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1. Introduction. Summary of results. The purpose of this paper is to establish

necessary conditions and sufficient conditions for two curves in three-dimensional

euclidean space to bound a doubly-connected minimal surface. Loosely stated,

it is shown that if the two curves are to bound a doubly-connected minimal surface

then it is necessary that they not be far apart relative to their diameters and it is

sufficient that they be close to each other in the sense that one be a small pertur-

bation of the other.

Results are obtained also for minimal surfaces of topological type other than

doubly-connected.

Necessary conditions. Soap film experiments and analysis of the classical case

of minimal surfaces of revolution (see [1]) make plausible the conjecture that as

the two boundary curves of a doubly-connected minimal surface are pulled apart,

a position is always reached beyond which no doubly-connected minimal surface

spanning the curves exists.

One obtains such critical positions if the curves do not grow indefinitely in

diameter and regardless of whether or not the shapes of the curves change. If the

curve diameters are allowed to grow indefinitely then such a critical position may

not occur as can be seen by the case of two separating coaxial circles obtained by

taking sections of a minimal surface of revolution by separating planes perpendic-

ular to the axis of the surface.

In connection with this J. C. C. Nitsche [7] proves that if the Jordan curves

yx andy2 bound a doubly-connected minimal surface then d(yx, y2) :£ 3/2 max (dx, d2)

where d(yx, y2) is the distance between yx and y2 and dx and d2 are the diameters of

yx and y2, respectively.

If the curves yx and y2 lie in parallel planes, Nitsche [6] obtains a somewhat

stronger result : Let yx lie in z = cx and y2 in z = c2 (cx < c2), respectively. Chose a

pointpx = (xx, yx, cx)in the plane z = cx,in some sense the center of yx, and a point

P2 = (x2, y2, c2) in the plane z = c2, in some sense the center of y2. Let r = c2 — cx

and í¡?=[(x2-x1)2-T■(,y2->'1)2]1,2. Denote by 8X the maximal distance of the point

/>! from the curve yx and by 82 the maximal distance of the point p2 from the curve

y2. Nitsche's theorem then states that ifyx and y2 bound a doubly-connected minimal

surface then (r2+\d2)112<,8X + 82.
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Theorem 2.1 of this paper also deals with curves in parallel planes and compares

doubly-connected minimal surfaces in general with minimal surfaces of revolution

(special catenoids): Let ylt y2 be two Jordan curves in three-dimensional euclidean

space lying in parallel planes and suppose there is a doubly-connected minimal

surface G spanning yx, y2. Then if d, C2 are coaxial circles lying in the planes of

yx, y2 and enclosing yx, y2, respectively, we can conclude that there is a minimal

surface of revolution spanning Cx, C2 which encloses G.

On the basis of this theorem it is then shown, as Theorem 2.2, that the classical

case of doubly-connected minimal surfaces of revolution constitutes a limiting

case in which boundary curves of a doubly-connected minimal surface are pulled

apart as far as the existence of a doubly-connected minimal surface permits:

Let yx, y2 be two Jordan curves in three-dimensional euclidean space contained in a

right circular cylinder of unit diameter and separated by each of two planes Ylx, Yl2.

IIi and Yl2 are each to be perpendicular to the axis of the cylinder and the distance

between them we denote by M.

We now pose the problem of finding sup M, where yx, y2 satisfy the above require-

ments and in addition are to bound a doubly-connected minimal surface.

The solution is given by sup M=M0=0.6627... where Af0 = 0.6627... is the

maximum distance between coaxial circles of unit diameter for which a nondegenerate

minimal surface of revolution spans them.

The result is sharp since this classical case of minimal surfaces of revolution realizes

the supremum.

Another interesting necessary condition introduced in this paper is the

result (Theorem 2.3) that the curves yx, y2 do not bound a doubly-connected

minimal surface if the projections of yx, y2 on some plane are far enough apart—

the curves themselves may have large, even infinite, diameters: Let yx, y2 be

two Jordan curves in three-dimensional euclidean space with the property that

there exists a plane II, xy-axes in Yl and a positive number c such that the

respective projections y\, y2 of yx, y2 onto Yl lie in the regions y > c cosh (x/c)

and y<—c cosh (x/c), respectively. Then yx, y2 do not bound a doubly-connected

minimal surface.

