ON HOMOGENEOUS SPACES AND REDUCTIVE
SUBALGEBRAS OF SIMPLE LIE ALGEBRAS

BY
A. SAGLE AND D. J. WINTER(Y)

1. Introduction. Let G be a connected Lie group and H a closed subgroup.
Then the homogeneous space M =G/H is called reductive if in the Lie algebra g
of G there exists a subspace m such that g=m 4 § (subspace direct sum) and [§, m]
<m where § is the Lie algebra of H (see [4], [S]). In this case the pair (g, §) is called
a reductive pair and the subspace m can be made into an anti-commutative algebra
as follows. For X, Yem let [X, Y]=XY+5(X, Y) where XY=[X, Y], (resp.
H(X, Y)=[X, Y]p) is the projection of [X, Y] in g into m (resp. §). This algebra is
related to the canonical G-invariant connection V of the first kind on G/H by
[Vx(Y*)]p,=3XY where Py=H € M (see [5, Theorem 10.1]).

For a fixed decomposition g=m 4§, the Lie algebra identities of g yield the
following identities for m and §. For X, Y, Zem and Ue ),

(1) XY=—-YX (bilinear);

) 5(X, Y)=-—5(Y, X) (bilinear);

3) [Z, y(X, D]+[X, 5(Y, 2)]+1Y, 5(Z, X)]=J(X, Y, Z)=(XY)Z+(YZ)X
+(ZX)Y.

@ 9(XY,Z)+9(YZ, X)+H(ZX, Y)=0;

6) [U, XY]=[U, X1Y+ X[U, Y1
In particular (6) says the mappings ad,, U: m —m: X — [U, X] are derivations
of the algebra m. Using these identities, there was established in [6] a correspond-
ence between simple algebras m and holonomy irreducible simply connected
spaces G/H which are not symmetric (mm=0 if and only if G/H is a symmetric
space); for example, if G/H is riemannian, then G/H is holonomy irreducible if and
only if m is a simple algebra.

In this paper, we consider pairs (g, ) where g is a simple Lie algebra over a field
F of characteristic zero and } is either semisimple, or regular and reductive (see [2]).
In each case we show that the associated m is either simple or abelian (m2=0).
This together with [6] shows in particular that if G is a simple connected Lie group
and H a closed semisimple or regular reductive Lie subgroup of G such that G/H
is simply connected, then either G/H is a symmetric space or G/H is holonomy
irreducible. This is a reasonable account of the situation since it can be shown that
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if G/H is a holonomy irreducible pseudo-riemannian reductive space with G simple,
then ) is a reductive subalgebra of g.

2. The regular reductive case.

LeMMA 1. Let a be a nonassociative algebra with derivation algebra Der a. Assume
that a has no proper ideal stable under Der a. Then either a is simple or a®=0.

Proof. Assume a?#0 and let T(a) denote the associative algebra generated by
the left and right multiplications of a [3, p. 290]. Let R be the radical of T(a). Then
Ra is an ideal of a since T(a)(Ra)=(T(a)R)as Ra. If D € Der a, then [D, I(a)]
S(a) since adyome,q D stabilizes the set of right and left multiplications (e.g.,
[D, L(A)]=L(D(A)) where L(B) denotes left multiplication by B in a). Thus
adg, D is a derivation of (a) and it follows that [D, R]J< R [3, p. 30, exercise
22]. Thus D(Ra)<[D, Rla+ R(Da)< Ra. Thus Ra is a Der a-stable ideal of
a. By assumption, we must have Ra=a or Ra=0. If Ra=aq, then for some i,
0=R'a=R'"!a=-.-=Ra=a and a=0. Thus we may assume that Ra=0. Then
R=0 and ¥(a) is completely reducible on a. a? is clearly Der a-stable. Assuming
that a®#0, we must have a®2=a by hypothesis. We claim that a2=a implies that
a is simple. For if b were a proper ideal of a, then b would be ¥(a)-stable and hence
a=b @ b’ for some F(a)-stable b’. This b’ would be an ideal and a=a2=5%+(b")2
shows that b2=50. But then b=5b% would be Der a-stable since for B,, B, in b,
D(B,B;)=(DB,;)B;+ B,(DB,) € b. Thus a is simple.

We now consider reductive pairs (g, ). Thus let g be a Lie algebra, § a Lie
subalgebra of g, m a complementary subspace of § in g such that [mh]<m. For
X, Yem we define XY in m and H(X, Y) in § by requiring that [XY]=XY
+5(X, Y). We regard m as a nonassociative algebra with respect to the product
XY. Then m is clearly anti-commutative and ad,, U is a derivation of m for Ue §)
(by (6)).

