ON HOMOGENEOUS SPACES AND REDUCTIVE SUBALGEBRAS OF SIMPLE LIE ALGEBRAS

BY
A. SAGLE AND D. J. WINTER ${ }^{1}$)

1. Introduction. Let G be a connected Lie group and H a closed subgroup. Then the homogeneous space $M=G / H$ is called reductive if in the Lie algebra g of G there exists a subspace \mathfrak{m} such that $\mathfrak{g}=\mathfrak{m}+\mathfrak{h}$ (subspace direct sum) and $[\mathfrak{h}, \mathfrak{m}]$ $\subset \mathfrak{m}$ where \mathfrak{h} is the Lie algebra of H (see [4], [5]). In this case the pair $(\mathfrak{g}, \mathfrak{h})$ is called a reductive pair and the subspace \mathfrak{m} can be made into an anti-commutative algebra as follows. For $X, Y \in \mathfrak{m}$ let $[X, Y]=X Y+\mathfrak{h}(X, Y)$ where $X Y=[X, Y]_{\mathfrak{m}}$ (resp. $\left.\mathfrak{h}(X, Y)=[X, Y]_{\mathfrak{h}}\right)$ is the projection of $[X, Y]$ in \mathfrak{g} into \mathfrak{m} (resp. \mathfrak{h}). This algebra is related to the canonical G-invariant connection ∇ of the first kind on G / H by $\left[\nabla_{X^{*}}\left(Y^{*}\right)\right]_{P_{0}}=\frac{1}{2} X Y$ where $P_{0}=H \in M$ (see [5, Theorem 10.1]).

For a fixed decomposition $\mathfrak{g}=\mathfrak{m} \dot{+}$, the Lie algebra identities of g yield the following identities for \mathfrak{m} and \mathfrak{h}. For $X, Y, Z \in \mathfrak{m}$ and $U \in \mathfrak{h}$,
(1) $X Y=-Y X$ (bilinear);
(2) $\mathfrak{h}(X, Y)=-\mathfrak{h}(Y, X)$ (bilinear);
(3) $[Z, \mathfrak{h}(X, Y)]+[X, \mathfrak{h}(Y, Z)]+[Y, \mathfrak{h}(Z, X)]=J(X, Y, Z) \equiv(X Y) Z+(Y Z) X$ $+(Z X) Y$.
(4) $\mathfrak{h}(X Y, Z)+\mathfrak{h}(Y Z, X)+\mathfrak{h}(Z X, Y)=0$;
(5) $\mathfrak{h}[(X, Y), U]=\mathfrak{h}([X, U], Y)+\mathfrak{h}(X,[Y, U])$;
(6) $[U, X Y]=[U, X] Y+X[U, Y]$.

In particular (6) says the mappings $\operatorname{ad}_{\mathfrak{m}} U: \mathfrak{m} \rightarrow \mathfrak{m}: X \rightarrow[U, X]$ are derivations of the algebra \mathfrak{m}. Using these identities, there was established in [6] a correspondence between simple algebras \mathfrak{m} and holonomy irreducible simply connected spaces G / H which are not symmetric ($\mathfrak{m m}=0$ if and only if G / H is a symmetric space); for example, if G / H is riemannian, then G / H is holonomy irreducible if and only if \mathfrak{m} is a simple algebra.
In this paper, we consider pairs $(\mathfrak{g}, \mathfrak{h})$ where \mathfrak{g} is a simple Lie algebra over a field F of characteristic zero and \mathfrak{h} is either semisimple, or regular and reductive (see [2]). In each case we show that the associated \mathfrak{m} is either simple or abelian $\left(\mathfrak{m}^{2}=0\right)$. This together with [6] shows in particular that if G is a simple connected Lie group and H a closed semisimple or regular reductive Lie subgroup of G such that G / H is simply connected, then either G / H is a symmetric space or G / H is holonomy irreducible. This is a reasonable account of the situation since it can be shown that

[^0]if G / H is a holonomy irreducible pseudo-riemannian reductive space with G simple, then \mathfrak{h} is a reductive subalgebra of \mathfrak{g}.

2. The regular reductive case.

Lemma 1. Let \mathfrak{a} be a nonassociative algebra with derivation algebra Der a. Assume that \mathfrak{a} has no proper ideal stable under Der \mathfrak{a}. Then either \mathfrak{a} is simple or $\mathfrak{a}^{2}=0$.

