SEMISIMPLE MAXIMAL QUOTIENT RINGS

BY
FRANCIS L. SANDOMIERSKI(*)

Notation and Introduction. R denotes an arbitrary associative ring. A right
R-module 4 over R will be denoted A;. By is a large submodule of A; (45 is an
essential extension of Bg), if By is a submodule of A, having nonzero intersection
with every nonzero submodule of 4. A right ideal I of R is a large right ideal, if
I, is a large submodule of R;.

Given Az, Z(Ay) is the singular submodule of A [9], which consists of all those
elements of 4 whose annihilators in R are large right ideals.

Following Johnson [9], Q is a right quotient ring of R if Q is a ring with identity
containing R as a subring (the identity of Q is the identity of R if R has one)
and Ry is a large submodule of Q.

The quotient rings considered by Goldie in [6], [7] will be called classical quotient
rings. Q is a classical right quotient of R if every regular element (nonzero divisor)
of Ris a unit in Q and every element of Q is of the formab~?, a, b € R, b regular
in R. In general, a ring R need not possess a classical right quotient ring.

Goldie [7], has given necessary and sufficient conditions that a ring possess a
classical right quotient ring which is semisimple. Here semisimple means semi-
simple with minimum condition [8].

This paper is concerned with the question of characterizing those rings which
have a semisimple maximal right quotient ring [4], [9], [10], [11] and in this case
generalizing some simple well-known results about commutative integral domains,
their quotient rings and modules over these domains. Johnson [9] has shown that
R has a regular maximal right quotient ring Q if and only if Z(Rz)=0, where Q
is a regular ring [13] if every finitely generated right (left) ideal of Q is generated
by an idempotent. In this case Q is injective [3] as a right R-module, hence the
injective hull of R [2].

A ring R has a semisimple maximal right quotient ring Q if and only if Z(Rz)=0
and dim Ry, is finite, where a right R-module M is of finite dimension if every direct
sum of submodules of M has only finitely many nonzero summands. This is the
main result of §1. In addition another characterization is given for rings which
possess a semisimple classical right quotient ring, namely, R has a semisimple
classical right quotient ring if and only if Z(Rg)=0 and if I is a large right ideal
of R, then there is an element a € I such that aR is a large right ideal of R.

If R has a semisimple classical right quotient ring Q, then it is known [3], that
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Q is the maximal right quotient ring of R. The converse is not valid, since there
are rings with or without identity that have a semisimple maximal right quotient
ring Q and Q is not the classical right quotient ring of R. Let Q be the ring of
nxn matrices over a division ring A and R the set of upper triangular (strictly
upper triangular) matrices of Q. It is easily verified that Q is a right quotient ring
of R but Q is not a classical right quotient ring of R. Since Q is semisimple Q is the
maximal right quotient ring of R.

It is also shown in §1 that if R has a semisimple maximal right quotient ring Q,
then Z(A/Z(A))=0 for every right R-module 4. This generalizes the analogous
result if R is a commutative integral domain, since then Z(A4y) is the torsion
subgroup of A4.

In §2 rings with identity are considered.

In this case the following generalizations of results known [1] when R is a com-
mutative integral domain hold, thus extending some of the results of Gentile [5]
also.

1. R has a semisimple maximal right quotient ring Q if and only if 4 —~ 4 @5 Q
has Z(Aj) for its kernel for every unitary right R-module A.

If R has a semisimple maximal right quotient ring Q, then

2. zQ is flat [1] as a left R-module.

3. Every unitary left Q-module is flat as a left R-module.

4. If Z(Ap)=0, then 0 > A4 — 4 ®; Q is the injective hull of 4, a unitary
R-module.

5. Torf(A, Q/R)~Z(Ay) for every unitary right R-module A.

Another result with weaker hypothesis is valid.

Any direct sum of injective right R-modules, each with zero singular submodule
is injective if dim Rj is finite.