LEMMA 2. Let n be an ad Y)-stable ideal of m. Let q=n+Y(n, n). If [n, n']<q for
some complementary subspace v’ of v in m, then q is an ideal of g.

Proof. [q, n]<[n, n]+[H(n, n), n]<nn+ h(n, n)+n by (3) since n is ad Y-stable.
Thus [g, nJ=q. And [q, H] < q since n is ad h-stable and q=n+[n, n]. It remains
to show that [q, n'J<q. But we have

[9, w'] = nn’+H(n, n') +[H(n, n), n'],
[5(m, n), w'] < [nn, 0]+ [[n, n], W], 0]+ [0, [0, 0],
h(n, n’) < nn'+[n, n'].
But since [n, n']< g by hypothesis, q contains [§(n, n), n] (using (3)) and H(n, n’).
Since nn’ =n (n is an ideal of m), [q, n']<=gq. Thus q is an ideal of g.

LEMMA 3. Suppose that the Killing form B( , ) of g is nondegenerate and that
B(m, 9)=0. Then B( , )|m is nondegenerate and invariant, ie., B(XY,Z)
=B(X, YZ). Moreover every ad Y-stable ideal n of m satisfies [n, nt]=0 where
nt={Xem| B(X, n)=0}.
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Proof. For X, Y, Z € m we have:
B(XY,Z) = B([X, Y]-%(X, Y),Z) = B([X, Y], Z) = B(X, [Y,Z))
= B(X, YZ+¥(Y, Z)) = B(X, YZ).
Now B(nt, n)=0 implies that 0=B(n*, nm)=B(nn', m). And B(m, §)=0 implies
that B(nnt, §)=0. Thus B(nnt, g)=0 and nnt=0. Consequently [n, nt]=H(n, n')
< § and B([n, nt], m)=0. But we also have B([n, n'], h)=B(ni, [nh])=Bn*, n)=0.
Thus B([n, nt], g)=0 and 0=[n, nt]=hH(n, nt).

THEOREM 1. Let g be a split simple Lie algebra. Let Y) be a reductive subalgebra
of @ which is normalized by a split Cartan subalgebra c of g (i.e., Y is reductive and
regular [2]). Then Y has an ad(c+Y)-stable complement m. Such an m is either
simple or abelian (m2?=0).

Proof. We first show that ¢+ is reductive. Letting g=g,+ >, g. be the root
space decomposition of g, it suffices to show that for «#0, g,=c+f implies
g_.Sc+5 [7, p. 669]. Since [c, H] <= b we have [¢, D] =d where b is the center of §.
Thus ¢+ bd is solvable. Thus ad(c+ b) is triangulizable and 0=[ad ¢, ad b]=ad[c, d]
since ad[c, db]=ad b and ad b consists of semisimple transformations. Thus [c, ]=0
and b<c=g, Now h=> @ Hh® with H¥ semisimple, since ) is reductive. Let « be
a nonzero root such that g,<c+7Y. Then since §¥ is ad c-stable and c¢+fH=g,
+04+HV=g,+H®, we have g,=HhP. Now the restriction of the Killing form
B( , ) of g to ¥ is nondegenerate since it is the trace form of a faithful representa-
tion of the semisimple Lie algebra HV (see [3, p. 69]). Thus B(g,, H¥’) #0. Since
B(g., 95)=0 for «+B+£0, it follows g_,=H?. Thus g, =c+Y implies g_,=c+Y
and ¢+ ) is reductive.

It follows that § has a complement m stable under ad(c+5). Any complement
m is the sum of m N g, and those root spaces gz not occurring in Y. In particular,
8. Sm implies g_,<Sm.

We now show that such an m is either simple or abelian. Assume that m2#0
and m not simple. Then by Lemma 1, m has a proper Der m-stable ideal. Since
m is ad(c+ h)-stable, ad(c+ §) consists of derivations of m. Thus m has a proper
ideal n stable under ad(c+ b). .

Let ¢ be an automorphism of g such that o|c= —id; and gi=g_, for all « (see
[3, p. 127]). Then the above discussion shows that m and f) are o-stable. It follows
that (XY)’=X°Y? and (§(X, Y))°=H(X°, Y°). Thus o|m is an automorphism of
m and n’ is an ideal of m. Since [n°, ¢+ h]=[n’, (c+H)’]=[n, c+H]°<Sn? n’ is also
ad(c+ p)-stable.