Proof. Assume $\mathfrak{a}^{2} \neq 0$ and let $\mathfrak{T}(\mathfrak{a})$ denote the associative algebra generated by the left and right multiplications of \mathfrak{a} [3, p. 290]. Let R be the radical of $\mathfrak{T}(\mathfrak{a})$. Then $R \mathfrak{a}$ is an ideal of \mathfrak{a} since $\mathfrak{T}(\mathfrak{a})(R \mathfrak{a}) \subseteq(\mathfrak{T}(\mathfrak{a}) R) \mathfrak{a} \subseteq R \mathfrak{a}$. If $D \in \operatorname{Der} \mathfrak{a}$, then $[D, \mathfrak{T}(\mathfrak{a})]$ $\subseteq \mathfrak{T}(a)$ since $\operatorname{ad}_{\text {Hom(a,a) }} D$ stabilizes the set of right and left multiplications (e.g., $[D, L(A)]=L(D(A))$ where $L(B)$ denotes left multiplication by B in a). Thus $\operatorname{ad}_{\mathfrak{X}(a)} D$ is a derivation of $\mathfrak{T}(\mathfrak{a})$ and it follows that $[D, R] \subseteq R[3, \mathrm{p} .30$, exercise 22]. Thus $D(R \mathfrak{a}) \subseteq[D, R] \mathfrak{a}+R(D \mathfrak{a}) \subseteq R \mathfrak{a}$. Thus $R \mathfrak{a}$ is a Der \mathfrak{a}-stable ideal of \mathfrak{a}. By assumption, we must have $R \mathfrak{a}=\mathfrak{a}$ or $R \mathfrak{a}=0$. If $R \mathfrak{a}=\mathfrak{a}$, then for some i, $0=R^{i} \mathfrak{a}=R^{i-1} \mathfrak{a}=\cdots=R \mathfrak{a}=\mathfrak{a}$ and $\mathfrak{a}=0$. Thus we may assume that $R \mathfrak{a}=0$. Then $R=0$ and $\mathfrak{T}(\mathfrak{a})$ is completely reducible on \mathfrak{a}. \mathfrak{a}^{2} is clearly Der \mathfrak{a}-stable. Assuming that $\mathfrak{a}^{2} \neq 0$, we must have $\mathfrak{a}^{2}=\mathfrak{a}$ by hypothesis. We claim that $\mathfrak{a}^{2}=\mathfrak{a}$ implies that \mathfrak{a} is simple. For if \mathfrak{b} were a proper ideal of \mathfrak{a}, then \mathfrak{b} would be $\mathfrak{I}(\mathfrak{a})$-stable and hence $\mathfrak{a}=\mathfrak{b} \oplus \mathfrak{b}^{\prime}$ for some $\mathfrak{I}(\mathfrak{a})$-stable \mathfrak{b}^{\prime}. This \mathfrak{b}^{\prime} would be an ideal and $\mathfrak{a}=\mathfrak{a}^{2}=\mathfrak{b}^{2}+\left(\mathfrak{b}^{\prime}\right)^{2}$ shows that $\mathfrak{b}^{2}=\mathfrak{b}$. But then $\mathfrak{b}=\mathfrak{b}^{2}$ would be Der \mathfrak{a}-stable since for B_{1}, B_{2} in \mathfrak{b}, $D\left(B_{1} B_{2}\right)=\left(D B_{1}\right) B_{2}+B_{1}\left(D B_{2}\right) \in \mathfrak{b}$. Thus \mathfrak{a} is simple.
We now consider reductive pairs ($\mathfrak{g}, \mathfrak{h}$). Thus let \mathfrak{g} be a Lie algebra, \mathfrak{h} a Lie subalgebra of $\mathfrak{g}, \mathfrak{m}$ a complementary subspace of \mathfrak{h} in \mathfrak{g} such that $[\mathfrak{m h}] \subseteq \mathfrak{m}$. For $X, Y \in \mathfrak{m}$ we define $X Y$ in \mathfrak{m} and $\mathfrak{h}(X, Y)$ in \mathfrak{h} by requiring that $[X Y]=X Y$ $+\mathfrak{h}(X, Y)$. We regard \mathfrak{m} as a nonassociative algebra with respect to the product $X Y$. Then \mathfrak{m} is clearly anti-commutative and $\operatorname{ad}_{\mathfrak{m}} U$ is a derivation of \mathfrak{m} for $U \in \mathfrak{h}$ (by (6)).

Lemma 2. Let \mathfrak{n} be an ad \mathfrak{h}-stable ideal of \mathfrak{m}. Let $\mathfrak{q}=\mathfrak{n}+\mathfrak{h}(\mathfrak{n}, \mathfrak{n})$. If $\left[\mathfrak{n}, \mathfrak{n}^{\prime}\right] \subseteq \mathfrak{q}$ for some complementary subspace \mathfrak{n}^{\prime} of \mathfrak{n} in \mathfrak{m}, then \mathfrak{q} is an ideal of \mathfrak{g}.

Proof. $[\mathfrak{q}, \mathfrak{n}] \subseteq[\mathfrak{n}, \mathfrak{n}]+[\mathfrak{h}(\mathfrak{n}, \mathfrak{n}), \mathfrak{n}] \subseteq \mathfrak{n} \mathfrak{n}+\mathfrak{h}(\mathfrak{n}, \mathfrak{n})+\mathfrak{n}$ by (3) since \mathfrak{n} is ad \mathfrak{h}-stable. Thus $[\mathfrak{q}, \mathfrak{n}] \subseteq \mathfrak{q}$. And $[\mathfrak{q}, \mathfrak{h}] \subseteq \mathfrak{q}$ since \mathfrak{n} is ad \mathfrak{h}-stable and $\mathfrak{q}=\mathfrak{n}+[\mathfrak{n}, \mathfrak{n}]$. It remains to show that $\left[\mathfrak{q}, \mathfrak{n}^{\prime}\right] \subseteq \mathfrak{q}$. But we have

$$
\begin{aligned}
{\left[\mathfrak{q}, \mathfrak{n}^{\prime}\right] } & \subseteq \mathfrak{n} \mathfrak{n}^{\prime}+\mathfrak{h}\left(\mathfrak{n}, \mathfrak{n}^{\prime}\right)+\left[\mathfrak{h}(\mathfrak{n}, \mathfrak{n}), \mathfrak{n}^{\prime}\right], \\
{\left[\mathfrak{h}(\mathfrak{n}, \mathfrak{n}), \mathfrak{n}^{\prime}\right] } & \subseteq\left[\mathfrak{n n}, \mathfrak{n}^{\prime}\right]+\left[[\mathfrak{n}, \mathfrak{n}], \mathfrak{n}^{\prime}\right] \subseteq\left[\mathfrak{n}, \mathfrak{n}^{\prime}\right]+\left[\mathfrak{n},\left[\mathfrak{n}, \mathfrak{n}^{\prime}\right]\right], \\
\mathfrak{h}\left(\mathfrak{n}, \mathfrak{n}^{\prime}\right) & \subseteq \mathfrak{n} \mathfrak{n}^{\prime}+\left[\mathfrak{n}, \mathfrak{n}^{\prime}\right] .
\end{aligned}
$$

