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Notation and Introduction. R denotes an arbitrary associative ring. A right

F-module A over R will be denoted AR. BR is a large submodule of AR (AR is an

essential extension of BR), if BR is a submodule of AB having nonzero intersection

with every nonzero submodule of AR. A right ideal 7 of F is a large right ideal, if

TB is a large submodule of RR.

Given AR, Z(AR) is the singular submodule of AR [9], which consists of all those

elements of A whose annihilators in R are large right ideals.

Following Johnson [9], g is a right quotient ring of R if Q is a ring with identity

containing F as a subring (the identity of Q is the identity of F if F has one)

and RR is a large submodule of QR.

The quotient rings considered by Goldie in [6], [7] will be called classical quotient

rings. Q is a classical right quotient of F if every regular element (nonzero divisor)

of F is a unit in Q and every element of Q is of the form ab'1, a, b e R, b regular

in R. In general, a ring F need not possess a classical right quotient ring.

Goldie [7], has given necessary and sufficient conditions that a ring possess a

classical right quotient ring which is semisimple. Here semisimple means semi-

simple with minimum condition [8].

This paper is concerned with the question of characterizing those rings which

have a semisimple maximal right quotient ring [4], [9], [10], [11] and in this case

generalizing some simple well-known results about commutative integral domains,

their quotient rings and modules over these domains. Johnson [9] has shown that

F has a regular maximal right quotient ring Q if and only if Z(FB) = 0, where Q

is a regular ring [13] if every finitely generated right (left) ideal of Q is generated

by an idempotent. In this case QR is injective [3] as a right F-module, hence the

injective hull of F [2].

A ring F has a semisimple maximal right quotient ring Q if and only if Z(FB) = 0

and dim RR is finite, where a right F-module M is of finite dimension if every direct

sum of submodules of M has only finitely many nonzero summands. This is the

main result of §1. In addition another characterization is given for rings which

possess a semisimple classical right quotient ring, namely, F has a semisimple

classical right quotient ring if and only if Z(Fs) = 0 and if T is a large right ideal

of F, then there is an element ae I such that aR is a large right ideal of R.

If F has a semisimple classical right quotient ring Q, then it is known [3], that
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g is the maximal right quotient ring of R. The converse is not valid, since there

are rings with or without identity that have a semisimple maximal right quotient

ring g and g is not the classical right quotient ring of R. Let g be the ring of

« x « matrices over a division ring A and R the set of upper triangular (strictly

upper triangular) matrices of g. It is easily verified that g is a right quotient ring

of 7? but g is not a classical right quotient ring of 7?. Since g is semisimple g is the

maximal right quotient ring of R.

It is also shown in §1 that if 7? has a semisimple maximal right quotient ring g,

then Z(A¡Z(A)) = 0 for every right 7?-module A. This generalizes the analogous

result if R is a commutative integral domain, since then Z(AB) is the torsion

subgroup of A.

In §2 rings with identity are considered.

In this case the following generalizations of results known [1] when R is a com-

mutative integral domain hold, thus extending some of the results of Gentile [5]

also.

1. R has a semisimple maximal right quotient ring g if and only if A -> A <g)B g

has Z(AR) for its kernel for every unitary right 7?-module A.

If R has a semisimple maximal right quotient ring g, then

2. Bg is flat [1] as a left 7?-module.

3. Every unitary left g-module is flat as a left 7?-module.

4. If Z(AR) = 0, then 0 -> A -> A <g»B g is the injective hull of A, a unitary

7?-module.

5. Tori(^, Q¡R)^Z(AR) for every unitary right 7f-module A.

Another result with weaker hypothesis is valid.

Any direct sum of injective right 7?-modules, each with zero singular submodule

is injective if dim 7?B is finite.

The following generalizes a result of Matlis [12]. If 77B is an epimorphic image

of an injective right 7?-module ER and Z(77/Z(77))=0, then Z(77)) is a direct sum-

mand of 77 with complementary summand injective. The proof given here is

simpler in that it does not appeal to any quotient ring of R as was done in Matlis

[12, Theorem 1.1] when 7? is a commutative integral domain. Also Proposition 2.1,

Proposition 2.2, and Proposition 2.4 of [12] can be generalized to a noncommuta-

tive ring R which has a semisimple maximal right quotient ring utilizing identical

proofs.