Geometric sufficient conditions. Using his general sufficient condition for existence

of minimal surfaces of arbitrarily specified topological type J. Douglas was, in

particular, able to establish existence of doubly-connected minimal surfaces for

interlacing curves in 7?3 and for certain curves lying in parallel planes. (See [4].)

In this paper, using the sufficient condition of Douglas, we establish another

geometric condition, (Theorem 3.1) on the curves yx, y2 which ensures the existence

of a doubly-connected minimal surface spanning the curves : Let y be a rectifiable

Jordan curve of length L in R3 and r¡(e) > 0 a function of e > 0 which tends to zero

with e. Then there exists an e0>0 with the property that whenever 0<e^e0, any

two Jordan curves yx, y2 simply-threading Tc(y) with lengths Lx, L2, respectively,

satisfying Li¿L+r¡(e), (7=1, 2), bound a doubly-connected minimal surface G.
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G has area (strictly) smaller than the sum of the minima of areas of disk-like surfaces

spanning yx and y2 individually.

For the definition of "tube Te(y) " and other terms see subsection 3.1, Preliminary

material.

Theorem 3.1 can then be modified slightly to yield a theorem (Theorem 3.2)

dealing with the existence of minimal surfaces of the Möbius type: Let y be a

closed, rectifiable Jordan curve of length L in R3 and r,(e) > 0 a function of e > 0

which tends to zero with e. Then there exists an e0 > 0 with the property that whenever

0<e^e0 any Jordan curve y doubly-threading Te(y) with length L' satisfying

L'^2L + r,(e) bounds a minimal surface G of the Möbius type. G has area (strictly)

smaller than the g.l.b. of areas of disk-like surfaces spanning y .

In §4 examples are given illustrating the results summarized above.

2. Necessary conditions. In this section we will establish the results stated in

the introduction concerning the necessity that two curves bounding a doubly-

connected minimal surface be close in the senses described in the statements of the

theorems.

2.1. Two lemmas. The lemmas established in this paragraph will be made use

of in the proofs of theorems in subsections 2.2, 2.3, and 2.4.

Lemma 2.1. Let the two surfaces S, G be tangent at the point P with G lying

completely on one side ofL. Let the principal curvatures on~L at P be kx, k2 with

kx>0. kx>0 indicates that the corresponding principal curve onzlatP is concave

toward G. Then if k2> —kx, G cannot have mean curvature zero at P, so that G

cannot be a minimal surface.

Proof. We choose the cartesian x.yz-system so that the normal to 2 at P lies

along the z-axis with the x- and .y-axes tangent to the principal curves with principal

curvatures kx and k2, respectively.

Then 2, in some neighborhood of P, is given by zs=kxx2 + k2y2 + o(r2) where

r2 = x2+y2 and limr_0 o(r2)\r2 = 0.

Let us assume that G has mean curvature zero at P; it can then be expressed as

follows in some neighborhood of P: za = kx2 + k'xy — ky2 + o(r2).

From the hypothesis we have zG 2: z2 in some neighborhood of P. Hence, there

is a neighborhood of P in which (kx-k)x2-k'xy(k2+k)y2 + o(r2) fíO. In this last

relation let x = 0, r=y; then (k2 + k) + o(r2)¡r2^0. Letting r-yO we obtain

k^—k2<kx, since k2> —kx.

Next, let 7=0, r=x and r^O; this yields k^kx, in contradiction to k<kx.

Thus G cannot have mean curvature zero at P and Lemma 2.1 is proved.

Lemma 2.2. Suppose that yx, y2 are two curves in three-dimensional euclidean

space separated by, and with no points in common with, each of two parallel planes

Ux and fl2, and G a doubly-connected minimal surface spanning yx, y2. Then Ux
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and Yl2 intersect G in two curves yf, y*, respectively with yf, yf bounding a portion

of G which itself is a doubly-connected minimal surface.