Suppose that one of the ideals n N n% n+n? is proper in m. Call it . Then p is
the sum of p N g, and root spaces g,. Moreover g, <p implies g_,<yp. It follows
that m=m N go+p+p*t where pt={Xem| B(X, p)=0} (thus g,=m—g, and
8,¢ p implies g_,& p which implies B(g,, p)=0). We use this to show that gq=p
+9(p, p) is an ideal of g. By Lemma 2 it suffices to show that [p, p']<q where
p’=pt4+mn g But [p, m N go]<[p, c]<p. Thus it suffices to show that [p, p*]
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Sq. But B([p, p*], c+b)=B(p", [p, c+9])=B(»*, p)=0 and [p, p*]<(c+h)‘<m.
Thus H(p, p*) S[p, p*]1+pp* Sm and H(p, p*)=0. Thus [p, p*]=pp*Sp<qand q
is an ideal of g. Thus q=g and n cannot be proper in m, a contradiction.

Thus we have n N n°=0 and n+n’=m. Thus n N go=(m N g,)°=0 (since
o|go=—idg,). Thus m N ge=nnN go+(n N go)°=0. It follows that B(m, h)=0
(e.g., m=2 .5 @, for some set .S of nonzero roots, and « € S implies —o € S which
implies g_,%H and therefore B(g,, §)=0). Also B(n, n)=0 (e.g., n=>,.r g, for
some set T of nonzero roots, and o € T implies —« ¢ T which implies B(g,, n)=0).
It follows from Lemma 3 that [n, n]=nn=¥(n, n)=0. Thus n’n°=0. Finally
m2=n+n°)?=n2+un’+m°)2<c0+n N n°+0=0, a contradiction.

3. The semisimple case. We now consider the reductive pair (g, §)) where g is a
simple Lie algebra and Y is a semisimple Lie subalgebra. We note that the Killing
form B( , ) of g restricted to Y is nondegenerate. For if U, V € ¥, then B(U, V)
=trad; Uad,; V is the trace form of the representation ad ) in g, and is non-
degenerate by Cartan’s criterion [3, p. 69]. (Note that ad; U=0 implies UF is a
one-dimensional ideal in the simple algebra g so that U=0.) Thus if Bt
={Xeg | B(X, h)=0}, then h N h*=0 and therefore g=H*+14. And B([H*, 9], )
=B(%H*, [9, H]) =0 so that for m=5*, (g, b) is a reductive pair with (fixed) decom-
position g=m4 §. Note that since m=15*, the Killing form B, restricted to m, is a
nondegenerate invariant form, i.e., B(XY, Z)=B(X, YZ).

'THEOREM 2. Let g be a simple Lie algebra and Y a semisimple subalgebra. Then
(8, b) is a reductive pair with m=%*. Furthermore m*=0 or m is simple.

Proof. Assume m2#0. Then we have from Lemma 1 that m has a minimal
proper ad Y-stable ideal n. Then since B is a nondegenerate invariant form on m
and B([XU], Y)=B(X, [UY]) for X, Yem, Uel, we have nt={Xem | B(X, n)
=0} is an ad Y-stable ideal of m. Thus n N n' is an ad Yh-stable ideal of m; and
since n is minimal, either n " nt=0or n N nt=n.

In case n N nt=0 we have m=n @ n'. And we know from Lemma 3 that
[n, n*]=0. Thus g=n4 h(n, n) is a proper ideal of g by Lemma 2. This contradic-
tion shows we must have n N nt=n.

In the case n N nt=n we can find an ad Y-stable complement, n’ (since ad } is
semisimple and therefore completely reducible); and we write m=n4n’. Thus
since B(n, n)=0, to show that n=0 it suffices to show B(n, n")=0.

To find a formula for B(X, Y) with X, Y € m, define ¢(X) and S(X) by

e(X): m—h: Y—5(X, Y) = «X)(Y),
3(X): h—>m: U—[X, U] = 8(X)U),
where U € §). Using these maps we have for any Z, X e m, U € ) that
(adg Z)(X) = [Z, X] = ZX+H(Z, X)
= (L(Z) +e2))(X)
(ady Z)U) = [Z, U] = 8(Z)V)
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and therefore

w,z - (12 4D)

8Z) 0

From this, note that since g is simple 0=tr ad; Z=tr L(Z). Also since h=[9, §] is
semisimple, and since ) —ady f): U—ad, U and h—adgh: U—>ady U are
representations of §, we have tr ad, U=tr ady, U=0 for all Ue §.