1. Arbitrary rings.

Definition 1.1. If M is a right 7?-module, then the set of all large submodules

of M is denoted by L(MR).

It is useful to recall the following results, which are essentially in [9].

Proposition 1.2.

1. If A, Be L(MR), then A+Be L(MR) and An Be L(MR).

2. If A e L(MR) and B a submodule of M containing A, then B e L(MR).
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3. If A is a submodule of M, then there exists a submodule B of M maximal with

respect to the property that A n F=0 and consequently A + B eL(MR).

4. Iffe HomB(M, TV) and A e L(NR), then f' \A)={xeM\ f(x) e A} e L(MB).

Corollary. If Ax,..., An eL(AR) and xx,..., xne A, then I={r e R \ xtr e At

for all i} e L(RR).

Proof, {re R\ xtre Ai} = It for each i is the counter-image of Ai by the right R

homomorphism from F into A given by left multiplication by xi; hence 7 is the

intersection of finitely many large right ideals of R, so le L(RR).

Goldie [7] calls a right F-module M of finite dimension, dim MR finite, if every

direct sum of nonzero submodules of M has only a finite number of direct sum-

mands which are nonzero.

If M is a right F-module and xx,..., xn e M, then [x1(..., x„] will denote the

submodule of M generated by {x1;..., xn}. For xeM, xR={xr | r e R}. If R is a

ring with identity and M a unitary F-module, then clearly [x]=xR. A module MR

will be called regular if for O^x e M, xF^O. Clearly if F is a ring with identity

every unitary F-module is regular. Also if F is arbitrary then MR is regular if

Z(MR) = 0.

Theorem 1.3. Let MR be a right R-module, and consider the following conditions.

(a) dim MR is finite.

(b) If K e L(MR), there are xx,...,xneK such that [xx,..., xn] e L(MR).

(c) If K is a submodule of M, then there are xx,..., xn e K such that [xx,..., xn]

eL(KR).

(b*) If Ke L(MR), there are xx,..., x„ e K such that 2 *¡F e L(MR).

(c*) If K is a submodule of M, then there are xx,...,xneK such that 2 x{R

eL(KR).

If MR is any R-module then (a), (b), and (c) are equivalent. If MR is a regular

R-module then (a), (b*), and(c*) are equivalent, hence all the statements are equivalent.

Proof. Only the equivalence of (a), (b), and (c) will be shown as the equivalence

of (a), (b*), and (c*) when MR is regular has an analogous proof.

(a) implies (b). Let KeL(MR) and suppose (b) is denied. Let 0/xx e K, then

[xx] <£ L(KR), hence there is 0 ̂ x2 e K such that [xx] n [x2]=0. Suppose xx,..., xn

e K such that 0 ̂  [x(] and the sum 2 [*t] is direct. Since 2 [*«] = ixi, • • •, x„],

2 [x¡] $ L(KR), hence there is 0^xn+1eF such that [x1;..., xn] n [xn + 1]=0.

Thus, there is an infinite sum [x^ © • • • © [xn] © • • • £ Fs M contradicting (a), so

for some n [xx,..., xn]eL(KR), hence [xx,..., xn] eL(MR) since KeL(MR).

(b) implies (c). Let F be a submodule of MR. By Zorn's lemma there is a sub-

module L of M which is maximal with respect to the property that K n F=0 and

consequently K+L e L(MR). By (b) there exist finitely many ax,..., an e K+L such

that [ax,..., an] e L(MR). Now aj = xi+>'(, kteK, yteL. The counter image of

[X(, jilLi eL(MR) by the inclusion map K-^ K+L is [xx,..., xn], hence is large

in K, so (c) follows.
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(c) implies (a). Given K a direct sum of nonzero submodules of M, then there

are finitely many xu ..., xneK such that [xt,..., xn]eL(KR). Now [xi,..., xj

is contained in the direct sum of finitely many of the submodules of K and

[xi,..., xn] thus has zero intersection with the others so the others are zero and

(a) follows.