But since $\left[\mathfrak{n}, \mathfrak{n}^{\prime}\right] \subseteq \mathfrak{q}$ by hypothesis, \mathfrak{q} contains $\left[\mathfrak{h}(\mathfrak{n}, \mathfrak{n}), \mathfrak{n}^{\prime}\right]$ (using (3)) and $\mathfrak{h}\left(\mathfrak{n}, \mathfrak{n}^{\prime}\right)$. Since $\mathfrak{n n}^{\prime} \subseteq \mathfrak{n}(\mathfrak{n}$ is an ideal of $\mathfrak{m}),\left[\mathfrak{q}, \mathfrak{n}^{\prime}\right] \subseteq \mathfrak{q}$. Thus \mathfrak{q} is an ideal of \mathfrak{g}.

Lemma 3. Suppose that the Killing form $B(, \quad)$ of \mathfrak{g} is nondegenerate and that $B(\mathfrak{m}, \mathfrak{h})=0$. Then $B() \mid, \mathfrak{m}$ is nondegenerate and invariant, i.e., $B(X Y, Z)$ $=B(X, Y Z)$. Moreover every ad \mathfrak{h}-stable ideal \mathfrak{n} of \mathfrak{m} satisfies $\left[\mathfrak{n}, \mathfrak{n}^{\perp}\right]=0$ where $\mathfrak{n}^{\perp}=\{X \in \mathfrak{m} \mid B(X, \mathfrak{n})=0\}$.

Proof. For $X, Y, Z \in \mathfrak{m}$ we have:

$$
\begin{aligned}
B(X Y, Z) & =B([X, Y]-\mathfrak{h}(X, Y), Z)=B([X, Y], Z)=B(X,[Y, Z]) \\
& =B(X, Y Z+\mathfrak{h}(Y, Z))=B(X, Y Z) .
\end{aligned}
$$

Now $B\left(\mathfrak{n}^{\perp}, \mathfrak{n}\right)=0$ implies that $0=B\left(\mathfrak{n}^{\perp}, \mathfrak{n m}\right)=B\left(\mathfrak{n n}^{\perp}, \mathfrak{m}\right)$. And $B(\mathfrak{m}, \mathfrak{h})=0$ implies that $B\left(\mathfrak{n n}^{\perp}, \mathfrak{h}\right)=0$. Thus $B\left(\mathfrak{n n}^{\perp}, \mathfrak{g}\right)=0$ and $\mathfrak{n n}{ }^{\perp}=0$. Consequently $\left[\mathfrak{n}, \mathfrak{n}^{\perp}\right]=\mathfrak{h}\left(\mathfrak{n}, \mathfrak{n}^{\perp}\right)$ $\subseteq \mathfrak{h}$ and $B\left(\left[\mathfrak{n}, \mathfrak{n}^{\perp}\right], \mathfrak{m}\right)=0$. But we also have $B\left(\left[\mathfrak{n}, \mathfrak{n}^{\perp}\right], \mathfrak{h}\right)=B\left(\mathfrak{n}^{\perp},[\mathfrak{n k}]\right)=B\left(\mathfrak{n}^{\perp}, \mathfrak{n}\right)=0$. Thus $B\left(\left[\mathfrak{n}, \mathfrak{n}^{\perp}\right], \mathfrak{g}\right)=0$ and $0=\left[\mathfrak{n}, \mathfrak{n}^{\perp}\right]=\mathfrak{h}\left(\mathfrak{n}, \mathfrak{n}^{\perp}\right)$.

Theorem 1. Let \mathfrak{g} be a split simple Lie algebra. Let \mathfrak{h} be a reductive subalgebra of \mathfrak{g} which is normalized by a split Cartan subalgebra \mathfrak{c} of \mathfrak{g} (i.e., \mathfrak{h} is reductive and regular [2]). Then \mathfrak{h} has an $\operatorname{ad}(\mathfrak{c}+\mathfrak{h})$-stable complement \mathfrak{m}. Such an \mathfrak{m} is either simple or abelian $\left(\mathfrak{m}^{2}=0\right)$.

