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1. Introduction.   In a previous paper [6] the authors considered certain im-

properly posed initial-boundary value problems for the Chaplygin equation

(i.i) ^+h(y)—2 = o.
82u d2u

ey+Ky)sT2

The Chaplygin equation, which arises in the study of transonic flow, is one of the

simplest equations of mixed type. It was shown that with appropriate hypotheses

on the function « a problem of this type could be stabilized (i.e., the solution made

to depend continuously on the data) by restricting the solution to lie in the class of

functions whose L2 integrals are bounded by some prescribed constant M. Similar

restrictions have previously been shown (see e.g., [2], [7]) to guarantee continuous

dependence in certain improperly posed problems for elliptic and parabolic

equations. However, little study has up to now been devoted to improperly posed

problems for equations of mixed type. For that matter one is rarely able to deter-

mine just what is a well set problem for such an equation.

In this paper we demonstrate that the convexity arguments which led to stability

inequalities for the Chaplygin equation [6] actually can be carried over with some

modification to yield stability inequalities and error bounds in improperly posed

problems for a wide class of quasilinear partial differential equations of mixed

type. We shall be concerned here only with the question of obtaining such inequali-

ties. We leave aside the difficult question of existence. The particular equation

which we consider is by no means the most general one amenable to the convexity

method. We restrict our attention to a relatively simple equation but one which

exhibits most of the troublesome features which would appear in the more general

operators.

A survey of the literature on improperly posed problems will appear in a forth-

coming paper by Payne [5].

In this paper we consider the following initial-boundary value problem for a

cylindrical domain £2 = Z)x(0, Y), where D is an arbitrary «-dimensional domain

with smooth boundary D:
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Problem A.

(1.2) Lu = uyyy-(aitu_i)j-f(x, y, u, u%v) = 0 in Q,

u prescribed on Ù — D x [0, Y],

(L3) du
u, -r- prescribed on y = 0.

Here (ay) is a symmetric matrix function of the variables x = (xx, x2,..., xn) and

y. The matrix (ay) is not assumed to be definite or even semidefinite. The repeated

index is used to designate summation from 1 to n and uii = du¡8xi. The function/

is to be Lipschitz continuous in its last two arguments, i.e.,

(1.4) \f(x,y,ux,ux¡y)-f(x,y,u2,u2¡y)\ ú Mx\ux-u2\+M2\ux¡y-u2¡y\.

We assume that there exists a nonnegative constant S such that the matrix (Fi;)

with elements

(1.5) Fy = ^ay-2(M2 + 8)ay

is negative semidefinite in Q. Here A/2 is given by (1.4).

We shall say that u belongs to Ji if the condition

(1.6) f u2dxdy g AT2
Ja

is satisfied for some prescribed constant M. In the following section we will

develop a priori inequalities which for solutions u of Problem A that belong to J(

may be used to obtain uniqueness, continuous dependence on the data and L2

bounds on compact subdomains of O.

2. The a priori inequalities. We derive the basic inequalities in a form which

yields immediately the desired L2 bounds; by specialization, these inequalities

imply also the properties of uniqueness and continuous dependence on the data.

Let us approximate m by a function <p which is piecewise C2 in O, Cx in O

and such that u = <p on Q. We set Qy = D x (0, y), 0 < y ̂  Y, and

(2.1) v = u — 9.

Let Í20 denote the intersection of Q. and the initial plane y = 0 and let ^ denote the

functional

(2.2) &(v, y) = log F(v, y) + co2,       0 < y < Y,

where

(2.3) a = (y0+y)-a,       « > 0,

and

F(v,y)=¡   v2dxdr¡ + (Y-y)\   v2dx+kx[   v2 dx

(2.4) +k2 f   O^i + ir'Jax-l-ia f [Lpfdxdy
JCl0 JC1

= f   v2dxdr,+ Q2.
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Here the constants a, c, and kt in (2.2) through (2.4) are to be determined. The

positive constant y0 is introduced so that o ranges over a finite interval. We note

that Q in (2.4) involves only data terms of u—<p and, hence, for fixed k¡ it will be

small if the data of <p approximate the data of u sufficiently well.