Proof. Suppose that G in x_vz-space is the image by the harmonic vector x(u, v)

of the circular ring B: 0<a^r=(u2 + v2)112^ 1 in the parameter w-plane with

the image of ßx: r=l, being yi and the image of ß2: r=a, being y2.

To show that yf, yf exist we take the cartesian coordinates x = (x, y, z) with the

z-axis perpendicular to n^ and n2. Then z(u, v) is harmonic and z(u, F) = const = Ci

on F¡ where F¡ is the pre-image under x(u, v) of the intersection of G with LT¡.

From the theory of harmonic functions the point set F¡ consists of analytic arcs

with possible singularities occurring only at crossing points. But if there were a

crossing point one analytic arc would necessarily reach the boundary ßx u ß2.

This, however, would mean that a point of the boundary ßx u ß2 maps into

y* u yf • This is impossible since the planes n¡ do not touch the curves yt. Hence

F, must be an analytic curve which is bounded away from both ßx and ß2.

Since IIi and n2 are disjoint we also have that Fj and F2 are disjoint. Finally,

any continuous curve A joining any point of ß2 to any point of ßx must intersect

Fi and F2; any A joining ß2 to Fx, or F2 to ßx must intersect F2 or Fx, respectively.

These observations allow us to conclude that Fx and F2 are closed curves

homologous to each other and to ßx and ß2 in B. Also ßx, Flt F2, ß2 are disjoint and

occur in that order.

We define yf by yf = x(Ft) and easily see that the yf have the properties required.

2.2. Curves in parallel planes. Comparison with catenoids. This paragraph is

devoted to the proof of

Theorem 2.1. Let yx, y2 be two Jordan curves in three-dimensional euclidean

space lying in parallel planes and suppose that there is a doubly-connected minimal

surface G spanning yx, y2. Then if C1; C2 are coaxial circles lying in the planes of

yx, y2 and enclosing yx, y2, respectively, we can conclude that there is a minimal

surface of revolution spanning Clt C2 which encloses G.

Proof. The proof of this theorem is based on Lemma 2.1. We construct a set

of saddle surfaces of revolution {Bs} bounded by Cx and C2 for which the inside

principal curvature at any point is larger than the outside principal curvature at

that point for any Bs.

As s varies over its index set, s2<s^Sx, Bs will be continuously deformed from

BSl, a right circular cylinder, to BS2.

In the case that Ci, C2 bound a minimal surface(2) of revolution, BS2 will be

the stable one (i.e., the one closest to BH).

If Ci, C2 bound a unique minimal surface of revolution then BS2 is that surface.

Finally, if Cx and C2 are so far apart that no minimal surface of revolution

(2) Unless otherwise specified we shall always consider nondegenerate (connected) minimal

surfaces.
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spans them, BS2 will be a degenerate surface of revolution, consisting of two plane

disks and a line joining their centers.

With the aid of Lemma 2.1, once the existence of the Bs are established, we pro-

ceed as follows: 7iSl must contain any minimal surface G spanning yx, y2 since G

is contained in the convex hull of yx and y2, which in turn is contained in the convex

hull of Cx and C2, i.e., BH.

We now let 5 decrease from sx supposing BS2 to be nondengerate. If Bs ever

touches G at a point not on yx or y2 there must be a first such point of contact P.

At P, 7is is tangent to G and Lemma 2.1(3) applies with £ = 7is. Hence, for this

s=s', 7is- must be a minimal surface of revolution, i.e., BS=BH.

If B$2 is degenerate and s decreases till s = s2 with Bs never touching G for

s2<s^sx then G must be contained by a degenerate surface of revolution, B$2,

and, hence, must be degenerate itself, contrary to hypothesis. Hence, there cannot

be a connected G for which BS2 is degenerate.

Consequently, Cx, C2 must span a minimal surface of revolution which contains

G if we can prove the existence of the Bs. This will now be done.

Construction of the Bs. We take the distance between Cx and C2 to be M and the

radius of C¡ to be a. For the generators of Bs we take catenaries :

y = y(x; s) = s cosh (x/c),       c = c(s) > 0.