Similar proofs show the equivalence of (a), (b*), and (c*).

Proposition 1.4. For a unitary module AR, the following statements are equivalent.

(a) A is semisimple (sum of simple submodules),

(h) A is a direct sum of simple submodules.

(c) Every submodule of AR is a direct summand of A.

(d) L(AR) = {AR}.

Proof. The equivalence of (a), (b), and (c) is well known, e.g., [8]. Clearly (c)

implies (d). Conversely, if B is a submodule of A, then there is a submodule C of

A such that B n C=0 and B+C e L(AB), by (d) A=B © C so (c) follows.

Lemma 1.5. If g is a right quotient ring of R with Z(RR) = 0 and A, B R-sub-

modules of gB such that A n B=0, then AQ n BQ = 0.

Proof. If xe AQ n BQ, then x=2 uí?í = 2 ¿>f/>i, ax,...,aneA, bx,-..,bneB,

Px, ■ ■ -,Pn, (¡i, - • ■, In e g- I={r e B I qs g R,ptr e R for all i'} eL(RR) and x7=0 so

x g Z( gB)=0, since Z(RR) = 0.

Corollary. If g is a right quotient ring of R, Z(RR)=0 and BeL(QQ), then

B n L(RR).

Proof. If B nj=0 for a right ideal J of R, then Zfg n Jg=0 by the lemma,

hence .7=0 since BQ = B.

Theorem 1.6. Let Z(RR) = 0, and Q the maximal right quotient ring of R, then the

following statements are equivalent.

(a) IQ=Q far every IeL(RR).

(b) For I e L(RR) there are alt...,anel such that 2 aiR e L(RR).

(c) dim RR is finite.

(d) If I is a right ideal of R, then there are alf..., an e I such that 2 aiReL(IR).

(e) Q is a semisimple ring.

Proof. The equivalence of (b), (c), and (d) follows from Theorem 1.3 since

Z(Z?B) = 0.

(a) implies (b). If 7 g L(Rr), then 7g = g, hence there are au ..., an e /, qu..., qn

e Q such that 2 a* = 1. ̂ ={r g 7? | ̂ ¡r g 7Î for all ¿} g Z,(7?b) and clearly 7s 2 aiR

so (b) follows.

(b) implies (e). If B e L(QQ), then B r\ Re L(RR) by the corollary to Lemma 1.5.

So B n R has elements aly...,an such that Z= 2 ^R e L(RR). IQ is a finitely

generated right ideal of g. Since Z(Z?B) = 0, g is a regular ring, hence Zg = eg,

e=e2Gg. However, (l-e)Z=0 so l-eGZ(gB)=0 so Zg = g, but IQ=B so

B=Q, that is Z.(g0)={g<j} so g is a semisimple ring.
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(e) implies (a). If le L(RR), then IQ = eQ for some e = e2e Q since Q is semi-

simple. Since Q is the maximal right quotient ring of F and Q is semisimple, then

Q is a regular ring so Z(QR) = 0 by [9]. Therefore, since (1 -e)I=0, (l-e) eZ(QR)

= 0, so l=e and IQ=Q.

Now the case of a semisimple classical right quotient ring of F will be considered.

Theorem 1.7. For a ring R, the following statements are equivalent.

(a) F has a semisimple classical right quotient ring.

(b) Z(RR) = 0 and for I e L(RR) there is a el such that aR e L(RR).

(c) F is a semiprime ring, dim RR is finite and R satisfies the ascending chain

condition on right annihilators.

Proof. The equivalence of (a) and (c) was shown by Goldie [7].

