A SUFFICIENT CONDITION FOR TOTAL MONOTONICITY: CORRECTIONS

B. E. RHOADES

In the expression for μ_n in the proof of Theorem 5 [2, p. 315] the term $\Gamma(n+b)$ was incorrectly written as $\Gamma(n+\alpha)$. This paper corrects that mistake. I am indebted to Dr. S. K. Basu for bringing the error to my attention. The reader is referred to [2] for pertinent notation and definitions. Theorem 1 of this paper replaces Theorem 5 of [2].

THEOREM 1. (i) For $-1 < \alpha < 0$, $2b \ge 3 - \alpha$, C_b^{α} t.s. H^{α} .

- (ii) For $-1 < \alpha < 0$, $1 < b \le 1 \alpha$, H^{α} t.s. C_b^{α} .
- (iii) For $0 < \alpha < 1$, $2b \ge 3 \alpha$, H^{α} t.s. C_b^{α} .
- (iv) For $\alpha > 1$, $0 < a \le (3 \alpha)/2$, C_a^{α} t.s. H^{α} .

Let

$$\mu(t) = \frac{\Gamma(b+\alpha)\Gamma(t+b)(t+1)^{\alpha}}{\Gamma(b)\Gamma(t+b+\alpha)} = e^{\sigma(t)}.$$

Using the series expansion for the logarithmic derivative of the gamma function,

$$(-1)\sigma'(t) = \frac{\Gamma'(t+b+\alpha)}{\Gamma(t+b+\alpha)} - \frac{\Gamma'(t+b)}{\Gamma(t+b)} - \frac{\alpha}{t+1}$$

$$= \sum_{m=0}^{\infty} \left(\frac{1}{m+t+1} - \frac{1}{m+t+b+\alpha}\right)$$

$$- \sum_{m=0}^{\infty} \left(\frac{1}{m+t+1} - \frac{1}{m+t+b}\right) - \frac{\alpha}{t+1}$$

$$= \sum_{m=0}^{\infty} \left(\frac{1}{m+t+b} - \frac{1}{m+t+b+\alpha}\right) - \alpha \sum_{m=0}^{\infty} \left(\frac{1}{m+t+1} - \frac{1}{m+t+2}\right)$$

$$(-1)\sigma'(t) = \alpha \sum_{m=0}^{\infty} f_m(t) g_m(t),$$

where

(2)
$$1/g_m(t) = (m+t+b)(m+t+b+\alpha)(m+t+1)(m+t+2),$$

and

(3)
$$f_m(t) = (m+t+1)(m+t+2) - (m+t+b)(m+t+b+\alpha) \\ = (3-2b-\alpha)(m+t) + 2 - b(b+\alpha).$$

Replacing b in (3) by $(3-\alpha)/2$, then, from (1),

(4)
$$(-1)\sigma'(t) = \frac{\alpha(\alpha^2 - 1)}{4} \sum_{m=0}^{\infty} g_m(t).$$

From (2) it is clear that sgn $g_m^{(n)}(t) = (-1)^n$ for all $t \ge 0$. From (4) we have, for all $t \ge 0$,

$$(-1)^n \sigma^{(n)}(t) \ge 0$$
 for $-1 < \alpha < 0$ or $\alpha > 1$,
 $(-1)^{n+1} \sigma^{(n+1)}(t) \ge 0$ for $0 < \alpha < 1$,

and (i), (iii), and (iv) have been proved for equality.

To finish the proof of (i), for $-1 < \alpha < 0$, $c \ge b$, C_c^{α} t.s. C_b^{α} [2, p. 313, Theorem 2(ii)]. Since t.s. is transitive, (i) is now proved. The proofs of (iii) and (iv) are completed using [2, p. 313, Theorem 2(iii)].

To prove (ii), let $b = 1 - \alpha$ in (3). Then (4) becomes

$$(-1)\sigma'(t) = \alpha(1+\alpha)\sum_{m=0}^{\infty}h_m(t),$$

where $h_m(t) = (m+t+1)g_m(t)$. Clearly sgn $h_m^{(n)}(t) = (-1)^n$ for $t \ge 0$. Therefore, from (5),

$$(-1)^{n+1}\sigma^{(n)}(t) \ge 0$$
 for all $t \ge 0, -1 < \alpha < 0$;

i.e., H^{α} t.s. C_b^{α} for $b=1-\alpha$. The proof is completed by again using [2, p. 313, Theorem 2(ii)].

Theorem 1 leaves unanswered the question of other comparisons for the remaining parameter values of a and b. This question is settled by the negative results of the following theorem.

THEOREM 2. (i) For $-1 < \alpha < 0$, $1 < b < (3-\alpha)/2$, C_b^{α} n.t.s. H^{α} .