Proof. We first show that $\mathfrak{c}+\mathfrak{h}$ is reductive. Letting $\mathfrak{g}=\mathfrak{g}_{0}+\sum \mathfrak{g}_{\alpha}$ be the root space decomposition of \mathfrak{g}, it suffices to show that for $\alpha \neq 0, \mathfrak{g}_{\alpha} \subseteq \mathfrak{c}+\mathfrak{h}$ implies $\mathfrak{g}_{-\alpha} \subseteq \mathfrak{c}+\mathfrak{h}$ [7, p. 669]. Since $[\mathfrak{c}, \mathfrak{h}] \subseteq \mathfrak{h}$ we have $[\mathfrak{c}, \mathfrak{b}] \subseteq \mathfrak{d}$ where \mathfrak{b} is the center of \mathfrak{h}. Thus $\mathfrak{c}+\mathfrak{b}$ is solvable. Thus $\operatorname{ad}(\mathfrak{c}+\mathfrak{b})$ is triangulizable and $0=[\operatorname{ad} \mathfrak{c}, \operatorname{ad} \mathfrak{b}]=\operatorname{ad}[\mathfrak{c}, \mathfrak{b}]$ since $\operatorname{ad}[\mathfrak{c}, \mathfrak{b}] \subseteq$ ad \mathfrak{b} and ad \mathfrak{b} consists of semisimple transformations. Thus $[\mathfrak{c}, \mathfrak{D}]=0$ and $\mathfrak{b} \subseteq \mathfrak{c}=\mathfrak{g}_{0}$. Now $\mathfrak{h}=\mathfrak{b} \oplus \mathfrak{h}^{(1)}$ with $\mathfrak{h}^{(1)}$ semisimple, since \mathfrak{h} is reductive. Let α be a nonzero root such that $\mathfrak{g}_{\alpha} \subseteq \mathfrak{c}+\mathfrak{h}$. Then since $\mathfrak{h}^{(1)}$ is ad \mathfrak{c}-stable and $\mathfrak{c}+\mathfrak{h}=g_{0}$ $+\mathfrak{b}+\mathfrak{h}^{(1)}=\mathfrak{g}_{0}+\mathfrak{h}^{(1)}$, we have $\mathfrak{g}_{\alpha} \subseteq \mathfrak{h}^{(1)}$. Now the restriction of the Killing form $B\left(\right.$,) of \mathfrak{g} to $\mathfrak{h}^{(1)}$ is nondegenerate since it is the trace form of a faithful representation of the semisimple Lie algebra $\mathfrak{h}^{(1)}$ (see [3, p. 69]). Thus $B\left(\mathfrak{g}_{\alpha}, \mathfrak{h}^{(1)}\right) \neq 0$. Since $B\left(\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}\right)=0$ for $\alpha+\beta \neq 0$, it follows $\mathfrak{g}_{-\alpha} \subseteq \mathfrak{h}^{(1)}$. Thus $\mathfrak{g}_{\alpha} \subseteq \mathfrak{c}+\mathfrak{h}$ implies $\mathfrak{g}_{-\alpha} \subseteq \mathfrak{c}+\mathfrak{h}$ and $\mathfrak{c}+\mathfrak{h}$ is reductive.

It follows that \mathfrak{h} has a complement \mathfrak{m} stable under ad($\mathfrak{c}+\mathfrak{h})$. Any complement \mathfrak{m} is the sum of $\mathfrak{m} \cap \mathfrak{g}_{0}$ and those root spaces \mathfrak{g}_{β} not occurring in \mathfrak{h}. In particular, $\mathfrak{g}_{\alpha} \subseteq \mathfrak{m}$ implies $\mathfrak{g}_{-\alpha} \subseteq \mathfrak{m}$.

We now show that such an \mathfrak{m} is either simple or abelian. Assume that $\mathfrak{m}^{2} \neq 0$ and \mathfrak{m} not simple. Then by Lemma $1, \mathfrak{m}$ has a proper Der \mathfrak{m}-stable ideal. Since \mathfrak{m} is $\operatorname{ad}(\mathfrak{c}+\mathfrak{h})$-stable, $\operatorname{ad}(\mathfrak{c}+\mathfrak{h})$ consists of derivations of \mathfrak{m}. Thus \mathfrak{m} has a proper ideal \mathfrak{n} stable under $\operatorname{ad}(\mathfrak{c}+\mathfrak{h})$.

Let σ be an automorphism of g such that $\sigma \mid \mathrm{c}=-i d_{\mathrm{c}}$ and $\mathrm{g}_{\alpha}^{\sigma}=\mathrm{g}_{-\alpha}$ for all α (see [3, p. 127]). Then the above discussion shows that \mathfrak{m} and \mathfrak{h} are σ-stable. It follows that $(X Y)^{\sigma}=X^{\sigma} Y^{\sigma}$ and $(\mathfrak{h}(X, Y))^{\sigma}=\mathfrak{h}\left(X^{\sigma}, Y^{\sigma}\right)$. Thus $\sigma \mid \mathfrak{m}$ is an automorphism of \mathfrak{m} and \mathfrak{n}^{σ} is an ideal of \mathfrak{m}. Since $\left[\mathfrak{n}^{\sigma}, \mathfrak{c}+\mathfrak{h}\right]=\left[\mathfrak{n}^{\sigma},(\mathfrak{c}+\mathfrak{h})^{\sigma}\right]=[\mathfrak{n}, \mathfrak{c}+\mathfrak{h}]^{\sigma} \subseteq \mathfrak{n}^{\sigma}, \mathfrak{n}^{\sigma}$ is also $\operatorname{ad}(\mathfrak{c}+\mathfrak{h})$-stable.

