A SUFFICIENT CONDITION FOR TOTAL MONOTONICITY: CORRECTIONS

BY

B. E. RHOADES

In the expression for μ_{n} in the proof of Theorem 5 [2, p. 315] the term $\Gamma(n+b)$ was incorrectly written as $\Gamma(n+\alpha)$. This paper corrects that mistake. I am indebted to Dr. S. K. Basu for bringing the error to my attention. The reader is referred to [2] for pertinent notation and definitions. Theorem 1 of this paper replaces Theorem 5 of [2].

Theorem 1. (i) For $-1<\alpha<0, \quad 2 b \geqq 3-\alpha, \quad C_{b}^{\alpha}$ t.s. H^{α}.
(ii) For $-1<\alpha<0, \quad 1<b \leqq 1-\alpha, \quad H^{\alpha}$ t.s. C_{b}^{α}.
(iii) For $0<\alpha<1, \quad 2 b \geqq 3-\alpha, H^{\alpha}$ t.s. C_{b}^{α}.
(iv) For $\alpha>1, \quad 0<a \leqq(3-\alpha) / 2, \quad C_{a}^{\alpha}$ t.s. H^{α}.

Let

$$
\mu(t)=\frac{\Gamma(b+\alpha) \Gamma(t+b)(t+1)^{\alpha}}{\Gamma(b) \Gamma(t+b+\alpha)}=e^{\sigma(t)}
$$

Using the series expansion for the logarithmic derivative of the gamma function,

$$
\begin{aligned}
(-1) \sigma^{\prime}(t) & =\frac{\Gamma^{\prime}(t+b+\alpha)}{\Gamma(t+b+\alpha)}-\frac{\Gamma^{\prime}(t+b)}{\Gamma(t+b)}-\frac{\alpha}{t+1} \\
& =\sum_{m=0}^{\infty}\left(\frac{1}{m+t+1}-\frac{1}{m+t+b+\alpha}\right)
\end{aligned}
$$

(1)

$$
-\sum_{m=0}^{\infty}\left(\frac{1}{m+t+1}-\frac{1}{m+t+b}\right)-\frac{\alpha}{t+1}
$$

$$
=\sum_{m=0}^{\infty}\left(\frac{1}{m+t+b}-\frac{1}{m+t+b+\alpha}\right)-\alpha \sum_{m=0}^{\infty}\left(\frac{1}{m+t+1}-\frac{1}{m+t+2}\right)
$$

$$
(-1) \sigma^{\prime}(t)=\alpha \sum_{m=0}^{\infty} f_{m}(t) g_{m}(t)
$$

where

$$
\begin{equation*}
1 / g_{m}(t)=(m+t+b)(m+t+b+\alpha)(m+t+1)(m+t+2) \tag{2}
\end{equation*}
$$

and

$$
\begin{align*}
f_{m}(t) & =(m+t+1)(m+t+2)-(m+t+b)(m+t+b+\alpha) \\
& =(3-2 b-\alpha)(m+t)+2-b(b+\alpha) . \tag{3}
\end{align*}
$$

Presented to the Society, January 23, 1962; received by the editors September 5, 1966.

Replacing b in (3) by $(3-\alpha) / 2$, then, from (1),

$$
\begin{equation*}
(-1) \sigma^{\prime}(t)=\frac{\alpha\left(\alpha^{2}-1\right)}{4} \sum_{m=0}^{\infty} g_{m}(t) \tag{4}
\end{equation*}
$$

From (2) it is clear that $\operatorname{sgn} g_{m}^{(n)}(t)=(-1)^{n}$ for all $t \geqq 0$. From (4) we have, for all $t \geqq 0$,

$$
\begin{aligned}
(-1)^{n} \sigma^{(n)}(t) & \geqq 0 \quad \text { for } \quad-1<\alpha<0 \text { or } \alpha>1, \\
(-1)^{n+1} \sigma^{(n+1)}(t) & \geqq 0 \text { for } 0<\alpha<1,
\end{aligned}
$$

and (i), (iii), and (iv) have been proved for equality.
To finish the proof of (i), for $-1<\alpha<0, c \geqq b, C_{c}^{\alpha}$ t.s. C_{b}^{α} [2, p. 313, Theorem 2(ii)]. Since t.s. is transitive, (i) is now proved. The proofs of (iii) and (iv) are completed using [2, p. 313, Theorem 2(iii)].