- (ii) For $-1 < \alpha \le \gamma < 0$, $b > 1 \alpha$, H^{γ} n.t.s. C_b^{α} .
- (iii) For $0 < \alpha < 1$, $1 < b < (3 \alpha)/2$, H^{α} n.t.s. C_b^{α} .
- (iv) For $0 < \alpha \le \beta < 1$, b > 1, C_b^{β} n.t.s. H^{α} .
- (v) For $\alpha > 1$, $(3-\alpha)/2 < a < 1$, C_a^{α} n.t.s. H^{α} .
- (vi) For $1 < \alpha \le \beta$, 0 < a < 1, H^{β} n.t.s. C_a^{α} .

We shall first prove (i), (iii), and (v). From (2), $g_m(t) > 0$ for all $t \ge 0$, $m = 0, 1, 2, \ldots$ If we let $c = 3 - 2b - \alpha$, then c > 0 for the values of b stated in (i) and (iii) and c < 0 for the values stated in (v), with b replaced by a. From (3), for all t sufficiently large, $f_n(t) > 0$ for $|\alpha| < 1$ and $f_n(t) < 0$ for $\alpha > 1$; $n = 0, 1, 2, \ldots$ Therefore $(-1)\sigma'(t)$ in (1) is negative for $-1 < \alpha < 0$ or $\alpha > 1$ and positive for $0 < \alpha < 1$.

To prove the remaining parts we shall show that there exists a positive integer k for which $(-1)^k \mu^{(k)}(t) < 0$ for the moment function under consideration. The procedure will be to examine the coefficient of t^k in an infinite series expansion for $\mu(t)$ that is valid for 0 < t < 1, and to use the fact that the sign of the kth derivative

of $\mu(t)$ is determined by the sign of the coefficient of t^k for values of t sufficiently small.

Proof of (ii). Let $\beta = -\alpha$, $\delta = -\gamma$, 0 < t < 1, and define

$$\mu(t) = \Gamma(b)\mu_1(t)\mu_2(t)/\Gamma(\beta)\Gamma(b-\beta),$$

where $\mu_2(t) = (1+t)^{\delta}$, and

$$\mu_{1}(t) = \frac{\Gamma(t+b-\beta)\Gamma(\beta)}{\Gamma(t+\beta)} = \int_{0}^{1} u^{t+b-\beta-1} (1-u)^{\beta-1} du$$

$$= \int_{0}^{1} \left(u^{t+b-\beta-1} - (\beta-1)u^{t+b-\beta} + \cdots + \frac{(\beta-1)(\beta-2)\cdots(\beta-n)u^{t+b+n-\beta-1}}{n!} + \cdots \right) du$$

$$= \frac{1}{t+b-\beta} + \sum_{n=1}^{\infty} \frac{(1-\beta)(2-\beta)\cdots(n-\beta)}{n!(t+b-\beta+n)},$$

the term by term integration being justified as in [1].

Expanding $(t+b-\beta+n)^{-1}$ in powers of t we have

$$\mu_{1}(t) = \frac{1}{t+b-\beta+n} + \sum_{n=1}^{\infty} \frac{(1-\beta)(2-\beta)\cdots(n-\beta)}{n!} \sum_{k=0}^{\infty} \frac{(-1)^{k}t^{k}}{(b-\beta+n)^{k+1}}$$
$$= \frac{1}{t+b-\beta+n} + \sum_{k=0}^{\infty} (-1)^{k}t^{k} \sum_{n=1}^{\infty} \frac{(1-\beta)(2-\beta)\cdots(n-\beta)}{n!(b-\beta+n)^{k+1}}.$$

The inversion of the order of summation can be justified as in [1, p. 455]. Now let

$$C_{k+1}(\beta) = \sum_{n=1}^{\infty} \frac{(1-\beta)(2-\beta)\cdots(n-\beta)}{n!(b-\beta+n)^{k+1}} \qquad (k=0,1,2,\ldots),$$

and expand $(t+b-\beta)^{-1}$ in powers of t to obtain

$$\mu_1(t) = \sum_{k=0}^{\infty} (-1)^k [(b-\beta)^{-k-1} + C_{k+1}(\beta)] t^k.$$

If we expand $\mu_2(t)$ in powers of t, then the coefficients of t^k in the power series expansion for the product is

$$(-1)^{k}[(b-\beta)^{-k-1} + C_{k+1}(\beta)] + (-1)^{k-1}[(b-\beta)^{-k} + C_{k}(\beta)]\delta$$

$$+ \sum_{r=2}^{k} (-1)^{k-r}[(b-\beta)^{-k+r-1} + C_{k-r+1}(\beta)] \frac{(-1)^{r-1}\delta(1-\delta)\cdots(r-1-\delta)}{r!}$$

$$= (-1)^{k}(b-\beta)^{-k-1} \left[1 - (b-\beta) - \delta \sum_{r=2}^{k} \frac{(1-\delta)(2-\delta)\cdots(r-1-\delta)(b-\beta)^{r}}{r!} + (b-\beta)^{k+1} \left\{ C_{k+1}(\beta) - \delta C_{k}(\beta) - \delta \sum_{r=2}^{k} \frac{(1-\delta)\cdots(r-1-\delta)C_{k-r+1}(\beta)}{r!} \right\} \right].$$

Since $b-\beta=b+\alpha>1$ by hypothesis, the first series diverges. Since $0<\beta<1$, $(b-\beta)^{k+1}C_{k+1}(\beta)$ is uniformly bounded in k. If the second series converges, then the quantity in brackets is negative for all k sufficiently large. If the second series diverges then, a fortiori, the quantity in brackets is negative for all k sufficiently large.