(a) implies (b)(2). Let Q be a semisimple classical right quotient ring of F, then

Q is the maximal right quotient ring of F. By Theorem 1.6 Z(FB) = 0 and for

IeL(RR), there are ax,..., ane I, qx,.. .,qne Q such that 2 añ\ = L Since qx e Q,

qx = cxdx~1, cx, dx e R, dx regular in F, hence <Ti = 2i>i aiqidx+axcx. Since q2dx e Q,

q2dx = c2d21, c2, d2 e R, d2 regular in F, so dxd2=axcxd2+a2c2 + 2i>2 «W^- Con-

tinuing in this fashion it follows that there exist regular elements dx,..., dne R

such that d=dx- • dne2a¡FsT. If dRnJ=Q for a right ideal J of F, then

dRQ r\JQ=0, but since ReL(RR), RQ=Q so dRQ=Q since d is regular so

/=0, hence dR e L(RR).

(b) implies (a). Let Q be the maximal right quotient ring of F and q e Q, then

I={r e R I qr e R}eL(RR). By (b) there is a e I such that aR e L(RR). By Theorem

1.6 Q=aRQ = aQ so a has right inverse. Since Q is semisimple and a has a right

inverse a has a left inverse so a is a regular element of F and q = ba'1. If a e R and

a is regular, then the right annihilator of a in F is zero, hence in Q also. Since Q

is semisimple a is regular in Q and (a) follows.

It is not valid in general that for a right F-module AR, Z(A¡Z(AR))=0. Let F be

a local ring with Jacobson radical TV#0 such that N2=0. For instance T/(/»2), Tthe

ring of integers and /» a prime. Since TV is the unique maximal right ideal of F,

NeL(RR), hence it follows that Z(RR) = N. Since (R/N)N=0, Z(F/TV) = F/TV^0.

Theorem 1.8. If Z(RR)=0 and dimFB is finite, then Z(AIZ(A))=0 for every

right R-module AR.

Proof. If x+Z(A) e Z(A¡Z(A)), then T={r e R \ xr e Z(A)} e L(RR) by definition.

By Theorem 1.6, Q, the maximal right quotient ring of F is semisimple so IQ=Q,

hence there are ax,...,anel, qx,.. .,qne Q such that 2a><7i = l- F°r eacn '.

xa¡ e Z(A) so T¡, the annihilator of xat in F, is in L(RR). By the corollary to Proposi-

tion 1.2 /={r e F I qtr e T¡ for each /'} e L(RR). For reJ, xr=x(2 afar)) = 2 xafar)

= 0, so x e Z(^) and the theorem follows.

(2) Goldie [7] has shown this implication also.
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This theorem raises the question of whether or not the condition Z(A\Z(A)) = 0

for every 7?-module is sufficient for R to possess a semisimple maximal ring of

quotients.

2. Rings with identity. In this section R is a ring with unity 1, and all right

7?-modules are unitary.

Lemma 2.1. Let Q be a right quotient ring of R and A a right R-module, then if

a ® 1=0 in A ®RQ, there are finitely many qt e Q, a, g A, a = ax, {rtj} = R such that

2 rijCfi = 51;    (Kronecker delta)
i

and 2j o/ij = 0 for all i.

Proof. Let F be a free right 7?-module with basis {x„ : a e A}, then the sequence

O^K^F^A^O

of right 7?-modules is exact, where (F -> A)(xa) = a, 7v = Ker(F-> A). Tensoring

over R with g we have the exact sequence

K® Q-*-F ® Q-+ A ® Q-+&

If a <g> 1 =0 in A <g> g, then x0 (g> 1 i s the image of an element from K <g> Q.

xa ® l=2i^i ®<7¡- Since k^eKQF, ki = Jij x^Xa for each i, a finite sum. Now

xa ® 1 = 2i Œi xa¡\¡) ® 4i = 2í Xa, ® (2i Kad- Since representation in F <g> g is

unique with respect to basis elements xa = xaj for some y say y'= 1, hence 2¡ Kñí — ̂ i¡

and from Ar¡ = 2/ xa,\j, 0 = 2; aj\j for all i, and the lemma follows.

Proposition 2.2. If Q is a right ring of quotients of R, A a right R-module, then

the kernel of the map A<giR->AtgiQis contained in Z(AR).