To prove (ii), let $b=1-\alpha$ in (3). Then (4) becomes

$$
\begin{equation*}
(-1) \sigma^{\prime}(t)=\alpha(1+\alpha) \sum_{m=0}^{\infty} h_{m}(t) \tag{5}
\end{equation*}
$$

where $h_{m}(t)=(m+t+1) g_{m}(t)$. Clearly $\operatorname{sgn} h_{m}^{(n)}(t)=(-1)^{n}$ for $t \geqq 0$. Therefore, from (5),

$$
(-1)^{n+1} \sigma^{(n)}(t) \geqq 0 \text { for all } t \geqq 0,-1<\alpha<0 ;
$$

i.e., H^{α} t.s. C_{b}^{α} for $b=1-\alpha$. The proof is completed by again using [2, p. 313, Theorem 2(ii)].

Theorem 1 leaves unanswered the question of other comparisons for the remaining parameter values of a and b. This question is settled by the negative results of the following theorem.

Theorem 2. (i) For $-1<\alpha<0, \quad 1<b<(3-\alpha) / 2, \quad C_{b}^{\alpha}$ n.t.s. H^{α}.
(ii) For $-1<\alpha \leqq \gamma<0, \quad b>1-\alpha, \quad H^{\gamma}$ n.t.s. C_{b}^{α}.
(iii) For $0<\alpha<1, \quad 1<b<(3-\alpha) / 2, \quad H^{\alpha}$ n.t.s. C_{b}^{α}.
(iv) For $0<\alpha \leqq \beta<1, \quad b>1, \quad C_{b}^{\beta}$ n.t.s. H^{α}.
(v) For $\alpha>1, \quad(3-\alpha) / 2<a<1, \quad C_{a}^{\alpha}$ n.t.s. H^{α}.
(vi) For $1<\alpha \leqq \beta, \quad 0<a<1, \quad H^{\beta}$ n.t.s. C_{a}^{α}.

We shall first prove (i), (iii), and (v). From (2), $g_{m}(t)>0$ for all $t \geqq 0, m=0,1$, $2, \ldots$. If we let $c=3-2 b-\alpha$, then $c>0$ for the values of b stated in (i) and (iii) and $c<0$ for the values stated in (v), with b replaced by a. From (3), for all t sufficiently large, $f_{n}(t)>0$ for $|\alpha|<1$ and $f_{n}(t)<0$ for $\alpha>1 ; n=0,1,2, \ldots$ Therefore $(-1) \sigma^{\prime}(t)$ in (1) is negative for $-1<\alpha<0$ or $\alpha>1$ and positive for $0<\alpha<1$.

To prove the remaining parts we shall show that there exists a positive integer k for which $(-1)^{k} \mu^{(k)}(t)<0$ for the moment function under consideration. The procedure will be to examine the coefficient of t^{k} in an infinite series expansion for $\mu(t)$ that is valid for $0<t<1$, and to use the fact that the sign of the k th derivative
of $\mu(t)$ is determined by the sign of the coefficient of t^{k} for values of t sufficiently small.

Proof of (ii). Let $\beta=-\alpha, \delta=-\gamma, 0<t<1$, and define

$$
\mu(t)=\Gamma(b) \mu_{1}(t) \mu_{2}(t) / \Gamma(\beta) \Gamma(b-\beta)
$$

where $\mu_{2}(t)=(1+t)^{\delta}$, and

$$
\begin{aligned}
\mu_{1}(t)= & \frac{\Gamma(t+b-\beta) \Gamma(\beta)}{\Gamma(t+\beta)}=\int_{0}^{1} u^{t+b-\beta-1}(1-u)^{\beta-1} d u \\
= & \int_{0}^{1}\left(u^{t+b-\beta-1}-(\beta-1) u^{t+b-\beta}+\cdots\right. \\
& \left.\quad+\frac{(\beta-1)(\beta-2) \cdots(\beta-n) u^{t+b+n-\beta-1}}{n!}+\cdots\right) d u \\
= & \frac{1}{t+b-\beta}+\sum_{n=1}^{\infty} \frac{(1-\beta)(2-\beta) \cdots(n-\beta)}{n!(t+b-\beta+n)}
\end{aligned}
$$