The following generalizes a result of Matlis [12]. If Hy is an epimorphic image
of an injective right R-module E, and Z(H/Z(H))=0, then Z(H)) is a direct sum-
mand of H with complementary summand injective. The proof given here is
simpler in that it does not appeal to any quotient ring of R as was done in Matlis
[12, Theorem 1.1] when R is a commutative integral domain. Also Proposition 2.1,
Proposition 2.2, and Proposition 2.4 of [12] can be generalized to a noncommuta-
tive ring R which has a semisimple maximal right quotient ring utilizing identical
proofs.

1. Arbitrary rings.

DEerINITION 1.1. If M is a right R-module, then the set of all large submodules
of M is denoted by L(Mp).

It is useful to recall the following results, which are essentially in [9].

PROPOSITION 1.2.
1. If A, Be L(Mp), then A+ B e L(My) and A N Be L(Mpy).
2. If A € L(My) and B a submodule of M containing A, then B € L(My).
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3. If A is a submodule of M, then there exists a submodule B of M maximal with
respect to the property that A N B=0 and consequently A+ B € L(M3).
4. If fe Homg(M, N) and A € L(Ny), then f~ (A)={x € M | f(x) € A} € L(Mp).

COROLLARY. If A,,..., A, €L(Ay) and x,, ..., x, € A, then I={re R | xyr € A4,
for all i} € L(Ry).

Proof. {r e R | x;r € A}=1, for each i is the counter-image of 4, by the right R
homomorphism from R into A4 given by left multiplication by x;, hence I is the
intersection of finitely many large right ideals of R, so I € L(Ry).

Goldie [7] calls a right R-module M of finite dimension, dim My, finite, if every
direct sum of nonzero submodules of M has only a finite number of direct sum-
mands which are nonzero.

If M is a right R-module and x,, ..., x, € M, then [x,, ..., x,] will denote the
submodule of M generated by {x,, ..., x,}. For xe M, xR={xr |reR}.If Ris a
ring with identity and M a unitary R-module, then clearly [x]=xR. A module My
will be called regular if for 0 x € M, xR+#0. Clearly if R is a ring with identity
every unitary R-module is regular. Also if R is arbitrary then Mj is regular if
Z(Mg)=0.

THEOREM 1.3. Let M be a right R-module, and consider the following conditions.

(a) dim My is finite.

(b) If K € L(Mp), there are x, . . ., X, € K such that [xy, . .., x,] € L(Mp).

(¢) If K is a submodule of M, then there are x,, . . ., x, € K such that [x,, . . ., x,]
€ L(Kpy).

(b*) If K € L(My), there are x,, . . ., x, € K such that 3 x,R € L(Mp).

(c® If K is a submodule of M, then there are x,, ..., x, € K such that > x;R
€ L(Kp).

If My is any R-module then (a), (b), and (c) are equivalent. If My is a regular
R-module then (a), (b*), and (c*) are equivalent, hence all the statements are equivalent.

Proof. Only the equivalence of (a), (b), and (c) will be shown as the equivalence
of (a), (b*), and (c*) when My is regular has an analogous proof.

(a) implies (b). Let K € L(M}) and suppose (b) is denied. Let 0#x; € K, then
[x1] ¢ L(K3), hence there is 0+ x, € K such that [x;] N [x;]=0. Suppose x,, .. ., x,
€ K such that 0#[x;] and the sum } [x;] is direct. Since > [x]]=[xy,..., X.],
> [x] ¢ L(Kg), hence there is 0#x,,; € K such that [xi,..., x,] N [x,+1]=0.
Thus, there is an infinite sum [x;] @ - - D [x,] @ - - = K< M contradicting (a), so
for some n [x,, ..., x,] € L(K3), hence [xy, ..., x,] € L(My) since K € L(My).

(b) implies (c). Let K be a submodule of M. By Zorn’s lemma there is a sub-
module L of M which is maximal with respect to the property that K N L=0 and
consequently K+ L € L(Mp). By (b) there exist finitely many ay, . . ., a, € K+ L such
that [ay, ..., a,] € L(Mg). Now a,=x;+y;, k;€ K, y, € L. The counter image of
[xi, ¥:.J?=1 € L(M3) by the inclusion map K— K+L is [x,,..., x,], hence is large
in K, so (c) follows.
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(c) implies (a). Given K a direct sum of nonzero submodules of M, then there
are finitely many x,, ..., x, € K such that [x,, ..., x,] € L(K). Now [x,, ..., x,]
is contained in the direct sum of finitely many of the submodules of K and
[x1, ..., x,] thus has zero intersection with the others so the others are zero and
(a) follows.

