ON HOMOGENEOUS SPACES AND REDUCTIVE SUBALGEBRAS OF SIMPLE LIE ALGEBRAS

BY

A. SAGLE AND D. J. WINTER(1)

1. Introduction. Let G be a connected Lie group and H a closed subgroup. Then the homogeneous space M = G/H is called *reductive* if in the Lie algebra g of G there exists a subspace m such that $g = m + \mathfrak{h}$ (subspace direct sum) and $[\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m}$ where \mathfrak{h} is the Lie algebra of H (see [4], [5]). In this case the pair (g, \mathfrak{h}) is called a *reductive pair* and the subspace m can be made into an anti-commutative algebra as follows. For X, $Y \in \mathfrak{m}$ let $[X, Y] = XY + \mathfrak{h}(X, Y)$ where $XY = [X, Y]_{\mathfrak{m}}$ (resp. $\mathfrak{h}(X, Y) = [X, Y]_{\mathfrak{h}}$) is the projection of [X, Y] in g into m (resp. \mathfrak{h}). This algebra is related to the canonical G-invariant connection ∇ of the first kind on G/H by $[\nabla_{X^*}(Y^*)]_{P_0} = \frac{1}{2}XY$ where $P_0 = H \in M$ (see [5, Theorem 10.1]).

For a fixed decomposition $g = \mathfrak{m} \neq \mathfrak{h}$, the Lie algebra identities of g yield the following identities for \mathfrak{m} and \mathfrak{h} . For X, Y, Z $\in \mathfrak{m}$ and $U \in \mathfrak{h}$,

(1) XY = -YX (bilinear);

(2) $\mathfrak{h}(X, Y) = -\mathfrak{h}(Y, X)$ (bilinear);

(3) $[Z, \mathfrak{h}(X, Y)] + [X, \mathfrak{h}(Y, Z)] + [Y, \mathfrak{h}(Z, X)] = J(X, Y, Z) \equiv (XY)Z + (YZ)X + (ZX)Y.$

(4) $\mathfrak{h}(XY, Z) + \mathfrak{h}(YZ, X) + \mathfrak{h}(ZX, Y) = 0;$

(5) $\mathfrak{h}[(X, Y), U] = \mathfrak{h}([X, U], Y) + \mathfrak{h}(X, [Y, U]);$

(6) [U, XY] = [U, X]Y + X[U, Y].

In particular (6) says the mappings $ad_m U: m \to m: X \to [U, X]$ are derivations of the algebra m. Using these identities, there was established in [6] a correspondence between simple algebras m and holonomy irreducible simply connected spaces G/H which are not symmetric (mm=0 if and only if G/H is a symmetric space); for example, if G/H is riemannian, then G/H is holonomy irreducible if and only if m is a simple algebra.

In this paper, we consider pairs (g, \mathfrak{h}) where g is a simple Lie algebra over a field F of characteristic zero and \mathfrak{h} is either semisimple, or regular and reductive (see [2]). In each case we show that the associated m is either simple or abelian $(\mathfrak{m}^2=0)$. This together with [6] shows in particular that if G is a simple connected Lie group and H a closed semisimple or regular reductive Lie subgroup of G such that G/H is simply connected, then either G/H is a symmetric space or G/H is holonomy irreducible. This is a reasonable account of the situation since it can be shown that

Received by the editors July 19, 1966.

^{(&}lt;sup>1</sup>) Research supported by NSF Grant GP-1453 and by Army Research Office, Durham (respectively).

if G/H is a holonomy irreducible pseudo-riemannian reductive space with G simple, then \mathfrak{h} is a reductive subalgebra of \mathfrak{g} .

2. The regular reductive case.

LEMMA 1. Let α be a nonassociative algebra with derivation algebra Der α . Assume that α has no proper ideal stable under Der α . Then either α is simple or $\alpha^2 = 0$.