the term by term integration being justified as in [1].
Expanding $(t+b-\beta+n)^{-1}$ in powers of t we have

$$
\begin{aligned}
\mu_{1}(t) & =\frac{1}{t+b-\beta+n}+\sum_{n=1}^{\infty} \frac{(1-\beta)(2-\beta) \cdots(n-\beta)}{n!} \sum_{k=0}^{\infty} \frac{(-1)^{k} t^{k}}{(b-\beta+n)^{k+1}} \\
& =\frac{1}{t+b-\beta+n}+\sum_{k=0}^{\infty}(-1)^{k} t^{k} \sum_{n=1}^{\infty} \frac{(1-\beta)(2-\beta) \cdots(n-\beta)}{n!(b-\beta+n)^{k+1}}
\end{aligned}
$$

The inversion of the order of summation can be justified as in [1, p. 455].
Now let

$$
C_{k+1}(\beta)=\sum_{n=1}^{\infty} \frac{(1-\beta)(2-\beta) \cdots(n-\beta)}{n!(b-\beta+n)^{k+1}} \quad(k=0,1,2, \ldots),
$$

and expand $(t+b-\beta)^{-1}$ in powers of t to obtain

$$
\mu_{1}(t)=\sum_{k=0}^{\infty}(-1)^{k}\left[(b-\beta)^{-k-1}+C_{k+1}(\beta)\right] t^{k} .
$$

If we expand $\mu_{2}(t)$ in powers of t, then the coefficients of t^{k} in the power series expansion for the product is

$$
\begin{aligned}
&(-1)^{k}\left[(b-\beta)^{-k-1}+C_{k+1}(\beta)\right]+(-1)^{k-1}\left[(b-\beta)^{-k}+C_{k}(\beta)\right] \delta \\
&+\sum_{r=2}^{k}(-1)^{k-r}\left[(b-\beta)^{-k+r-1}+C_{k-\tau+1}(\beta)\right] \frac{(-1)^{r-1} \delta(1-\delta) \cdots(r-1-\delta)}{r!} \\
&=(-1)^{k}(b-\beta)^{-k-1}\left[1-(b-\beta)-\delta \sum_{r=2}^{k} \frac{(1-\delta)(2-\delta) \cdots(r-1-\delta)(b-\beta)^{r}}{r!}\right. \\
&\left.+(b-\beta)^{k+1}\left\{C_{k+1}(\beta)-\delta C_{k}(\beta)-\delta \sum_{r=2}^{k} \frac{(1-\delta) \cdots(r-1-\delta) C_{k-r+1}(\beta)}{r!}\right\}\right]
\end{aligned}
$$

Since $b-\beta=b+\alpha>1$ by hypothesis, the first series diverges. Since $0<\beta<1$, $(b-\beta)^{k+1} C_{k+1}(\beta)$ is uniformly bounded in k. If the second series converges, then the quantity in brackets is negative for all k sufficiently large. If the second series diverges then, a fortiori, the quantity in brackets is negative for all k sufficiently large.

Proof of (iv). For $0<t<1$ now define

$$
\mu(t)=\frac{\Gamma(b+\beta) \Gamma(t+b)(t+1)^{\alpha}}{\Gamma(b) \Gamma(t+b+\beta)}=\frac{\Gamma(b+\beta)}{\Gamma(b)} \mu_{1}(t) \mu_{2}(t),
$$

where

$$
\mu_{2}(t)=(1+t)^{\alpha}
$$

and

$$
\mu_{1}(t)=\frac{\Gamma(b) \Gamma(t+b)}{\Gamma(t+b+\beta)}=\int_{0}^{1} u^{t+b-1}(1-u)^{\beta-1} d u .
$$