Proof of (iv). For 0 < t < 1 now define

$$\mu(t) = \frac{\Gamma(b+\beta)\Gamma(t+b)(t+1)^{\alpha}}{\Gamma(b)\Gamma(t+b+\beta)} = \frac{\Gamma(b+\beta)}{\Gamma(b)}\,\mu_1(t)\mu_2(t),$$

where

$$\mu_2(t) = (1+t)^{\alpha}$$

and

$$\mu_1(t) = \frac{\Gamma(b)\Gamma(t+b)}{\Gamma(t+b+\beta)} = \int_0^1 u^{t+b-1} (1-u)^{\beta-1} du.$$

Using the same procedure as in the proof of (ii), we may write

$$\mu_1(t) = \sum_{k=0}^{\infty} (-1)^k [b^{-k-1} + d_{k+1}(\beta)] t^k,$$

where

$$d_{k+1}(\beta) = \sum_{n=1}^{\infty} \frac{(1-\beta)(2-\beta)\cdots(n-\beta)}{n!(b+n)^{k+1}}.$$

Expanding $\mu_2(t)$ in powers of t, the coefficient of t^k in the power series expansion for the product can be written in the form

$$(-1)^{k}b^{-k-1}\left[1-b\alpha-\alpha\sum_{r=2}^{k}\frac{(1-\alpha)(2-\alpha)\cdots(r-1-\alpha)b^{r}}{r!} + b^{k+1}\left\{d_{k+1}(\beta)-\alpha d_{k}(\beta)-\alpha\sum_{r=2}^{k}\frac{(1-\alpha)(2-\alpha)\cdots(r-1-\alpha)}{r!}d_{k-r+1}(\beta)\right\}\right].$$

Since b > 1, the first series diverges. Since $1 - \beta > 0$, $b^{k+1}d_{k+1}(\beta)$ is uniformly bounded in k. Whether or not the second series converges or diverges the quantity in brackets will be negative for all values of k sufficiently large.

Proof of (vi). We first prove that H^{β} n.t.s. C_a^1 for $\beta > 1$, 0 < a < 1. Note that $C_a^1 = \Gamma_a^1$. Let

$$\mu(t) = (t+a)/a(t+1)^{\beta}$$
.

Then, for 0 < t < 1,

$$\mu(t) = (1+t/a)(1+t)^{-\beta}$$

$$= (1+t/a) \left[1 + \sum_{k=1}^{\infty} \frac{(-1)^k \beta(\beta+1) \cdots (\beta+k-1)t^k}{k!} \right].$$

For k > 1, the coefficient of t^k is

$$\frac{(-1)^k\beta(\beta+1)\cdots(\beta+k-2)}{k!}\left[\beta+k-1-k/a\right].$$

Since $\beta > 1$, a < 1, the quantity in brackets will be negative for all k sufficiently large, and $\mu(t)$ is not totally monotone.

Now suppose H^{β} t.s. C_a^{α} for $1 < a \le \beta$. From [2, p. 313, Theorem 2(i)], C_a^{α} t.s. C_a^1 for $\alpha > 1$. Since t.s. is transitive, H^{β} t.s. C_a^1 , a contradiction.

We conclude by listing a new total comparison table to replace the one on p. 316 of [2]. The arrow points toward the weaker method. Let $-1 < \alpha < 0$, 0 < a < 1 and such that $a + \alpha > 0$, $0 < a'' \le (\alpha + 1)/2 < 1 + \alpha \le a' < 1$, $1 < b \le 1 - \alpha < (3 - \alpha)/2 \le b'$. Then

$$\Gamma_{b'}^{a} \longrightarrow C_{b'}^{a} \longrightarrow H^{a} \longrightarrow \begin{bmatrix} \Gamma_{a'}^{a} \\ C_{b}^{a} \longrightarrow C_{1}^{a} \longrightarrow C_{a'}^{a} \end{bmatrix}$$

If $a'' \ge a$, then, of course $\Gamma_{a''}^{\alpha}$ t.s. C_a^{α} . If a'' < a, then $\Gamma_{a''}^{\alpha}$ and C_a^{α} are not totally comparable.

Let $0 < \alpha < 1$, $0 < a \le (\alpha + 1)/2 < 1 < (3 - \alpha)/2 \le b$. Then

Let $\alpha > 1$, $0 < a \le (3 - \alpha)/2 < 1 < \alpha + 1 \le 2b$. Then

REFERENCES

- 1. S. K. Basu, On the total relative strength of the Hölder and Cesàro methods, Proc. London Math. Soc. 50 (1948-1949), 447-462.
- 2. B. E. Rhoades, A sufficient condition for total monotonicity, Trans. Amer. Math. Soc. 107 (1963), 309-319.

Indiana University,
Bloomington, Indiana