Proof. Assume $a^2 \neq 0$ and let $\mathfrak{T}(a)$ denote the associative algebra generated by the left and right multiplications of a [3, p. 290]. Let R be the radical of $\mathfrak{T}(a)$. Then Ra is an ideal of a since $\mathfrak{T}(a)(Ra) \subseteq (\mathfrak{T}(a)R)a \subseteq Ra$. If $D \in Der a$, then $[D, \mathfrak{T}(a)] \subseteq \mathfrak{T}(a)$ since $ad_{Hom(a,a)} D$ stabilizes the set of right and left multiplications (e.g., [D, L(A)] = L(D(A)) where L(B) denotes left multiplication by B in a). Thus $ad_{\mathfrak{T}(a)} D$ is a derivation of $\mathfrak{T}(a)$ and it follows that $[D, R] \subseteq R$ [3, p. 30, exercise 22]. Thus $D(Ra) \subseteq [D, R]a + R(Da) \subseteq Ra$. Thus Ra is a Der a-stable ideal of a. By assumption, we must have Ra = a or Ra = 0. If Ra = a, then for some *i*, $0 = R^i a = R^{i-1} a = \cdots = Ra = a$ and a = 0. Thus we may assume that Ra = 0. Then R = 0 and $\mathfrak{T}(a)$ is completely reducible on a. a^2 is clearly Der a-stable. Assuming that $a^2 \neq 0$, we must have $a^2 = a$ by hypothesis. We claim that $a^2 = a$ implies that a is simple. For if b were a proper ideal of a, then b would be $\mathfrak{T}(a)$ -stable and hence $a = b \oplus b'$ for some $\mathfrak{T}(a)$ -stable b'. This b' would be an ideal and $a = a^2 = b^2 + (b')^2$ shows that $b^2 = b$. But then $b = b^2$ would be Der a-stable since for B_1 , B_2 in b, $D(B_1B_2) = (DB_1)B_2 + B_1(DB_2) \in b$. Thus a is simple.

We now consider reductive pairs $(\mathfrak{g}, \mathfrak{h})$. Thus let \mathfrak{g} be a Lie algebra, \mathfrak{h} a Lie subalgebra of \mathfrak{g} , \mathfrak{m} a complementary subspace of \mathfrak{h} in \mathfrak{g} such that $[\mathfrak{m}\mathfrak{h}] \subseteq \mathfrak{m}$. For $X, Y \in \mathfrak{m}$ we define XY in \mathfrak{m} and $\mathfrak{h}(X, Y)$ in \mathfrak{h} by requiring that $[XY] = XY + \mathfrak{h}(X, Y)$. We regard \mathfrak{m} as a nonassociative algebra with respect to the product XY. Then \mathfrak{m} is clearly anti-commutative and $\mathrm{ad}_{\mathfrak{m}} U$ is a derivation of \mathfrak{m} for $U \in \mathfrak{h}$ (by (6)).

LEMMA 2. Let n be an ad h-stable ideal of m. Let q = n + h(n, n). If $[n, n'] \subseteq q$ for some complementary subspace n' of n in m, then q is an ideal of g.

Proof. $[q, n] \subseteq [n, n] + [\mathfrak{h}(n, n), n] \subseteq \mathfrak{n}\mathfrak{n} + \mathfrak{h}(n, n) + \mathfrak{n}$ by (3) since n is ad \mathfrak{h} -stable. Thus $[q, n] \subseteq \mathfrak{q}$. And $[q, \mathfrak{h}] \subseteq \mathfrak{q}$ since n is ad \mathfrak{h} -stable and $\mathfrak{q} = \mathfrak{n} + [\mathfrak{n}, \mathfrak{n}]$. It remains to show that $[\mathfrak{q}, \mathfrak{n}'] \subseteq \mathfrak{q}$. But we have

$$[\mathfrak{q}, \mathfrak{n}'] \subseteq \mathfrak{n}\mathfrak{n}' + \mathfrak{h}(\mathfrak{n}, \mathfrak{n}') + [\mathfrak{h}(\mathfrak{n}, \mathfrak{n}), \mathfrak{n}'],$$

$$[\mathfrak{h}(\mathfrak{n}, \mathfrak{n}), \mathfrak{n}'] \subseteq [\mathfrak{n}\mathfrak{n}, \mathfrak{n}'] + [[\mathfrak{n}, \mathfrak{n}], \mathfrak{n}'] \subseteq [\mathfrak{n}, \mathfrak{n}'] + [\mathfrak{n}, [\mathfrak{n}, \mathfrak{n}']],$$

$$\mathfrak{h}(\mathfrak{n}, \mathfrak{n}') \subseteq \mathfrak{n}\mathfrak{n}' + [\mathfrak{n}, \mathfrak{n}'].$$

But since $[n, n'] \subseteq q$ by hypothesis, q contains $[\mathfrak{h}(n, n), n']$ (using (3)) and $\mathfrak{h}(n, n')$. Since $nn' \subseteq n$ (n is an ideal of m), $[q, n'] \subseteq q$. Thus q is an ideal of g.

