorphism, #© s 2Jt where M is the group of all matrices

C= ||ci3|| in SL(3, q) for which c12 = c13 = 0. If O is the/»-subgroup of 5DÏ for which

c23 = c32=0, then O is normal in 9Jc andS=On#® is normal in #©, with #@/t

isomorphic to a subgroup of 9JI/D, which in turn is isomorphic to GL(2, q).

Summarizing our results, we have

Theorem 7.1. Let % be a subgroup of PSL(3, q) not satisfying the hypothesis of

Theorem 1.1. Then one of the following occurs:

(1) © has a cyclic p-regular normal subgroup of index ^ 3.

(2) © has a diagonal normal subgroup Ä such that ©/5Î is isomorphic to a subgroup

ofS3.

(3) #© has a normal elementary-abelian p-subgroup Ä such that #©/£ is iso-

morphic to a subgroup o/GL(2, q) (cf. Theorem 3.4). We include the case ff = {1},

(4) q= 1 (mod 9); © has a normal subgroup £>, abelian of type (3, 3), with ©/£»

isomorphic to a subgroup of SL(2, 3). All subgroups of SL(2, 3) do occur in this

context.

(5) q=l (mod 3), q^l (mod 9); © has a normal subgroup §, abelian of type

(3, 3), with @/§ isomorphic to a subgroup of the quaternion group C of order 8.

All subgroups ofD. do occur in this context.
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