Suppose that one of the ideals $\mathfrak{n} \cap \mathfrak{n}^{\sigma}, \mathfrak{n}+\mathfrak{n}^{\sigma}$ is proper in \mathfrak{m}. Call it \mathfrak{p}. Then \mathfrak{p} is the sum of $\mathfrak{p} \cap \mathfrak{g}_{0}$ and root spaces \mathfrak{g}_{α}. Moreover $\mathfrak{g}_{\alpha} \subseteq \mathfrak{p}$ implies $\mathfrak{g}_{-\alpha} \subseteq \mathfrak{p}$. It follows that $\mathfrak{m}=\mathfrak{m} \cap \mathfrak{g}_{0}+\mathfrak{p}+\mathfrak{p}^{\perp}$ where $\mathfrak{p}^{\perp}=\{X \in \mathfrak{m} \mid B(X, \mathfrak{p})=0\}$ (thus $\mathfrak{g}_{\alpha} \subseteq \mathfrak{m}-\mathfrak{g}_{0}$ and $\mathfrak{g}_{\alpha} \nsubseteq \mathfrak{p}$ implies $\mathfrak{g}_{-\alpha} \neq \mathfrak{p}$ which implies $\left.B\left(\mathfrak{g}_{\alpha}, \mathfrak{p}\right)=0\right)$. We use this to show that $\mathfrak{q}=\mathfrak{p}$ $+\mathfrak{h}(\mathfrak{p}, \mathfrak{p})$ is an ideal of \mathfrak{g}. By Lemma 2 it suffices to show that $\left[\mathfrak{p}, \mathfrak{p}^{\prime}\right] \subseteq \mathfrak{q}$ where $\mathfrak{p}^{\prime}=\mathfrak{p}^{\perp}+\mathfrak{m} \cap \mathfrak{g}_{0}$. But $\left[\mathfrak{p}, \mathfrak{m} \cap \mathfrak{g}_{0}\right] \subseteq[\mathfrak{p}, \mathfrak{c}] \subseteq \mathfrak{p}$. Thus it suffices to show that $\left[\mathfrak{p}, \mathfrak{p}^{\perp}\right]$
$\subseteq \mathfrak{q}$. But $B\left(\left[\mathfrak{p}, \mathfrak{p}^{\perp}\right], \mathfrak{c}+\mathfrak{h}\right)=B\left(\mathfrak{p}^{\perp},[\mathfrak{p}, \mathfrak{c}+\mathfrak{h}]\right)=B\left(\mathfrak{p}^{\perp}, \mathfrak{p}\right)=0$ and $\left[\mathfrak{p}, \mathfrak{p}^{\perp}\right] \subseteq(\mathfrak{c}+\mathfrak{h})^{\perp} \subseteq \mathfrak{m}$. Thus $\mathfrak{h}\left(\mathfrak{p}, \mathfrak{p}^{\perp}\right) \subseteq\left[\mathfrak{p}, \mathfrak{p}^{\perp}\right]+\mathfrak{p} \mathfrak{p}^{\perp} \subseteq \mathfrak{m}$ and $\mathfrak{h}\left(\mathfrak{p}, \mathfrak{p}^{\perp}\right)=0$. Thus $\left[\mathfrak{p}, \mathfrak{p}^{\perp}\right]=\mathfrak{p} \mathfrak{p}^{\perp} \subseteq \mathfrak{p} \subseteq \mathfrak{q}$ and \mathfrak{q} is an ideal of \mathfrak{g}. Thus $\mathfrak{q}=\mathfrak{g}$ and \mathfrak{n} cannot be proper in \mathfrak{m}, a contradiction.

Thus we have $\mathfrak{n} \cap \mathfrak{n}^{\sigma}=0$ and $\mathfrak{n}+\mathfrak{n}^{\sigma}=\mathfrak{m}$. Thus $\mathfrak{n} \cap \mathfrak{g}_{0}=\left(\mathfrak{n} \cap \mathfrak{g}_{0}\right)^{\sigma}=0$ (since $\left.\sigma \mid \mathfrak{g}_{0}=-\mathrm{id}_{\mathfrak{g}_{0}}\right)$. Thus $\mathfrak{m} \cap \mathfrak{g}_{0}=\mathfrak{n} \cap \mathfrak{g}_{0}+\left(\mathfrak{n} \cap \mathfrak{g}_{0}\right)^{\sigma}=0$. It follows that $B(\mathfrak{m}, \mathfrak{h})=0$ (e.g., $\mathfrak{m}=\sum_{\alpha \in S} \mathfrak{g}_{\alpha}$ for some set S of nonzero roots, and $\alpha \in S$ implies $-\alpha \in S$ which implies $\mathfrak{g}_{-\alpha} \nsubseteq \mathfrak{h}$ and therefore $B\left(\mathfrak{g}_{\alpha}, \mathfrak{h}\right)=0$). Also $B(\mathfrak{n}, \mathfrak{n})=0$ (e.g., $\mathfrak{n}=\sum_{\alpha \in T} \mathfrak{g}_{\alpha}$ for some set T of nonzero roots, and $\alpha \in T$ implies $-\alpha \notin T$ which implies $\left.B\left(\mathrm{~g}_{\alpha}, \mathfrak{n}\right)=0\right)$. It follows from Lemma 3 that $[\mathfrak{n}, \mathfrak{n}]=\mathfrak{n} \mathfrak{n}=\mathfrak{h}(\mathfrak{n}, \mathfrak{n})=0$. Thus $\mathfrak{n}^{\sigma} \mathfrak{n}^{\sigma}=0$. Finally $\mathfrak{m}^{2}=\left(\mathfrak{n}+\mathfrak{n}^{\sigma}\right)^{2}=\mathfrak{n}^{2}+\mathfrak{n} \mathfrak{n}^{\sigma}+\left(\mathfrak{n}^{\sigma}\right)^{2} \subseteq 0+\mathfrak{n} \cap \mathfrak{n}^{\sigma}+0=0$, a contradiction.
3. The semisimple case. We now consider the reductive pair $(\mathfrak{g}, \mathfrak{h})$ where \mathfrak{g} is a simple Lie algebra and \mathfrak{h} is a semisimple Lie subalgebra. We note that the Killing form $B($,$) of \mathfrak{g}$ restricted to \mathfrak{h} is nondegenerate. For if $U, V \in \mathfrak{h}$, then $B(U, V)$ $=\operatorname{tr} \mathrm{ad}_{\mathfrak{g}} U \operatorname{ad}_{\mathfrak{g}} V$ is the trace form of the representation ad \mathfrak{h} in \mathfrak{g}, and is nondegenerate by Cartan's criterion [3, p. 69]. (Note that $\mathrm{ad}_{\mathrm{g}} U=0$ implies $U F$ is a one-dimensional ideal in the simple algebra \mathfrak{g} so that $U=0$.) Thus if \mathfrak{h}^{\perp} $=\{X \in \mathfrak{g} \mid B(X, \mathfrak{h})=0\}$, then $\mathfrak{h} \cap \mathfrak{h}^{\perp}=0$ and therefore $\mathfrak{g}=\mathfrak{h}^{\perp}+\mathfrak{h}$. And $B([\mathfrak{h}, \mathfrak{h}], \mathfrak{h})$ $=B\left(\mathfrak{h}^{\perp},[\mathfrak{h}, \mathfrak{h}]\right)=0$ so that for $\mathfrak{m}=\mathfrak{h}^{\perp},(\mathfrak{g}, \mathfrak{h})$ is a reductive pair with (fixed) decomposition $\mathfrak{g}=\mathfrak{m} \dot{+} \mathfrak{h}$. Note that since $\mathfrak{m}=\mathfrak{h}^{\perp}$, the Killing form B, restricted to \mathfrak{m}, is a nondegenerate invariant form, i.e., $B(X Y, Z)=B(X, Y Z)$.