Our a priori inequalities are a consequence of the following convexity argument.

If we can show that the functional F is a convex function of a then an application

of Jensen's inequality yields

if    v2dxdr] + Q2\

£ IeeE2       v2dxdy+Q2\j {ec°o2Qf«-»««.-2>,

er

(2.5)

where

(2.6) zZ = (Y+y0ya   and   a0 = yô«.

Since m is to satisfy (1.6) and <p is at our disposal we may assume without loss of

generality that

(2.7) f v2 dx dy = Ml

In addition, since Q involves only data terms we have

(2.8) Q2 = vM2o

where v is a computable constant. Therefore

(2.9) f    v2dxdr¡+Q2 S ec<ffo-">«'-»{(l+v)Af§}(<'o-''>'«'o-»ßa«7-»/(a0-s)>

This last inequality yields the desired L2 bounds for u on compact subdomains

of O.

Let us now show that J5" is a convex function of a. We note that

(2.10) F2JF" = FF" - (F')2 + 2cF2,

where the prime denotes differentiation with respect to a. Therefore, in order to

establish the convexity of J5", it is sufficient to show that the right-hand side of

(2.10) is positive. Since

(2.11) F = -«-»»-"^"ï dy

(2.12) F" = a-2(l+a)a-<1 + 2a)/a^+a-2a-2<1 + a>'*^

we have

(2.13) -OT<1 + *F = 2 í    v(x,r¡)v_y(x,ri)dxdr¡

a2a2(1 + a)/aF" = 2(1 +a)alla Í    w,y dx dV

(2.14)
+ 2       v2ydx d-q + 2       vviVdx +2      vv<yydxdr¡.

JCly Jn0 JCiy



138 L. E. PAYNE AND D. SATHER [July

The last term in (2.14) may be rewritten as

vviVVdxdr)=\    v{(a,jV,t)j-L<p+f(u)-f(<p)}dxdri
jay Jav

(2.15)

=       {-aaV,iVj-vL<p+v[f(u)-f(<p)]}dxdri
Jav

and, hence,

a2CT2(i+«)/«F» = 2(1 + <¿)olla f   wty dxdq+4 (   v2y dx dr,
Jdy Jß„

(2.16) + 2 f   {v[f(u) -f(<p)] - vDp} dxdr¡+2¡   vv,y dx
ja„ Jn0

— 2       (v^y+aijVjVj) dxdr¡.
Jay

An upper bound for the last term in (2.16) is obtained as follows. We note that for

0</<j»

0 = 2      (t—ri)v,y{v,Vy-(aitV^tt+L<p-[f(u)-f(9)]}dxdy¡

= 2  f    (t- r,)v,y{L<p - [/(«) -/(?)]} dx dr,

+      (v2y+OijVjVj) dxdrj — t       (v2y+atjvwiVj) dx
JClt Jci0

- (t-v)au.t,v.ivjdxdr¡.
Jat

Let us now assume that the constant 8 in (1.5) is positive. An application of the

arithmetic-geometric mean inequality, and (1.4), (1.5), and (2.17) imply

(2.18) Ä) g J0»)+2(Ma+8»(t)

where

(2.19) J(t)=i  (.t-TUfâ+atfljvJdxdn,
Ja,

(2.20) I(y) = y \    (v2y+aitViVt)dx+2Mxy \    \vv J dx dr¡ + -r¡ f [Up]2 dx dr,.
Jn0 Jn„      ' 4o Ja

Integrating (2.18) from 0 to y we obtain

(2.21) f    (v2y + aip fi t) dx dr, S 7(j)e2(M2+«".
Jav
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Substituting (2.21) into (2.16) and using (1.4) we have for some computable con-

stants bi that

a2a2(1 + a)/a[FF"-(F')2]