LEMMA 3. Suppose that the Killing form B(,) of g is nondegenerate and that $B(\mathfrak{m}, \mathfrak{h})=0$. Then $B(,)|\mathfrak{m}$ is nondegenerate and invariant, i.e., B(XY, Z) = B(X, YZ). Moreover every ad \mathfrak{h} -stable ideal n of \mathfrak{m} satisfies $[\mathfrak{n}, \mathfrak{n}^{\perp}]=0$ where $\mathfrak{n}^{\perp}=\{X \in \mathfrak{m} \mid B(X, \mathfrak{n})=0\}$.

Proof. For X, $Y, Z \in \mathfrak{m}$ we have:

$$B(XY, Z) = B([X, Y] - \mathfrak{h}(X, Y), Z) = B([X, Y], Z) = B(X, [Y, Z])$$

= B(X, YZ + \mathfrak{h}(Y, Z)) = B(X, YZ).

Now $B(\mathfrak{n}^{\perp}, \mathfrak{n}) = 0$ implies that $0 = B(\mathfrak{n}^{\perp}, \mathfrak{n}\mathfrak{m}) = B(\mathfrak{n}\mathfrak{n}^{\perp}, \mathfrak{m})$. And $B(\mathfrak{m}, \mathfrak{h}) = 0$ implies that $B(\mathfrak{n}\mathfrak{n}^{\perp}, \mathfrak{h}) = 0$. Thus $B(\mathfrak{n}\mathfrak{n}^{\perp}, \mathfrak{g}) = 0$ and $\mathfrak{n}\mathfrak{n}^{\perp} = 0$. Consequently $[\mathfrak{n}, \mathfrak{n}^{\perp}] = \mathfrak{h}(\mathfrak{n}, \mathfrak{n}^{\perp}) \subseteq \mathfrak{h}$ and $B([\mathfrak{n}, \mathfrak{n}^{\perp}], \mathfrak{m}) = 0$. But we also have $B([\mathfrak{n}, \mathfrak{n}^{\perp}], \mathfrak{h}) = B(\mathfrak{n}^{\perp}, [\mathfrak{n}\mathfrak{h}]) = B(\mathfrak{n}^{\perp}, \mathfrak{n}) = 0$. Thus $B([\mathfrak{n}, \mathfrak{n}^{\perp}], \mathfrak{g}) = 0$ and $0 = [\mathfrak{n}, \mathfrak{n}^{\perp}] = \mathfrak{h}(\mathfrak{n}, \mathfrak{n}^{\perp})$.

THEOREM 1. Let g be a split simple Lie algebra. Let h be a reductive subalgebra of g which is normalized by a split Cartan subalgebra c of g (i.e., h is reductive and regular [2]). Then h has an ad(c+h)-stable complement m. Such an m is either simple or abelian (m²=0).