Next for X, Y € m define the linear transformation o(X, Y): m — m by o(X, Y)
=38(X)e(Y), that is, o(X, Y)Z=[X, 0(Y, Z)] (=[6(Z, Y), X]). From (3) we have
the identity

adp H(X, Y)—o(X, Y)+o(Y, X) = [L(X), L(Y)]-L(XY)
and therefore tr o(X, Y)=tr o(Y, X). From this and the matrix for ad; Z we obtain
for X, Y e m that
B(X,Y) =trad; Xad; Y

= tr L(X)L(Y)+tr e(X)8(Y)+tr 8(X)e(Y)

= tr L(X)L(Y)+tr 8(Y)e(X)+tr 8(X)e(Y)

= tr L(X)L(Y)+tro(Y, X)+tro(X, Y)

=tr (X)L(Y)+2tro(X, Y),
using for the third equality that if S € Hom(V, W) and T € Hom(W, V) for vector
spaces V and W, then tr ST=tr TS.

Now recall that in the decomposition m=n+n' we must show B(n, n’)=0. Thus
for X en, Y € n’ we have (from the fact that n is an ideal and nn=0) the matrices

w0 = (g, o) = 10=(5) )

and therefore tr L(X)L(Y)=0 and B(X, Y)=2tr o(X, Y).
To find the matrix for o(X, Y) (with Xen, Yen')let Zen, Z' en’. Then

oX, Y)Z =[HZ, Y), X]en,
olX, Y)Z' = [§(Z', Y), X] en.

o(X, ¥) = ("“ 0)

021 0

Therefore

and tr o(X, Y)=tr oy, =tr, o(X, Y). To find the action of o(X, Y) on n again let
Z € n. Then since n is an ideal, nn=0 and H(n, n)=0, we have from (3) that

= [—ad, §(X, Y)+o(X, Y)]Z.
Therefore on n we have o( X, Y)=ad, H(X, Y) and since U — ad, U is a representa-
tion of the semisimple Lie algebra 1, 0=trad, h(X, Y)=tr, o(X, Y). Thus
B(n, n')=0 and m is simple, a contradiction. Thus either m?=0 or m is simple.
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4. Remarks. (i) The above discussion for ¥) semisimple holds for § reductive in
g except for the assertion that tr ad, H(X, Y)=0 and its consequences. The authors
do not know whether the theorem holds for all reductive §.

(ii) If b is the zero-space of a derivation of g or the one-space of an automor-
phism of g, then §) is reductive and contains a regular element of g [1]. Thus if g
is simple and the underlying field algebraically closed, the associated m is simple
or abelian by Theorem 1.

(iii) It would be of value to determine all pairs (g, §) with g semisimple for
which an associated m is simple. We now give an example of one nontrivial such
pair (g, h) where g is not simple. Thus let g=g, @ g, (direct) where the g, (i=1, 2)
are real compact simple Lie algebras. Suppose that b is a simple subalgebra of g;,
b’ a simple subalgebra of g,, B— B’ an isomorphism from b onto b’. Let %
={B+ B’ | Be b} and m=5". Then g,, g;, b, and b’ can easily be chosen such that
m2#0. We claim that for any such choice, m is simple. By Lemma 1, it suffices to
show that m has no proper ad §-stable ideal. If i were such an ideal, then since the
Killing form is negative definite on g, m=n @ nt. It is now clear that n+j(n, n)
is an ideal of g by Lemma 2, since [, n']=0 by Lemma 3. But then n+9j(n, n)=g,
or g,. But by construction, § N g; =% N g, =0. Thus n=g; or g,. This is impossible
since B(n, )=0 whereas B(g;, §)#0 for i=1, 2.

BIBLIOGRAPHY

1. A. Borel and G. D. Mostow, On semisimple automorphisms of Lie algebras, Ann. of
Math. 61 (1955), 389-504.

2. E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc.
Transl. (2) 6 (1957), 111-244.

3. N. Jacobson, Lie algebras, Wiley, New York, 1962.

4. B. Kostant, On differential geometry and homogeneous spaces. 1, 11, Proc. Nat. Acad.
Sci. U.S.A. 42 (1956), 258-261; 354-357.

5. K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. Math. J. 76 (1954),
33-65.

6. A. Sagle, On anti-commutative algebras and homogeneous spaces, J. Math. Mech. (to
appear).

7. A. Borel and J. Tits, Groupes réductifs, pp. 659-755, Inst. Hautes Etudes Sci. Paris No.
27, 1965.

UNIVERSITY OF MINNESOTA,
MINNEAPOLIS, MINNESOTA
YALE UNIVERSITY,
NEw HAVEN, CONNECTICUT