Similar proofs show the equivalence of (a), (b*), and (c*).

PROPOSITION 1.4. For a unitary module Ay, the following statements are equivalent.

(a) A is semisimple (sum of simple submodules).

(b) A is a direct sum of simple submodules.

(c) Every submodule of Ay is a direct summand of A.

(d) L(4p)={4z}-

Proof. The equivalence of (a), (b), and (c) is well known, e.g., [8]. Clearly (c)
implies (d). Conversely, if B is a submodule of A, then there is a submodule C of
A such that BN C=0 and B+ C € L(Ag), by (d) A=B @ C so (c) follows.

LemMA 1.5, If Q is a right quotient ring of R with Z(Rg)=0 and A, B R-sub-
modules of Qp such that A N B=0, then AQ N BQ=0.

Proof. If xe AQ N BQ, then x=> aq,=> b,p,;, a,...,a,€ A4, by,...,b, €B,
Dis-+sPnsq1s---,Gn € Q. I={re R| qir € R, pir € R for all i} € L(Ry) and xI=0 so
x € Z(Qg)=0, since Z(Rz)=0.

COROLLARY. If Q is a right quotient ring of R, Z(Rg)=0 and B € L(Qy), then
B N L(Ry).

Proof. If BN J=0 for a right ideal J of R, then BQ N JQ=0 by the lemma,
hence J=0 since BQ=B.

THEOREM 1.6. Let Z(Rp)=0, and Q the maximal right quotient ring of R, then the
following statements are equivalent.

(@) 1Q= Q for every I € L(Rp).

(b) For I € L(Ry) there are ay, . . ., a, € I such that > a,R € L(Ry).

(¢) dim Ry is finite.

(d) If Iis a right ideal of R, then there are a,, . . ., a, € I such that > a;R € L(Iy).

(e) Q is a semisimple ring.

Proof. The equivalence of (b), (c), and (d) follows from Theorem 1.3 since
Z(Rp)=0.

(a) implies (b). If I € L(Ry), then IQ = Q, hence there are a,, ..., a,€,q1,...,4,
€ Q such that > a,g,=1. J={r € R | q;r € R for all i} € L(R;) and clearly J< a,R
so (b) follows.

(b) implies (e). If B e L(Qy), then B N R € L(Ry) by the corollary to Lemma 1.5.
So BN R has elements ay,...,a, such that /=2 a;R € L(Rp). IQ is a finitely
generated right ideal of Q. Since Z(Rg)=0, Q is a regular ring, hence IQ=eQ,
e=e%e Q. However, (1—e)[=0 so 1—eecZ(Qx)=0 so IQ=0Q, but IQ<B so
B=(Q, that is L(Qg)={Qo} so Q is a semisimple ring.
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(e) implies (a). If 1€ L(Rg), then IQ=eQ for some e=e? e Q since Q is semi-
simple. Since Q is the maximal right quotient ring of R and Q is semisimple, then
Q is a regular ring so Z(Qz)=0 by [9]. Therefore, since (1 —e)I=0, (1 —e) € Z(Qr)
=0,s0 1=eand IQ=0.

Now the case of a semisimple classical right quotient ring of R will be considered.

THEOREM 1.7. For a ring R, the following statements are equivalent.

(a) R has a semisimple classical right quotient ring.

(b) Z(Rr)=0 and for I € L(Ry) there is a € I such that aR € L(Rg).

() R is a semiprime ring, dim Ry, is finite and R satisfies the ascending chain
condition on right annihilators.

Proof. The equivalence of (a) and (c) was shown by Goldie [7].