Proof. If a <g) 1=0 in A <g> g, then by Lemma 1.3 there exist finitely many

{4,}Ç g, {a,)^A, ax = a, {\¡,) = R such that

2 XuQi = S«>   2 fl'A" = °   for a11 L
i i

Let 7={r e R \ q¡r e R for each /}, then 7 is a large right ideal of R by the corollary

to Proposition 1.2 and for À g 7

0 - 2(2 "AW) = 2 MoteA)

= 2 aí(2 A¡x?iA)) = 2 a/snA) = aiA = aX>

hence a is annihilated by 7, so a g Z(Ar).

Theorem 2.3. If Q is the maximal right quotient ring of R, then (a), (b), (c), (d),

(e) of Theorem 1.6 are all equivalent to (f) Ker(A <g>B 7? -> A (g>B Q)=Z(AR) for

every right R-module A.
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Proof, (a) implies (f). By Proposition 2.2, Ker(^ ® R^A ® Q)^Z(AR). If

a e Z(AR) then 7, the annihilator of a in 7?, is in L(RR) so 7g = g, hence there are

«!, ...,«,€/, j!.?»eg such that 2atfi = l- In ¿1 (g) g, a <g> l=a <g> (2 ai?i)

= 2 aai ® 9i=0 so (f) follows.

(f) implies (a). If 7 g L(Rr), then from the exact sequence 7 ® g -> 7? (g) g

-»■ 7?/7 ® g -> 0 we have that 7Î/7 <g> g is isomorphic to g/7g. Since IeL(RR)

Z(R¡I) = R¡I, so Rjl <g> 7? -> 7?/7 <g> g is the zero map hence Ï (2) 1 =0 in 7Î/7 <g> g.

However, R/I ® Q=Q/IQ is a right g-module generated by Î <g> 1 so g/7g = 0,

hence 7 <g> g -»■ g is onto. It is now clear that (a) follows since the image of

7® g^gin gis7g.

An immediate consequence of the notion of singular submodule is

Proposition 2.4. IfER=@IEi, Et right R-modules then Z(E) = @¡Z(Et).

If R is a commutative integral domain, then any direct sum of torsion free

injective 7?-modules is injective, since it is torsion-free and divisible, hence injective,

[1, Proposition VII. 1.3]. A generalization holds.

Theorem 2.5. 7/dim RR is finite and ER is the direct sum of injectives which have

zero singular submodule, then E is injective.

Proof. By Proposition 2.3 Z(E)=0. It is sufficient to show that every 7?-homo-

morphism from a large right ideal of 7? into E can be extended to R. Let /

g Hom(7B, ER), ZB g L(RR). By Theorem 1.3, there exist finitely many a1;.. .,ane I

such that J=^üiReL(RR). Let/' be the restriction of/to J. Since J is finitely

generated, f'(J) is contained in a finite direct sum of injectives, hence /' has an

extension/* g Hom(7?B, ER). The assertion is that/* is an extension off. Let xe I,

then K={reR \ xr e J} e L(RR). Now for reK, (f(x)-f*(x))r=f(xr)-f*(xr)

=f'(xr)-f'(xr)=0 sof(x)-f*(x)eZ(E)=0, hence f*(x)=f(x).

It is known [3], that if Z(7?B) = 0, then g the maximal right ring of R is injective

as a right Z?-module.

Theorem 2.6. If Q is the maximal right quotient ring of R, Z(RR) = 0, dim RR

finite and AR a right R-module such that Z(AR) = 0, then the map 0 -*■ A -> A ®B g

ii an injective hull of A as a right R-module.

Proof. The map is a monomorphism by Theorem 2.3.

Now A ®B g is a right g module, hence semisimple since g is, so A ®B g is a

direct sum of direct summands of g. Since Z(gB)=0, Z(A ®B g)=0 regarding

A <g) g as a right 7?-module and by Theorem 2.5 A ®B g is injective as a right

7?-module.