We impose the condition y(M\2; s) = a = s cosh (Mßc); with a, M constants.

This gives the relation c = c(s) implicitly.

Since the curves of principal curvature on Bs are meridian circles and the

generators we can compute the principal curvatures kx(x), k2(x) as follows: (Here

k2(x) is the outside curvature and kx(x) the inside curvature at any point P of Bs,

on a meridian circle corresponding to the abscissa value x.)

k2(x)=y"i(l+y'2)3'2,

with y' = (sjc) sinh (x/c), y" = (s\c2) cosh (x/c).

For the inside principal curvature kx(x) we project the curvature vector of the

meridian circle onto the surface normal at P.

kx(x)= ll(y(l+y'2)112).

Hence,

k2(x)lkx(x) = -yy"l(l+y'2)

= -h2 cosh2 (x/c)/(l + h2 sinh2 (x/c)),

where «=«(s)=s/c(.s).

It is clear then that a necessary and sufficient condition for Bs to be a minimal

surface is that s = c(s) since in this case and this case only will k2(x)/kx(x) = — 1.

(3) For Lemma 2.1 to apply G must be free of branch points or else the point of first

contact PonC might be a branch point and the proof of Lemma 2.1 invalid. It is true, however,

that doubly-connected minimal surfaces with boundary curves in parallel planes are free of

branch points. For a proof of this see [6, p. 661].
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Also, as s decreases from s = a = sx, where BSl is a right circular cylinder, Bs

is always a valid comparison surface until s reaches a value s=s2 for which s = c(s).

This follows from the facts that c(a)= +00 and h(s) is a continuous function of s.

Thus, for s2<s^Si, «< 1 and

\k2(x)lkx(x)\ = h2 cosh2 (x/c)/(l +h2 sinh2 (x/c)) < 1,

the condition needed to show that Bs is a comparison surface.

In the event that s2 > 0 we have the case that Ci, C2 bound at least one minimal

surface of revolution. If s2=0 then Clt C2 do not bound a (connected) minimal

surface of revolution and BS2 is a degenerate surface consisting of the disks span-

ning Cx and C2 with the straight line joining their centers.

We have thus proved the existence of the set {Bs} and with it Theorem 2.1.

2.3. The main theorem. Classical case as solution of variational problem. We are

now in a position to prove the main result of this section, that the classical case

of doubly-connected minimal surfaces of revolution (special catenoids) constitutes

a limiting case in which boundary curves of a doubly-connected minimal surface

are pulled as far apart as the existence of a doubly-connected minimal

surface permits. Precisely, we have

Theorem 2.2. Let yx, y2 be two Jordan curves in three-dimensional euclidean

space contained in a right circular cylinder of unit diameter and separated by each

of two planes Ylx, Yl2. Yl± and Yl2 are each to be perpendicular to the axis of the

cylinder and the distance between them we denote by M.

We now pose the problem of finding sup M, where yx, y2 satisfy the above require-

ments and in addition are to bound a doubly-connected minimal surface.

The solution is given by sup M=M0 = 0.6627... where M0 = 0.6627... is the

maximum distance between coaxial circles of unit diameter for which a nondegenerate

minimal surface of revolution spans them.

The result is sharp since this classical case of minimal surfaces of revolution

realizes the supremum.

Proof. Suppose that sup M > M0 ; then there exists two curves yi, y2 in the

cylinder bounding a doubly-connected minimal surface, separated by planes

Yl'x, n2 each perpendicular to the axis of the cylinder and separated by distance

M'>M0.

Applying Lemma 2.2 we obtain curves y'i, y"2 lying, respectively, in the planes

ni, n2 and bounding a doubly-connected minimal surface. With Cx, C2 denoting

the circles which are the intersections of ITi, Yl2 with the cylinder we apply Theorem

2.1 and conclude that Ci, C2 bound a minimal surface of revolution. However,

this is impossible since M0 is the largest such value of M for which this can occur.

Hence, the theorem is proved.