(a) implies (b)(?). Let Q be a semisimple classical right quotient ring of R, then
0 is the maximal right quotient ring of R. By Theorem 1.6 Z(Rz)=0 and for
Ie L(Ry), there are ay,...,a, €1, 41, ..., g, € Q such that > a,g;=1. Since q, € Q,
q1=cdr?, ¢1, dy € R, d; regular in R, hence d, =2, aiqid; +ajc,. Since q.d, € O,
Gody =cods, cy, dy € R, dy regular in R, so dydy=a,c,dy+ascq+ 245 2 a:9:d1dz. Con-
tinuing in this fashion it follows that there exist regular elements d,,...,d, € R
such that d=d,---d,e > a,R<I. If dRNJ=0 for a right ideal J of R, then
dRQ N JQ=0, but since ReL(Rg), RQ=Q so dRQ=Q since d is regular so
J=0, hence dR € L(Ry).

(b) implies (a). Let Q be the maximal right quotient ring of R and g € Q, then
I={r € R| gr € R} € L(R;). By (b) there is a € I such that aR € L(Rz). By Theorem
1.6 Q=aRQ=aQ so a has right inverse. Since Q is semisimple and a has a right
inverse a has a left inverse so a is a regular element of R and g=ba~*. If a € R and
a is regular, then the right annihilator of a in R is zero, hence in Q also. Since Q
is semisimple a is regular in Q and (a) follows.

It is not valid in general that for a right R-module Ay, Z(4/Z(A))=0. Let R be
a local ring with Jacobson radical N+#0 such that N2=0. For instance I/(p?), I the
ring of integers and p a prime. Since N is the unique maximal right ideal of R,
N € L(Ry), hence it follows that Z(Rz)=N. Since (R/N)N=0, Z(R/N)=R/N#0.

THEOREM 1.8. If Z(Rg)=0 and dim Ry is finite, then Z(A|Z(A))=0 for every
right R-module Ay,

Proof. If x+Z(A) € Z(A|Z(A)), then I={r € R | xr € Z(A)} € L(Rg) by definition.
By Theorem 1.6, O, the maximal right quotient ring of R is semisimple so /Q=(Q,
hence there are a,...,a,€1, q1,...,4,€ Q such that > aq,=1. For each i,
xa; € Z(A) so I, the annihilator of xa, in R, is in L(Rg). By the corollary to Proposi-
tion 1.2J={r € R | g;r € I, for each i} € L(Rg). For r € J, xr=x(2, a|(qir)) = 2. xa(qir)
=0, so x € Z(A) and the theorem follows.

(?) Goldie [7] has shown this implication also.



1967] SEMISIMPLE MAXIMAL QUOTIENT RINGS 117

This theorem raises the question of whether or not the condition Z(4/Z(4))=0
for every R-module is sufficient for R to possess a semisimple maximal ring of
quotients.

2. Rings with identity. In this section R is a ring with unity 1, and all right
R-modules are unitary.

LEMMA 2.1. Let Q be a right quotient ring of R and A a right R-module, then if
a®1=0in A Qz Q, there are finitely many q;€ Q, a, € A,a=a,, {r,;} < R such that

Z ryq; = 8,; (Kronecker delta)

i
and > ; a;r;;=0 for all i.
Proof. Let F be a free right R-module with basis {x,: a € 4}, then the sequence
0>K—>F—>A—>0

of right R-modules is exact, where (F— A)(x,)=a, K=Ker(F — A). Tensoring
over R with Q we have the exact sequence

KQRQ—-FRQ—>A4® Q—0.

Ifa®1=0in 4 ® Q, then x, ® | i s the image of an element from K ® Q.
X @ 1=2,k ® g, Since k;e KSF, k=3, x,,A; for each i, a finite sum. Now

Xo ® 1=24(2; Xo,M)) ® §i=2; Xa; ® (2 Aiyqy). Since representation in F @ Q is
unique with respect to basis elements x, = x,, for some j say j=1, hence 3; A;,q,=9,,
and from k;=32; xo,Ai;, 0=2; a;A; for all i, and the lemma follows.

PROPOSITION 2.2. If Q is a right ring of quotients of R, A a right R-module, then
the kernel of the map A @ R— A ® Q is contained in Z(Ay).