Theorem 2. Let \mathfrak{g} be a simple Lie algebra and \mathfrak{h} a semisimple subalgebra. Then $(\mathfrak{g}, \mathfrak{h})$ is a reductive pair with $\mathfrak{m}=\mathfrak{h}^{\perp}$. Furthermore $\mathfrak{m}^{2}=0$ or \mathfrak{m} is simple.

Proof. Assume $\mathfrak{m}^{2} \neq 0$. Then we have from Lemma 1 that \mathfrak{m} has a minimal proper ad \mathfrak{h}-stable ideal \mathfrak{n}. Then since B is a nondegenerate invariant form on \mathfrak{m} and $B([X U], Y)=B(X,[U Y])$ for $X, Y \in \mathfrak{m}, U \in \mathfrak{h}$, we have $\mathfrak{n}^{\perp}=\{X \in \mathfrak{m} \mid B(X, \mathfrak{n})$ $=0\}$ is an ad \mathfrak{h}-stable ideal of \mathfrak{m}. Thus $\mathfrak{n} \cap \mathfrak{n}^{\perp}$ is an ad \mathfrak{h}-stable ideal of \mathfrak{m}; and since \mathfrak{n} is minimal, either $\mathfrak{n} \cap \mathfrak{n}^{\perp}=0$ or $\mathfrak{n} \cap \mathfrak{n}^{\perp}=\mathfrak{n}$.
In case $\mathfrak{n} \cap \mathfrak{n}^{\perp}=0$ we have $\mathfrak{m}=\mathfrak{n} \oplus \mathfrak{n}^{\perp}$. And we know from Lemma 3 that $\left[\mathfrak{n}, \mathfrak{n}^{\perp}\right]=0$. Thus $\mathfrak{q}=\mathfrak{n}+\mathfrak{h}(\mathfrak{n}, \mathfrak{n})$ is a proper ideal of \mathfrak{g} by Lemma 2. This contradiction shows we must have $\mathfrak{n} \cap \mathfrak{n}^{\perp}=\mathfrak{n}$.
In the case $\mathfrak{n} \cap \mathfrak{n}^{\perp}=\mathfrak{n}$ we can find an ad \mathfrak{h}-stable complement, \mathfrak{n}^{\prime} (since ad \mathfrak{h} is semisimple and therefore completely reducible); and we write $\mathfrak{m}=\mathfrak{n} \dot{+} \mathfrak{n}^{\prime}$. Thus since $B(\mathfrak{n}, \mathfrak{n})=0$, to show that $\mathfrak{n}=0$ it suffices to show $B\left(\mathfrak{n}, \mathfrak{n}^{\prime}\right)=0$.