Proof. We first show that $c+\mathfrak{h}$ is reductive. Letting $\mathfrak{g}=\mathfrak{g}_0+\Sigma\mathfrak{g}_\alpha$ be the root space decomposition of \mathfrak{g} , it suffices to show that for $\alpha\neq 0$, $\mathfrak{g}_\alpha\subseteq \mathfrak{c}+\mathfrak{h}$ implies $\mathfrak{g}_{-\alpha}\subseteq \mathfrak{c}+\mathfrak{h}$ [7, p. 669]. Since $[\mathfrak{c},\mathfrak{h}]\subseteq\mathfrak{h}$ we have $[\mathfrak{c},\mathfrak{b}]\subseteq\mathfrak{b}$ where \mathfrak{b} is the center of \mathfrak{h} . Thus $\mathfrak{c}+\mathfrak{b}$ is solvable. Thus $\mathfrak{ad}(\mathfrak{c}+\mathfrak{b})$ is triangulizable and $\mathfrak{0}=[\mathfrak{ad}\,\mathfrak{c},\mathfrak{ad}\,\mathfrak{b}]=\mathfrak{ad}[\mathfrak{c},\mathfrak{b}]$ since $\mathfrak{ad}[\mathfrak{c},\mathfrak{b}]\subseteq\mathfrak{ad}\,\mathfrak{b}$ and $\mathfrak{ad}\,\mathfrak{b}$ consists of semisimple transformations. Thus $[\mathfrak{c},\mathfrak{b}]=\mathfrak{0}$ and $\mathfrak{b}\subseteq\mathfrak{c}=\mathfrak{g}_0$. Now $\mathfrak{h}=\mathfrak{b}\oplus\mathfrak{h}^{(1)}$ with $\mathfrak{h}^{(1)}$ semisimple, since \mathfrak{h} is reductive. Let α be a nonzero root such that $\mathfrak{g}_\alpha\subseteq\mathfrak{c}+\mathfrak{h}$. Then since $\mathfrak{h}^{(1)}$ is ad \mathfrak{c} -stable and $\mathfrak{c}+\mathfrak{h}=\mathfrak{g}_0$ $+\mathfrak{b}+\mathfrak{h}^{(1)}=\mathfrak{g}_0+\mathfrak{h}^{(1)}$, we have $\mathfrak{g}_\alpha\subseteq\mathfrak{h}^{(1)}$. Now the restriction of the Killing form $B(\ ,\)$ of \mathfrak{g} to $\mathfrak{h}^{(1)}$ is nondegenerate since it is the trace form of a faithful representation of the semisimple Lie algebra $\mathfrak{h}^{(1)}$ (see [3, p. 69]). Thus $B(\mathfrak{g}_\alpha,\mathfrak{h}^{(1)})\neq 0$. Since $B(\mathfrak{g}_\alpha,\mathfrak{g}_\beta)=0$ for $\alpha+\beta\neq 0$, it follows $\mathfrak{g}_{-\alpha}\subseteq\mathfrak{h}^{(1)}$. Thus $\mathfrak{g}_\alpha\subseteq\mathfrak{c}+\mathfrak{h}$ implies $\mathfrak{g}_{-\alpha}\subseteq\mathfrak{c}+\mathfrak{h}$ and $\mathfrak{c}+\mathfrak{h}$ is reductive.

It follows that \mathfrak{h} has a complement \mathfrak{m} stable under $\operatorname{ad}(\mathfrak{c}+\mathfrak{h})$. Any complement \mathfrak{m} is the sum of $\mathfrak{m} \cap \mathfrak{g}_0$ and those root spaces \mathfrak{g}_β not occurring in \mathfrak{h} . In particular, $\mathfrak{g}_{\alpha} \subseteq \mathfrak{m}$ implies $\mathfrak{g}_{-\alpha} \subseteq \mathfrak{m}$.

We now show that such an m is either simple or abelian. Assume that $\mathfrak{m}^2 \neq 0$ and m not simple. Then by Lemma 1, m has a proper Der m-stable ideal. Since m is $\operatorname{ad}(\mathfrak{c}+\mathfrak{h})$ -stable, $\operatorname{ad}(\mathfrak{c}+\mathfrak{h})$ consists of derivations of m. Thus m has a proper ideal n stable under $\operatorname{ad}(\mathfrak{c}+\mathfrak{h})$.

Let σ be an automorphism of g such that $\sigma | c = -id_c$ and $g_{\alpha}^{\sigma} = g_{-\alpha}$ for all α (see [3, p. 127]). Then the above discussion shows that m and h are σ -stable. It follows that $(XY)^{\sigma} = X^{\sigma} Y^{\sigma}$ and $(\mathfrak{h}(X, Y))^{\sigma} = \mathfrak{h}(X^{\sigma}, Y^{\sigma})$. Thus $\sigma | \mathfrak{m}$ is an automorphism of m and \mathfrak{n}^{σ} is an ideal of m. Since $[\mathfrak{n}^{\sigma}, c + \mathfrak{h}] = [\mathfrak{n}^{\sigma}, (c + \mathfrak{h})^{\sigma}] = [\mathfrak{n}, c + \mathfrak{h}]^{\sigma} \subseteq \mathfrak{n}^{\sigma}, \mathfrak{n}^{\sigma}$ is also ad $(c + \mathfrak{h})$ -stable.