Using the same procedure as in the proof of (ii), we may write

$$
\mu_{1}(t)=\sum_{k=0}^{\infty}(-1)^{k}\left[b^{-k-1}+d_{k+1}(\beta)\right] t^{k},
$$

where

$$
d_{k+1}(\beta)=\sum_{n=1}^{\infty} \frac{(1-\beta)(2-\beta) \cdots(n-\beta)}{n!(b+n)^{k+1}} .
$$

Expanding $\mu_{2}(t)$ in powers of t, the coefficient of t^{k} in the power series expansion for the product can be written in the form

$$
\begin{aligned}
(-1)^{k} b^{-k-1} & {\left[1-b \alpha-\alpha \sum_{r=2}^{k} \frac{(1-\alpha)(2-\alpha) \cdots(r-1-\alpha) b^{r}}{r!}\right.} \\
& \left.+b^{k+1}\left\{d_{k+1}(\beta)-\alpha d_{k}(\beta)-\alpha \sum_{r=2}^{k} \frac{(1-\alpha)(2-\alpha) \cdots(r-1-\alpha)}{r!} d_{k-r+1}(\beta)\right\}\right] .
\end{aligned}
$$

Since $b>1$, the first series diverges. Since $1-\beta>0, b^{k+1} d_{k+1}(\beta)$ is uniformly bounded in k. Whether or not the second series converges or diverges the quantity in brackets will be negative for all values of k sufficiently large.
Proof of (vi). We first prove that H^{β} n.t.s. C_{a}^{1} for $\beta>1,0<a<1$. Note that $C_{a}^{1}=\Gamma_{a}^{1}$. Let

$$
\mu(t)=(t+a) / a(t+1)^{\beta} .
$$

Then, for $0<t<1$,

$$
\begin{aligned}
\mu(t) & =(1+t / a)(1+t)^{-\beta} \\
& =(1+t / a)\left[1+\sum_{k=1}^{\infty} \frac{(-1)^{k} \beta(\beta+1) \cdots(\beta+k-1) t^{k}}{k!}\right] .
\end{aligned}
$$

For $k>1$, the coefficient of t^{k} is

$$
\frac{(-1)^{k} \beta(\beta+1) \cdots(\beta+k-2)}{k!}[\beta+k-1-k / a] .
$$

Since $\beta>1, a<1$, the quantity in brackets will be negative for all k sufficiently large, and $\mu(t)$ is not totally monotone.

Now suppose H^{β} t.s. C_{a}^{α} for $1<a \leqq \beta$. From [2, p. 313, Theorem 2(i)], C_{a}^{α} t.s. C_{a}^{1} for $\alpha>1$. Since t.s. is transitive, H^{β} t.s. C_{a}^{1}, a contradiction.

We conclude by listing a new total comparison table to replace the one on p. 316 of [2]. The arrow points toward the weaker method. Let $-1<\alpha<0,0<a<1$ and such that $a+\alpha>0,0<a^{\prime \prime} \leqq(\alpha+1) / 2<1+\alpha \leqq a^{\prime}<1, \quad 1<b \leqq 1-\alpha<(3-\alpha) / 2 \leqq b^{\prime}$. Then

If $a^{\prime \prime} \geqq a$, then, of course $\Gamma_{a^{\prime \prime}}^{\alpha}$ t.s. C_{a}^{α}. If $a^{\prime \prime}<a$, then $\Gamma_{a^{\prime \prime}}^{\alpha}$ and C_{a}^{α} are not totally comparable.

Let $0<\alpha<1,0<a \leqq(\alpha+1) / 2<1<(3-\alpha) / 2 \leqq b$. Then

Let $\alpha>1,0<a \leqq(3-\alpha) / 2<1<\alpha+1 \leqq 2 b$. Then

References

1. S. K. Basu, On the total relative strength of the Hölder and Cesàro methods, Proc. London Math. Soc. 50 (1948-1949), 447-462.
2. B. E. Rhoades, A sufficient condition for total monotonicity, Trans. Amer. Math. Soc. 107 (1963), 309-319.

Indiana University,

Bloomington, Indiana