To find a formula for $B(X, Y)$ with $X, Y \in \mathfrak{m}$, define $\varepsilon(X)$ and $\delta(X)$ by

$$
\begin{array}{rlrl}
\varepsilon(X): \mathfrak{m} \rightarrow \mathfrak{h}: & & Y \rightarrow \mathfrak{h}(X, Y) & \equiv \varepsilon(X)(Y), \\
\delta(X): \mathfrak{h} \rightarrow \mathfrak{m}: & & U \rightarrow[X, U] \equiv \delta(X)(U),
\end{array}
$$

where $U \in \mathfrak{h}$. Using these maps we have for any $Z, X \in \mathfrak{m}, U \in \mathfrak{h}$ that

$$
\begin{aligned}
\left(\operatorname{ad}_{\mathfrak{g}} Z\right)(X) & =[Z, X]=Z X+\mathfrak{h}(Z, X) \\
& =(L(Z)+\varepsilon(Z))(X) \\
\left(\operatorname{ad}_{\mathfrak{g}} Z\right)(U) & =[Z, U]=\delta(Z)(U)
\end{aligned}
$$

and therefore

$$
\operatorname{ad}_{\mathfrak{g}} Z=\left(\begin{array}{cc}
L(Z) & \varepsilon(Z) \\
\delta(Z) & 0
\end{array}\right)
$$

From this, note that since \mathfrak{g} is simple $0=\operatorname{tr} \operatorname{ad}_{\mathfrak{g}} Z=\operatorname{tr} L(Z)$. Also since $\mathfrak{h}=[\mathfrak{h}, \mathfrak{h}]$ is semisimple, and since $\mathfrak{h} \rightarrow \operatorname{ad}_{\mathfrak{m}} \mathfrak{h}: U \rightarrow \operatorname{ad}_{\mathfrak{m}} U$ and $\mathfrak{h} \rightarrow \operatorname{ad}_{\mathfrak{h}} \mathfrak{h}: U \rightarrow \operatorname{ad}_{\mathfrak{h}} U$ are representations of \mathfrak{h}, we have $\operatorname{tr} \mathrm{ad}_{\mathfrak{m}} U=\operatorname{tr~ad}_{\mathfrak{h}} U=0$ for all $U \in \mathfrak{h}$.

Next for $X, Y \in \mathfrak{m}$ define the linear transformation $\sigma(X, Y): \mathfrak{m} \rightarrow \mathfrak{m}$ by $\sigma(X, Y)$ $=\delta(X) \varepsilon(Y)$, that is, $\sigma(X, Y) Z=[X, \mathfrak{h}(Y, Z)](=[\mathfrak{h}(Z, Y), X])$. From (3) we have the identity

$$
\operatorname{ad}_{\mathfrak{m}} \mathfrak{y}(X, Y)-\sigma(X, Y)+\sigma(Y, X)=[L(X), L(Y)]-L(X Y)
$$

and therefore $\operatorname{tr} \sigma(X, Y)=\operatorname{tr} \sigma(Y, X)$. From this and the matrix for $\operatorname{ad}_{g} Z$ we obtain for $X, Y \in \mathfrak{m}$ that

$$
\begin{aligned}
B(X, Y) & =\operatorname{tr} \operatorname{ad}_{\mathfrak{g}} X \operatorname{ad}_{\mathfrak{g}} Y \\
& =\operatorname{tr} L(X) L(Y)+\operatorname{tr} \varepsilon(X) \delta(Y)+\operatorname{tr} \delta(X) \varepsilon(Y) \\
& =\operatorname{tr} L(X) L(Y)+\operatorname{tr} \delta(Y) \varepsilon(X)+\operatorname{tr} \delta(X) \varepsilon(Y) \\
& =\operatorname{tr} L(X) L(Y)+\operatorname{tr} \sigma(Y, X)+\operatorname{tr} \sigma(X, Y) \\
& =\operatorname{tr} L(X) L(Y)+2 \operatorname{tr} \sigma(X, Y),
\end{aligned}
$$

using for the third equality that if $S \in \operatorname{Hom}(V, W)$ and $T \in \operatorname{Hom}(W, V)$ for vector spaces V and W, then $\operatorname{tr} S T=\operatorname{tr} T S$.

Now recall that in the decomposition $\mathfrak{m}=\mathfrak{n}+\mathfrak{n}^{\prime}$ we must show $B\left(\mathfrak{n}, \mathfrak{n}^{\prime}\right)=0$. Thus for $X \in \mathfrak{n}, Y \in \mathfrak{n}^{\prime}$ we have (from the fact that \mathfrak{n} is an ideal and $\mathfrak{n n}=0$) the matrices

$$
L(X)=\left(\begin{array}{cc}
0 & 0 \\
X_{21} & 0
\end{array}\right) \quad \text { and } \quad L(Y)=\left(\begin{array}{cc}
Y_{11} & 0 \\
Y_{21} & Y_{22}
\end{array}\right)
$$

and therefore $\operatorname{tr} L(X) L(Y)=0$ and $B(X, Y)=2 \operatorname{tr} \sigma(X, Y)$.
To find the matrix for $\sigma(X, Y)$ (with $X \in \mathfrak{n}, Y \in \mathfrak{n}^{\prime}$) let $Z \in \mathfrak{n}, Z^{\prime} \in \mathfrak{n}^{\prime}$. Then

$$
\begin{aligned}
\sigma(X, Y) Z & =[\mathfrak{h}(Z, Y), X] \in \mathfrak{n}, \\
\sigma(X, Y) Z^{\prime} & =\left[\mathfrak{h}\left(Z^{\prime}, Y\right), X\right] \in \mathfrak{n} .
\end{aligned}
$$