Suppose that one of the ideals $n \cap n^{\sigma}$, $n+n^{\sigma}$ is proper in m. Call it \mathfrak{p} . Then \mathfrak{p} is the sum of $\mathfrak{p} \cap \mathfrak{g}_0$ and root spaces \mathfrak{g}_{α} . Moreover $\mathfrak{g}_{\alpha} \subseteq \mathfrak{p}$ implies $\mathfrak{g}_{-\alpha} \subseteq \mathfrak{p}$. It follows that $\mathfrak{m} = \mathfrak{m} \cap \mathfrak{g}_0 + \mathfrak{p} + \mathfrak{p}^{\perp}$ where $\mathfrak{p}^{\perp} = \{X \in \mathfrak{m} \mid B(X, \mathfrak{p}) = 0\}$ (thus $\mathfrak{g}_{\alpha} \subseteq \mathfrak{m} - \mathfrak{g}_0$ and $\mathfrak{g}_{\alpha} \notin \mathfrak{p}$ implies $\mathfrak{g}_{-\alpha} \notin \mathfrak{p}$ which implies $B(\mathfrak{g}_{\alpha}, \mathfrak{p}) = 0$). We use this to show that $\mathfrak{q} = \mathfrak{p} + \mathfrak{h}(\mathfrak{p}, \mathfrak{p})$ is an ideal of \mathfrak{g} . By Lemma 2 it suffices to show that $[\mathfrak{p}, \mathfrak{p}'] \subseteq \mathfrak{q}$ where $\mathfrak{p}' = \mathfrak{p}^{\perp} + \mathfrak{m} \cap \mathfrak{g}_0$. But $[\mathfrak{p}, \mathfrak{m} \cap \mathfrak{g}_0] \subseteq [\mathfrak{p}, \mathfrak{c}] \subseteq \mathfrak{p}$. Thus it suffices to show that $[\mathfrak{p}, \mathfrak{p}^{\perp}]$

 $\subseteq \mathfrak{q}$. But $B([\mathfrak{p}, \mathfrak{p}^{\perp}], \mathfrak{c}+\mathfrak{h})=B(\mathfrak{p}^{\perp}, [\mathfrak{p}, \mathfrak{c}+\mathfrak{h}])=B(\mathfrak{p}^{\perp}, \mathfrak{p})=0$ and $[\mathfrak{p}, \mathfrak{p}^{\perp}]\subseteq (\mathfrak{c}+\mathfrak{h})^{\perp}\subseteq \mathfrak{m}$. Thus $\mathfrak{h}(\mathfrak{p}, \mathfrak{p}^{\perp})\subseteq [\mathfrak{p}, \mathfrak{p}^{\perp}]+\mathfrak{p}\mathfrak{p}^{\perp}\subseteq \mathfrak{m}$ and $\mathfrak{h}(\mathfrak{p}, \mathfrak{p}^{\perp})=0$. Thus $[\mathfrak{p}, \mathfrak{p}^{\perp}]=\mathfrak{p}\mathfrak{p}^{\perp}\subseteq \mathfrak{p}\subseteq \mathfrak{q}$ and \mathfrak{q} is an ideal of g. Thus $\mathfrak{q}=\mathfrak{g}$ and \mathfrak{n} cannot be proper in \mathfrak{m} , a contradiction.

Thus we have $n \cap n^{\sigma} = 0$ and $n + n^{\sigma} = m$. Thus $n \cap g_0 = (n \cap g_0)^{\sigma} = 0$ (since $\sigma | g_0 = -id_{g_0}$). Thus $m \cap g_0 = n \cap g_0 + (n \cap g_0)^{\sigma} = 0$. It follows that B(m, h) = 0 (e.g., $m = \sum_{\alpha \in S} g_\alpha$ for some set S of nonzero roots, and $\alpha \in S$ implies $-\alpha \in S$ which implies $g_{-\alpha} \notin h$ and therefore $B(g_\alpha, h) = 0$). Also B(n, n) = 0 (e.g., $n = \sum_{\alpha \in T} g_\alpha$ for some set T of nonzero roots, and $\alpha \in T$ implies $-\alpha \notin T$ which implies $B(g_\alpha, n) = 0$). It follows from Lemma 3 that [n, n] = nn = h(n, n) = 0. Thus $n^{\sigma}n^{\sigma} = 0$. Finally $m^2 = (n + n^{\sigma})^2 = n^2 + nn^{\sigma} + (n^{\sigma})^2 \subseteq 0 + n \cap n^{\sigma} + 0 = 0$, a contradiction.