Proof. If a ® 1=0 in 4 ® Q, then by Lemma 1.3 there exist finitely many
{93< Q, {a}= 4, a,=a, {\;}= R such that

Z Ayqy = 81y Z a\; =0 for all i.
T 7

Let I={r € R | gir € R for each i}, then I is a large right ideal of R by the corollary
to Proposition 1.2 and for Ae ]

0= z(z afx‘,)(qix) = 2 ahi(gid)

=> af(z ’\w(qf)‘)) = > a3y,) = ad = ah,
7 7
hence a is annihilated by I, so a € Z(Ag).

THEOREM 2.3. If Q is the maximal right quotient ring of R, then (a), (b), (c), (d),
(€) of Theorem 1.6 are all equivalent to (f) Ker(A @z R— A Q@ Q)=Z(Az) for
every right R-module A.
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Proof. (a) implies (f). By Proposition 2.2, Ker(4 ® R—> A ® Q)=Z(A4y). If
a € Z(Ap) then I, the annihilator of a in R, is in L(Ry) so IQ= Q, hence there are
ay,...,a,€l,qy,...,q,€ Qsuch that ag=1.In 4 Q 0, a ® 1=a R 3 aq,)
= > aa; ® q;=0 so () follows.

(f) implies (a). If 7€ L(Ry), then from the exact sequence I ® Q >R ® Q
— R/I ® Q —0 we have that R/I ® Q is isomorphic to Q/IQ. Since I € L(Rg)
Z(R/I)=R|I,s0o R ® R— R/I ® Q is the zero map hence 1 ® 1=0in R/I ® Q.
However, R/I @ Q=~ Q/IQ is a right Q-module generated by 1 ® 1 so Q/IQ=0,
hence I ® Q — Q is onto. It is now clear that (a) follows since the image of
I® Q—>Qin Qis IQ.

An immediate consequence of the notion of singular submodule is
PROPOSITION 2.4. If Ex=@,E,, E, right R-modules then Z(E)=,Z(E)).

If R is a commutative integral domain, then any direct sum of torsion free
injective R-modules is injective, since it is torsion-free and divisible, hence injective,
[1, Proposition VII.1.3]. A generalization holds.

THEOREM 2.5. If dim Ry, is finite and Ej is the direct sum of injectives which have
zero singular submodule, then E is injective.

Proof. By Proposition 2.3 Z(E)=0. It is sufficient to show that every R-homo-
morphism from a large right ideal of R into E can be extended to R. Let f
€ Hom(Zy, Ez), Ir € L(Ry). By Theorem 1.3, there exist finitely many a,,...,a,€ 1
such that J=3 a,R € L(Rg). Let f’ be the restriction of f to J. Since J is finitely
generated, f'(J) is contained in a finite direct sum of injectives, hence f’ has an
extension f* € Hom(Rg, Ez). The assertion is that f* is an extension of f. Let x € [,
then K={re R|xreJ}eL(Ry). Now for re K, (f(x)—f*x))r=f(xr)—f*(xr)
=f'(xr)—f"(xr)=0 so f(x)—f*(x) € Z(E) =0, hence f*(x) =/(x).

It is known [3], that if Z(Rz)=0, then Q the maximal right ring of R is injective
as a right R-module.

THEOREM 2.6. If Q is the maximal right quotient ring of R, Z(Rp)=0, dim R
finite and Ay, a right R-module such that Z(Ap)=0, then the map 0 > A — A Qp Q
is an injective hull of A as a right R-module.

Proof. The map is a monomorphism by Theorem 2.3.

Now 4 ®; Q is a right Q module, hence semisimple since Q is, s0 4 R Qis a
direct sum of direct summands of Q. Since Z(Qr)=0, Z(4 ®z Q)=0 regarding
A ® Q as a right R-module and by Theorem 2.5 4 ®; Q is injective as a right
R-module.