If 0/x=2 a¡ ® q{ g A ® g, then 7={r g R \ q¡r e R) e L(RR). Now 0^x7 since

Z(A ® g) = 0 and xI^lm(A -> A ® g) so 0 -> ^4 -> A <g> g is an essential mono-

morphism, i.e., Im(y4 -> ^4 ® g) is a large right 7? submodule of A ® g and the

theorem follows.
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Theorem 2.7. If Q is a semisimple maximal right quotient ring of R, then Q is

flat as a left R-module.

Proof. It is sufficient to show that I (g>B ß -> F <g)B ß is a monomorphism for

every right ideal of F. As before I çg>B ß is a right ß-module, then Z(I ® 0=0

regarding T (8) g as a right F-module. If x = 2 a¡ <8> <7¡ s Ker(T (g> ß -> F (8) 0, then

T={r e F | a/ e/i}eL(RR)and 2a*=0 in Q. Clearly xT=0, so x eZ(T ® 0=0,

so x=0, hence T(g)ß->F<g)ßisa monomorphism.

Corollary. 7/ ß is the maximal right quotient ring of R, Z(RR)=0, dim RR finite,

then Torf(y4, QIR)^Z(AR) for every right R-module AR.

Proof. It follows from the exact sequence Tori(^, Q) -*■ Torf (A, ß/F) -y A

®RR^A®RQ since by the theorem lor^(A, Q) = 0 and Ker(A ®RR^A®RQ)

^Z(AR) by Theorem 2.3.

Corollary. If Q is a semisimple maximal right quotient of F, then every left

Q-module is flat as a left R-module.

Proof. Every left ß-module is a direct sum of direct summands of Q, hence is

flat as a left F-module since Tor" commutes with direct sum s.

Matlis [12, Theorem 1.1] has shown that if F is a commutative integral domain

and TT an F-module, then the torsion submodule of T7 is a direct summand of T7,

if TT is an epimorphic image of an injective F-module. This result is generalized

and the proof does not appeal to the quotient ring of F.

First, the notion of a closed submodule of a module will be considered and some

consequences. Johnson and Wong [11] considered the notion of a closed submodule.

Definition 2.8. A submodule F of a module A is closed if F has no essential

extension in A; i.e., C a submodule of A such that F is a large submodule of C

implies B=C.

Remark. If F is an injective F-module and A a submodule of F, then A is

closed if and only if A is a direct summand of F. This follows from the fact that

every submodule of F is a large submodule of its injective hull in F, which is a

direct summand of F.

Lemma 2.9. If fe Hom(A7, A), B a submodule of A such that Z(A/B) = 0, then

f~ 1(B) is a closed submodule of M.

Proof. Let F be a submodule of M containing /" X(B) as a large submodule.

If deD, then I={r e R \ dr ef'1(B)}eL(RR). Now f(d)I=f(dI)^B, hence f(d)

+ B=[f(d)Y eZ(A/B)=0 so f(d) e B and def'\E) and the lemma follows.

Theorem 2.10. IfE ->f H -y 0 is an exact sequence of right R-module, E injective,

Z(H/Z(H)) = 0, then H=Z(H) © F and F is injective.

Proof. Since Z(T7/Z(77))=0, by Lemma 2.9 f'\Z(H)) is closed in E, hence a

direct summand of E=f'\Z(H)) © G. Clearly H=Z(H) ©/(G) and/(G)^G.



120 F. L. SANDOMIERSKI

Corollary. If R is a ring such that Z(RR)=0, dim RR finite, then every epimor-

phic image of an injective R-module has its singular submodule as a direct summand.

Proof. An immediate consequence of the theorem and Theorem 1.8.

It is interesting to note that some of the propositions of [12] admit generalizations

to noncommutative rings and their maximal right quotient rings, where torsion

submodule is replaced with singular submodule and ß the maximal right quotient

ring of F.

If in addition to the hypothesis of [12, Proposition 2.1] we assume Z(FB) = 0,

dim FB finite, then Proposition 2.1 is valid with the same proofs using the fact that

Z(ßB)=0 and a direct sum of copies of ß is injective by Theorem 2.5. Similarly

a generalization of [12, Proposition 2.2] is valid in view of the corollary to Theorem

2.11, as well as [12, Corollary 2.3] of [12, Proposition 2.2].
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