3. The semisimple case. We now consider the reductive pair $(\mathfrak{g}, \mathfrak{h})$ where \mathfrak{g} is a simple Lie algebra and \mathfrak{h} is a semisimple Lie subalgebra. We note that the Killing form B(,) of \mathfrak{g} restricted to \mathfrak{h} is nondegenerate. For if $U, V \in \mathfrak{h}$, then $B(U, V) = \operatorname{tr} \operatorname{ad}_{\mathfrak{g}} U \operatorname{ad}_{\mathfrak{g}} V$ is the trace form of the representation ad \mathfrak{h} in \mathfrak{g} , and is nondegenerate by Cartan's criterion [3, p. 69]. (Note that $\operatorname{ad}_{\mathfrak{g}} U=0$ implies UF is a one-dimensional ideal in the simple algebra \mathfrak{g} so that U=0.) Thus if $\mathfrak{h}^{\perp} = \{X \in \mathfrak{g} \mid B(X, \mathfrak{h})=0\}$, then $\mathfrak{h} \cap \mathfrak{h}^{\perp}=0$ and therefore $\mathfrak{g}=\mathfrak{h}^{\perp}+\mathfrak{h}$. And $B([\mathfrak{h}^{\perp}, \mathfrak{h}], \mathfrak{h}) = B(\mathfrak{h}^{\perp}, [\mathfrak{h}, \mathfrak{h}])=0$ so that for $\mathfrak{m}=\mathfrak{h}^{\perp}, (\mathfrak{g}, \mathfrak{h})$ is a reductive pair with (fixed) decomposition $\mathfrak{g}=\mathfrak{m}+\mathfrak{h}$. Note that since $\mathfrak{m}=\mathfrak{h}^{\perp}$, the Killing form B, restricted to \mathfrak{m} , is a nondegenerate invariant form, i.e., B(XY, Z)=B(X, YZ).

THEOREM 2. Let g be a simple Lie algebra and h a semisimple subalgebra. Then (g, h) is a reductive pair with $m = h^{\perp}$. Furthermore $m^2 = 0$ or m is simple.

Proof. Assume $\mathfrak{m}^2 \neq 0$. Then we have from Lemma 1 that \mathfrak{m} has a minimal proper ad \mathfrak{h} -stable ideal \mathfrak{n} . Then since B is a nondegenerate invariant form on \mathfrak{m} and B([XU], Y) = B(X, [UY]) for $X, Y \in \mathfrak{m}, U \in \mathfrak{h}$, we have $\mathfrak{n}^{\perp} = \{X \in \mathfrak{m} \mid B(X, \mathfrak{n}) = 0\}$ is an ad \mathfrak{h} -stable ideal of \mathfrak{m} . Thus $\mathfrak{n} \cap \mathfrak{n}^{\perp}$ is an ad \mathfrak{h} -stable ideal of \mathfrak{m} ; and since \mathfrak{n} is minimal, either $\mathfrak{n} \cap \mathfrak{n}^{\perp} = 0$ or $\mathfrak{n} \cap \mathfrak{n}^{\perp} = \mathfrak{n}$.

In case $n \cap n^{\perp} = 0$ we have $m = n \oplus n^{\perp}$. And we know from Lemma 3 that $[n, n^{\perp}] = 0$. Thus $q = n \neq \mathfrak{h}(n, n)$ is a proper ideal of g by Lemma 2. This contradiction shows we must have $n \cap n^{\perp} = n$.

In the case $n \cap n^{\perp} = n$ we can find an ad h-stable complement, n' (since ad h is semisimple and therefore completely reducible); and we write $m = n \neq n'$. Thus since B(n, n) = 0, to show that n = 0 it suffices to show B(n, n') = 0.

To find a formula for B(X, Y) with $X, Y \in \mathfrak{m}$, define e(X) and $\delta(X)$ by

$$\begin{split} \varepsilon(X): \ \mathfrak{m} \to \mathfrak{h}: & Y \to \mathfrak{h}(X, \ Y) \equiv \varepsilon(X)(Y), \\ \delta(X): \ \mathfrak{h} \to \mathfrak{m}: & U \to [X, \ U] \equiv \delta(X)(U), \end{split}$$

where $U \in \mathfrak{h}$. Using these maps we have for any Z, $X \in \mathfrak{m}$, $U \in \mathfrak{h}$ that

$$(\mathrm{ad}_{\mathfrak{g}} Z)(X) = [Z, X] = ZX + \mathfrak{h}(Z, X)$$
$$= (L(Z) + \varepsilon(Z))(X)$$
$$(\mathrm{ad}_{\mathfrak{g}} Z)(U) = [Z, U] = \delta(Z)(U)$$

145

and therefore

$$\operatorname{ad}_{\mathfrak{g}} Z = \begin{pmatrix} L(Z) & \varepsilon(Z) \\ \delta(Z) & 0 \end{pmatrix}.$$