Therefore

$$
\sigma(X, Y)=\left(\begin{array}{ll}
\sigma_{11} & 0 \\
\sigma_{21} & 0
\end{array}\right)
$$

and $\operatorname{tr} \sigma(X, Y)=\operatorname{tr} \sigma_{11}=\operatorname{tr}_{\mathfrak{n}} \sigma(X, Y)$. To find the action of $\sigma(X, Y)$ on \mathfrak{n} again let $Z \in \mathfrak{n}$. Then since \mathfrak{n} is an ideal, $\mathfrak{n n}=0$ and $\mathfrak{h}(\mathfrak{n}, \mathfrak{n})=0$, we have from (3) that

$$
\begin{aligned}
0=J(Z, X, Y) & =[Z, \mathfrak{h}(X, Y)]+[X, \mathfrak{h}(Y, Z)] \\
& =\left[-\operatorname{ad}_{\mathfrak{n}} \mathfrak{h}(X, Y)+\sigma(X, Y)\right] Z .
\end{aligned}
$$

Therefore on \mathfrak{n} we have $\sigma(X, Y)=\operatorname{ad}_{\mathfrak{n}} \mathfrak{h}(X, Y)$ and since $U \rightarrow \operatorname{ad}_{\mathfrak{n}} U$ is a representation of the semisimple Lie algebra $\mathfrak{h}, 0=\operatorname{trad}_{\mathfrak{n}} \mathfrak{h}(X, Y)=\operatorname{tr}_{\mathfrak{n}} \sigma(X, Y)$. Thus $B\left(\mathfrak{n}, \mathfrak{n}^{\prime}\right)=0$ and \mathfrak{m} is simple, a contradiction. Thus either $\mathfrak{m}^{2}=0$ or \mathfrak{m} is simple.
4. Remarks. (i) The above discussion for \mathfrak{h} semisimple holds for \mathfrak{g} reductive in g except for the assertion that $\operatorname{tr}^{\operatorname{ad}_{\mathfrak{n}}} \mathfrak{h}(X, Y)=0$ and its consequences. The authors do not know whether the theorem holds for all reductive \mathfrak{h}.
(ii) If \mathfrak{h} is the zero-space of a derivation of \mathfrak{g} or the one-space of an automorphism of \mathfrak{g}, then \mathfrak{h} is reductive and contains a regular element of \mathfrak{g} [1]. Thus if g is simple and the underlying field algebraically closed, the associated \mathfrak{m} is simple or abelian by Theorem 1 .
(iii) It would be of value to determine all pairs $(\mathfrak{g}, \mathfrak{h})$ with \mathfrak{g} semisimple for which an associated \mathfrak{m} is simple. We now give an example of one nontrivial such pair $(\mathfrak{g}, \mathfrak{h})$ where g is not simple. Thus let $\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$ (direct) where the $\mathfrak{g}_{i}(i=1,2)$ are real compact simple Lie algebras. Suppose that \mathfrak{b} is a simple subalgebra of \mathfrak{g}_{1}, \mathfrak{b}^{\prime} a simple subalgebra of $\mathfrak{g}_{2}, B \rightarrow B^{\prime}$ an isomorphism from \mathfrak{b} onto \mathfrak{b}^{\prime}. Let \mathfrak{h} $=\left\{B+B^{\prime} \mid B \in \mathfrak{b}\right\}$ and $m=\mathfrak{h}^{\perp}$. Then $\mathfrak{g}_{1}, \mathfrak{g}_{2}, \mathfrak{b}$, and \mathfrak{b}^{\prime} can easily be chosen such that $\mathfrak{m}^{2} \neq 0$. We claim that for any such choice, \mathfrak{m} is simple. By Lemma 1, it suffices to show that \mathfrak{m} has no proper ad \mathfrak{h}-stable ideal. If \mathfrak{n} were such an ideal, then since the Killing form is negative definite on $\mathfrak{g}, \mathfrak{m}=\mathfrak{n} \oplus \mathfrak{n}^{\perp}$. It is now clear that $\mathfrak{n}+\mathfrak{h}(\mathfrak{n}, \mathfrak{n})$ is an ideal of \mathfrak{g} by Lemma 2 , since $\left[\mathfrak{n}, \mathfrak{n}^{\perp}\right]=0$ by Lemma 3. But then $\mathfrak{n}+\mathfrak{h}(\mathfrak{n}, \mathfrak{n})=\mathfrak{g}_{1}$ or \mathfrak{g}_{2}. But by construction, $\mathfrak{h} \cap \mathfrak{g}_{1}=\mathfrak{h} \cap \mathfrak{g}_{2}=0$. Thus $\mathfrak{n}=\mathfrak{g}_{1}$ or \mathfrak{g}_{2}. This is impossible since $B(\mathfrak{n}, \mathfrak{h})=0$ whereas $B\left(\mathfrak{g}_{\mathfrak{i}}, \mathfrak{h}\right) \neq 0$ for $i=1,2$.

Bibliography

1. A. Borel and G. D. Mostow, On semisimple automorphisms of Lie algebras, Ann. of Math. 61 (1955), 389-504.
2. E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Transl. (2) 6 (1957), 111-244.
3. N. Jacobson, Lie algebras, Wiley, New York, 1962.
4. B. Kostant, On differential geometry and homogeneous spaces. I, II, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 258-261; 354-357.
5. K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. Math. J. 76 (1954), 33-65.
6. A. Sagle, On anti-commutative algebras and homogeneous spaces, J. Math. Mech. (to appear).
7. A. Borel and J. Tits, Groupes réductifs, pp. 659-755, Inst. Hautes Etudes Sci. Paris No. 27, 1965.

University of Minnesota,

Minneapolis, Minnesota
Yale University,
New Haven, Connecticut

[^0]: Received by the editors July 19, 1966.
 $\left({ }^{1}\right)$ Research supported by NSF Grant GP-1453 and by Army Research Office, Durham (respectively).