If0#x=3a, ®qecAQ Q, then I={re R| qr € R} € L(Rg). Now 0+#xI since
Z(A® Q)=0and xIcIm(4 >4 Q Q)so0—> A4 —> A ® Q is an essential mono-
morphism, i.e., Im(4 - 4 ® Q) is a large right R submodule of 4 ® Q and the
theorem follows.
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THEOREM 2.7. If Q is a semisimple maximal right quotient ring of R, then Q is
flat as a left R-module.

Proof. It is sufficient to show that 7 ®; @ — R ®; Q is a monomorphism for
every right ideal of R. As before I ®5 Q is a right Q-module, then Z( ® Q)=0
regarding I ® Q as a right R-module. If x=3 a; ® ¢, € Ker(l @ Q — R ® Q), then
I={re R | qir € R} € L(Rp) and 3 a,g;=0 in Q. Clearly x/=0, so xe Z(I ® Q)=0,
so x=0, hence I ® Q — R ® Q is a monomorphism.

COROLLARY. If Q is the maximal right quotient ring of R, Z(Rg)=0, dim Ry, finite,
then Tor%(A, Q/R)>~Z(Ay) for every right R-module Ag.

Proof. It follows from the exact sequence Tor%(4, Q) — Tor¥(4, Q/R) ~A
®z R — A ®p O since by the theorem Torf(4, Q)=0and Ker(4d @z R—> 4 Q3 Q)
~Z(Ag) by Theorem 2.3.

COROLLARY. If Q is a semisimple maximal right quotient of R, then every left
Q-module is flat as a left R-module.

Proof. Every left Q-module is a direct sum of direct summands of Q, hence is
flat as a left R-module since Tor? commutes with direct sum s.

Matlis [12, Theorem 1.1] has shown that if R is a commutative integral domain
and H an R-module, then the torsion submodule of H is a direct summand of H,
if H is an epimorphic image of an injective R-module. This result is generalized
and the proof does not appeal to the quotient ring of R.

First, the notion of a closed submodule of a module will be considered and some
consequences. Johnson and Wong [11] considered the niotion of a closed submodule.

DEerINITION 2.8. A submodule B of a module 4. is closed if B has no essential
extension in A4; i.e., C a submodule of 4 such that B is a large submodule of C
implies B=C.

ReMARK. If E is an injective R-module and 4 a submodule of E, then A is
closed if and only if 4 is a direct summand of E. This follows from the fact that
every submodule of E is a large submodule of its injective hull in E, which is a
direct summand of E.

LeMMA 2.9. If fe Hom(M, A), B a submodule of A such that Z(A/B)=0, then
f~Y(B) is a closed submodule of M.

Proof. Let D be a submodule of M containing f~*(B) as a large submodule.
If de D, then I={re R | dr e f~'(B)} € L(Rg). Now f(d)I=f(dl)< B, hence f(d)
+B=[f(d)]” € Z(4/B)=0 so f(d) € B and d € f~*(B) and the lemma follows.

THEOREM 2.10. If E—' H — 0 is an exact sequence of right R-module, E injective,
Z(H|Z(H))=0, then H=Z(H) @ F and F is injective.

Proof. Since Z(H|Z(H))=0, by Lemma 2.9 f~(Z(H)) is closed in E, hence a
direct summand of E=f-Y(Z(H)) @ G. Clearly H=Z(H) @ f(G) and f(G)=G.
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COROLLARY. If R is a ring such that Z(Rg)=0, dim Ry, finite, then every epimor-
phic image of an injective R-module has its singular submodule as a direct summand.

Proof. An immediate consequence of the theorem and Theorem 1.8.

It is interesting to note that some of the propositions of [12] admit generalizations
to noncommutative rings and their maximal right quotient rings, where torsion
submodule is replaced with singular submodule and Q the maximal right quotient
ring of R.

If in addition to the hypothesis of [12, Proposition 2.1] we assume Z(Rp)=0,
dim R;, finite, then Proposition 2.1 is valid with the same proofs using the fact that
Z(0z)=0 and a direct sum of copies of Q is injective by Theorem 2.5. Similarly
a generalization of [12, Proposition 2.2] is valid in view of the corollary to Theorem
2.11, as well as [12, Corollary 2.3] of [12, Proposition 2.2].
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