From this, note that since g is simple $0 = \operatorname{tr} \operatorname{ad}_{\mathfrak{g}} Z = \operatorname{tr} L(Z)$. Also since $\mathfrak{h} = [\mathfrak{h}, \mathfrak{h}]$ is semisimple, and since $\mathfrak{h} \to \operatorname{ad}_{\mathfrak{m}} \mathfrak{h}$: $U \to \operatorname{ad}_{\mathfrak{m}} U$ and $\mathfrak{h} \to \operatorname{ad}_{\mathfrak{h}} \mathfrak{h}$: $U \to \operatorname{ad}_{\mathfrak{h}} U$ are representations of \mathfrak{h} , we have tr $\operatorname{ad}_{\mathfrak{m}} U = \operatorname{tr} \operatorname{ad}_{\mathfrak{h}} U = 0$ for all $U \in \mathfrak{h}$.

Next for X, $Y \in \mathfrak{m}$ define the linear transformation $\sigma(X, Y): \mathfrak{m} \to \mathfrak{m}$ by $\sigma(X, Y) = \delta(X)\epsilon(Y)$, that is, $\sigma(X, Y)Z = [X, \mathfrak{h}(Y, Z)] (= [\mathfrak{h}(Z, Y), X])$. From (3) we have the identity

$$\mathrm{ad}_{\mathfrak{m}} \mathfrak{h}(X, Y) - \sigma(X, Y) + \sigma(Y, X) = [L(X), L(Y)] - L(XY)$$

and therefore tr $\sigma(X, Y) = \text{tr } \sigma(Y, X)$. From this and the matrix for $\text{ad}_{\mathfrak{g}} Z$ we obtain for X, $Y \in \mathfrak{m}$ that

$$B(X, Y) = \operatorname{tr} \operatorname{ad}_{\mathfrak{g}} X \operatorname{ad}_{\mathfrak{g}} Y$$

= tr $L(X)L(Y)$ + tr $\epsilon(X)\delta(Y)$ + tr $\delta(X)\epsilon(Y)$
= tr $L(X)L(Y)$ + tr $\delta(Y)\epsilon(X)$ + tr $\delta(X)\epsilon(Y)$
= tr $L(X)L(Y)$ + tr $\sigma(Y, X)$ + tr $\sigma(X, Y)$
= tr $L(X)L(Y)$ + 2 tr $\sigma(X, Y)$,

using for the third equality that if $S \in \text{Hom}(V, W)$ and $T \in \text{Hom}(W, V)$ for vector spaces V and W, then tr ST=tr TS.

Now recall that in the decomposition m = n + n' we must show B(n, n') = 0. Thus for $X \in n$, $Y \in n'$ we have (from the fact that n is an ideal and nn = 0) the matrices

$$L(X) = \begin{pmatrix} 0 & 0 \\ X_{21} & 0 \end{pmatrix}$$
 and $L(Y) = \begin{pmatrix} Y_{11} & 0 \\ Y_{21} & Y_{22} \end{pmatrix}$

and therefore tr L(X)L(Y) = 0 and B(X, Y) = 2 tr $\sigma(X, Y)$.

To find the matrix for $\sigma(X, Y)$ (with $X \in \mathfrak{n}, Y \in \mathfrak{n}'$) let $Z \in \mathfrak{n}, Z' \in \mathfrak{n}'$. Then

$$\sigma(X, Y)Z = [\mathfrak{h}(Z, Y), X] \in \mathfrak{n},$$

$$\sigma(X, Y)Z' = [\mathfrak{h}(Z', Y), X] \in \mathfrak{n}.$$

Therefore

$$\sigma(X, Y) = \begin{pmatrix} \sigma_{11} & 0 \\ \sigma_{21} & 0 \end{pmatrix}$$

and tr $\sigma(X, Y) = \text{tr } \sigma_{11} = \text{tr}_n \sigma(X, Y)$. To find the action of $\sigma(X, Y)$ on n again let $Z \in n$. Then since n is an ideal, nn = 0 and $\mathfrak{h}(n, n) = 0$, we have from (3) that

$$0 = J(Z, X, Y) = [Z, \mathfrak{h}(X, Y)] + [X, \mathfrak{h}(Y, Z)]$$
$$= [-ad_{\mathfrak{n}} \mathfrak{h}(X, Y) + \sigma(X, Y)]Z.$$

Therefore on n we have $\sigma(X, Y) = ad_n \mathfrak{h}(X, Y)$ and since $U \to ad_n U$ is a representation of the semisimple Lie algebra $\mathfrak{h}, 0 = tr ad_n \mathfrak{h}(X, Y) = tr_n \sigma(X, Y)$. Thus $B(\mathfrak{n}, \mathfrak{n}') = 0$ and m is simple, a contradiction. Thus either $\mathfrak{m}^2 = 0$ or m is simple.