We note further that the class of admissible curves y1; y2 allowed for competition

in the variational problem Af=sup can easily be extended to include those curves
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which have more than one component and which bound minimal surfaces of

arbitrary topological structure although we must here stipulate that they be free

of branch points. In this more general case Lemma 2.1 can still be used in a proof

using the comparison surfaces Bs of paragraph 2.2. One need not deal with the plane

case first, as in Theorem 2.1 but, instead, prove the generalized theorem directly.

2.4. Close curves with large diameters. We here prove the interesting result that

the curves yx, y2 do not bound a doubly-connected minimal surface if the projec-

tions of yi, y2 on some plane are far enough apart—the curves themselves may have

large, even infinite, diameters. Precisely, we prove

Theorem 2.3. Let yx, y2 be two Jordan curves in three-dimensional euclidean

space with the property that there exists a plane Yl, xy-axes in Yl and a positive

number c such that the respective projections yi, y2 ofyx, y2 onto Y\ lie in the regions

y > c cosh (x/c) and y <— c cosh (x/c), respectively. Then yx, y2 do not bound a

doubly-connected minimal surface.

Proof. Suppose some yu y2 satisfying the hypothesis of the theorem, do bound a

doubly-connected minimal surface G. With s > 0 so small that y = ± (c+e) cosh (x/c)

do not touch yi or y2 we construct a surface of revolution B by rotating

y=(c + e) cosh (x/c) about the x-axis. B has outside principal curvature greater

than inside principal curvature (\k2(x)¡kx(x)\ =h2 cosh2 (x/c)/(l +h2 sinh2 (x/c))> 1

since h = (c+e)jc> 1) and hence is a valid comparison surface with respect to

surfaces on the outside of B in the sense of Lemma 2.1.

We now translate B in a direction perpendicular to n until G is outside B.

(For example, until B has no points of contact with the convex hull of yi and y2.)

From this position we translate B toward II noting that by the reasoning of 2.2

(using Lemma 2.1) B can never touch G. Continuing to translate B indefinitely

in this manner we see that G could never have existed in the first place. The theorem

is proved.

Notes: (1) The theorem remains true if yx and/or y2 extend to infinity in a

direction perpendicular to II without a modification of the proof.

(2) No (branch point free) minimal surface (regardless of topological type)

can span yx, y2; yx, y2 consisting, perhaps, of more than one component and still

satisfying the hypotheses of Theorem 2.3. See the comment at the end of paragraph

2.3.

As a simpler necessary criterion than that of Theorem 2.3 we offer

Corollary 2.1. Let yx, y2 be two Jordan curves in three-dimensional euclidean

space with the property that there exists a plane Yl on which the distance d(y\, y'2)

between the projections yi, y2 ofyx, y2 satisfies

d(y'x, y'2) > a max (dx, d2) = 1.574... max (dx, d2)

where d{ is the diameter of y\ and a = (cosh k)¡k, with k tanh k=l, (a= 1.574...).

Then yx, y2 do not bound a doubly-connected minimal surface.
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Proof. It is a simple matter to show that if y'x, y'2 satisfy the conditions of the

corollary then x^-axes can be introduced in II and an appropriate c>0 found such

that Theorem 2.3 applies.

The two notes after the proof of Theorem 2.3 apply here as well.

3. Geometric sufficient conditions. In this section we are concerned with

geometric sufficient conditions for the existence of doubly-connected and Möbius

type minimal surfaces. The basis of the discussion will be the sufficient condition

of Douglas : A system of Jordan curves yx,..., yv will bound a minimal surface G of

some prescribed topological type if the g.l.b. of areas of surfaces spanning yx,..., y„

of the prescribed type is (strictly) less than the g.l.b., a, of areas of all surfaces of

lower type. If this is the case then the area A(G) of G satisfies: A(G)<a. See [5].

3.1. Preliminary material. Before proceeding to the statements and proofs of

the geometric conditions we present some preliminary material.

Let y be a closed rectifiable Jordan curve in R3 with parametric representation

x=g(6), Ofï 0<27T. If e is a positive number we define the tube Te(y) with centerline

y and radius e as the union of all spheres of radius e with center on y. A point P

is in Ts(y) if and only if there is a point Q e y for which the distance between P

and Q, d(P, Q) g e. A point set is in Te(y) if each point is in Te(y).