^ 2(1 + cOFa1'« f   vv,y dx dt]+AS2 + 4g2 f   v2y dx dr¡

—F-lbx       v2 dx+b2       v2ydx + b3       vtfvtidx
I    Jo0 Joo J^o

+ bt      [L<p]2 dx dy + b5       v2 dx dt] + 4b6       \vvtV\ dx drn
Jo Jo„ Jo,,

(2.22)

where

(2.23) S2 = ( f   v2 dx dr¡]( ¡   v2y dx dr¡]-(¡   vv,y dx dv)
\Jny /\Jnv I     \Jnv I

Since

(2.24) vvyV dx dn ^ vviV dx drn —       v2 dx
JCly |Jo„ JOq

and

(2.25) \vv,y\ dxdrj = S+\       vvtydxdn ,
Jciy |Joy

it follows from (2.22) that

a2a2<1+«>'«[FF"-(F')2]

^ 2F[(l + a)c71/a-2è6]| f   vv¡y dxdr\ + (2S-b6F)2-b26F2

(2.26) r /• c
-FÏ [bx + 2(l +a)o1'a]       v2dx + b2\     v% dx

I Jo0 Ja0

+ b3       VjVjdx + bi      [Dp]2 dx dy + bs       v2 dx do
Jo0 Ja Jciy

If we now choose 1 + a=2be(Y+y0) then the coefficient of the first term in (2.26)

is nonnegative and, hence,

a2a2(i + a>/aF2jF» ^ F2[2ca2(F+j0)-2(1 + a)-¿»§]

-f([í>i+2(1 + a)/y0] f   v2dx + b2[   v2y dx

+ b3       vAvtidx+bi     [Dp]2 dxdy+bs       v2 dx dr¡
Jo0 ' JO JQy

(2.27)

Clearly the constants klt k2, k3 in Q, and c can be chosen so that the right-hand

side of (2.27) is positive. In fact for any positive kx, k2, and k3 we need only take
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c large enough so that the first term in (2.27) is the dominant one. Thus it is possible

to choose the constants a, ku and c so that IF is a convex function of a. We have

established the following result.

Theorem 1. Suppose that S>0 i« (1.5) and the matrix (Bi,) is negative semi-

definite. Let u satisfy (1.2), (1.3), and (1.6), and let v, a, Q, 2, o0, and M0 be defined

as in (2.1), (2.3), (2.4), (2.6), and (2.7), respectively. Then there exists a computable

constant K such that

(2.28) f   v2dxdn ^ TÍM^o-^'o-sg^-s/í'o-s),       0 < y < Y.
JCiy

An immediate consequence of the above discussion is

Theorem 2. Suppose that the constant 8 ¡« (1.5) is nonnegative. If the matrix

(Z?y) is negative semidefinite then any solution of Problem A that is in the class Jt of

functions whose L2 integrals over Q are bounded by some constant M will depend

continuously in L2 on the Cauchy data.

Let us remark that if, in particular, the matrix (ai;) is independent of y, 8=0

and the function fis independent of u¡y then (Z?i;) = 0. Moreover, the requirement

on the matrix (Btj) is a "best possible" condition in the sense that one can give

examples where Theorem 2 does not hold when this condition fails to be satisfied

[6]. Finally, the restriction S>0 in Theorem 1 can be replaced by 8^0 if one

imposes additional smoothness requirements on <p (see [5], [6]).

As an interesting specific application of these results we let D be the rectangular

parallelepiped {0<x<X,0<y< Y,0<t<T} and consider the following Cauchy

problem for the wave equation :

Problem A.

(2.29) mfJ/1, = u¡tt — u>xx in Q,

(2.30) u prescribed on x = 0, x = X, t = 0, and t = T,

(2.31) u, 7T- prescribed on y = 0.

Then any solution u of Problem A' that is in the class Jt will depend continuously

in L2 on the Cauchy data (compare also [1], [3], and [4]).
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