[July

146

1967] HOMOGENEOUS SPACES AND REDUCTIVE SUBALGEBRAS

4. **Remarks.** (i) The above discussion for \mathfrak{h} semisimple holds for \mathfrak{h} reductive in g except for the assertion that tr $\mathrm{ad}_{\mathfrak{n}} \mathfrak{h}(X, Y) = 0$ and its consequences. The authors do not know whether the theorem holds for all reductive \mathfrak{h} .

(ii) If \mathfrak{h} is the zero-space of a derivation of \mathfrak{g} or the one-space of an automorphism of \mathfrak{g} , then \mathfrak{h} is reductive and contains a regular element of \mathfrak{g} [1]. Thus if \mathfrak{g} is simple and the underlying field algebraically closed, the associated \mathfrak{m} is simple or abelian by Theorem 1.

(iii) It would be of value to determine all pairs $(\mathfrak{g}, \mathfrak{h})$ with \mathfrak{g} semisimple for which an associated m is simple. We now give an example of one nontrivial such pair $(\mathfrak{g}, \mathfrak{h})$ where \mathfrak{g} is not simple. Thus let $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$ (direct) where the \mathfrak{g}_i (i=1, 2)are real compact simple Lie algebras. Suppose that \mathfrak{b} is a simple subalgebra of \mathfrak{g}_1 , b' a simple subalgebra of \mathfrak{g}_2 , $B \to B'$ an isomorphism from \mathfrak{b} onto \mathfrak{b}' . Let $\mathfrak{h} = \{B+B' \mid B \in \mathfrak{b}\}$ and $m=\mathfrak{h}^{\perp}$. Then $\mathfrak{g}_1, \mathfrak{g}_2, \mathfrak{b}$, and \mathfrak{b}' can easily be chosen such that $\mathfrak{m}^2 \neq 0$. We claim that for any such choice, m is simple. By Lemma 1, it suffices to show that m has no proper ad \mathfrak{h} -stable ideal. If n were such an ideal, then since the Killing form is negative definite on $\mathfrak{g}, \mathfrak{m} = \mathfrak{n} \oplus \mathfrak{n}^{\perp}$. It is now clear that $\mathfrak{n} + \mathfrak{h}(\mathfrak{n}, \mathfrak{n})$ is an ideal of \mathfrak{g} by Lemma 2, since $[\mathfrak{n}, \mathfrak{n}^1] = 0$ by Lemma 3. But then $\mathfrak{n} + \mathfrak{h}(\mathfrak{n}, \mathfrak{n}) = \mathfrak{g}_1$ or \mathfrak{g}_2 . But by construction, $\mathfrak{h} \cap \mathfrak{g}_1 = \mathfrak{h} \cap \mathfrak{g}_2 = 0$. Thus $\mathfrak{n} = \mathfrak{g}_1$ or \mathfrak{g}_2 . This is impossible since $B(\mathfrak{n}, \mathfrak{h}) = 0$ whereas $B(\mathfrak{g}_i, \mathfrak{h}) \neq 0$ for i=1, 2.

BIBLIOGRAPHY

1. A. Borel and G. D. Mostow, On semisimple automorphisms of Lie algebras, Ann. of Math. 61 (1955), 389-504.

2. E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Transl. (2) 6 (1957), 111-244.

3. N. Jacobson, Lie algebras, Wiley, New York, 1962.

4. B. Kostant, On differential geometry and homogeneous spaces. I, II, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 258-261; 354-357.

5. K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. Math. J. 76 (1954), 33-65.

6. A. Sagle, On anti-commutative algebras and homogeneous spaces, J. Math. Mech. (to appear).

7. A. Borel and J. Tits, *Groupes réductifs*, pp. 659–755, Inst. Hautes Etudes Sci. Paris No. 27, 1965.

University of Minnesota, Minneapolis, Minnesota Yale University, New Haven, Connecticut