Consider the curve y(n) with parametric representation x=gn(6) =g(nO), 0£6<2tt.

yln) can be considered as y traversed « times; e.g., y=y(1).

By the curve y, n-fold threading Ts(y) we mean that y' can be obtained from

y(n) by means of a continuous deformation such that at each stage of the

deformation the curve is in Te(y). In particular y is in 7^(y). If « = 1 we say that

y simply-threads Te(y). y is said to have the same orientation as y if under the

continuous deformation just mentioned orientation varies continuously.

Note that although every point P of y «-fold threading Te(y) is within e distance

of a point Q of y, it is not true that every point Q of y is within e of a point P on

y'. We can, however, prove the following lemma.

Lemma 3.1. For all p>0 there exists an e>0 such that for any point Qey and

curve y n-fold threading Ts(y) we have d(Q, y')^p.

Proof. Since y is a closed rectifiable Jordan curve in R3 we can find another

closed rectifiable Jordan curve y* in R3 "interlocking" with y. That is, if y is

continuously deformed into a point, at some stage of the deformation the curve

must interest y*.

Let the distance d(y, y*) between y and y* be d>0. Consider only those values

of e for which e < d. Let us suppose now that there is a point Q0 of y and a positive

number /¿0 such that no matter how small e is, d(Q0, y')^p0. Then as e-^0 the

set of limit points of the y , which necessarily lie on y, does not contain Q0.

Since e<d, y never touches y*. Hence, without touching y* we could continu-

ously deform y' into a subset of y missing at least one point Q0. But any subset
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of y not containing a point of y can be continuously deformed into a point on y

such that at any stage of the deformation the set is still on y.

If y' simply-threads Ts(y) then it is a continuous deformation of y in Te(y)

so that y can be continuously deformed into a point such that at every stage of the

deformation the curve does not touch y*. This contradicts the fact that y* inter-

locks with y, and so Lemma 3.1 is proved for « = 1.

If y «-fold threads Te(y), («> 1) we use the fact that y* has the property that the

curve y(n) must intersect y* at some stage of a continuous deformation of y(n)

into a point. The proof then proceeds as for « = 1.

In addition to Lemma 3.1 we will also need the following lemma.

Lemma 3.2. Let y 2n-fold thread Te(y), y and y' Jordan curves in 7?3, e>0, n a

positive integer. For all p>0 and arbitrary P on y , e can be made so small that a

second point P' can be found on y' such that d(P,P')-¿p. with PP'PmP, PP'P'P

n-fold threading TE(y). (See Figure 1 where «= 1.) The points P, P", P', P" occur in

that order on y .

Proof. Let y* be a Jordan curve interlocking with y and let d (y, y*) = 8. We

first choose e < 8 so that y* interlocks with and never touches y at every stage of

the continuous deformation of y<n> into y .

As e -> 0 the y' tend uniformly to y and the limiting curve, being a continuous

deformation of y which never touches y* at any stage of the deformation, must

be a 2«-fold covering of y (as is y(2n).) Any point Q of this limit curve divides it

Figure 1

into two «-fold covering curves. In particular a limit point Q of the F's will have

this property. For e sufficiently near zero Q splits into two points on y', P and

another point P' having, as is easily seen, all the required properties. Lemma 3.2 is

therefore proved.

3.2. Doubly-connected minimal surfaces. We proceed to discuss a geometric

condition sufficient for the existence of a doubly-connected minimal surface.
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Theorem 3.1. Let y be a rectifiable Jordan curve of length L in R3 and r¡(e)>0

a function of e>0 which tends to zero with e. Then there exists an e0>0 with the

property that whenever 0<e^eo, any two Jordan curves yx, y2 simply-threading

Ts(y) with lengths Lx, L2, respectively, satisfying Li^L + r,(e) bound a doubly-

connected minimal surface G; G has area (strictly) smaller than the sum of the

minima of areas of disk-like surfaces spanning yx andy2 individually.

Proof. The proof presented here is based on the form of the Douglas sufficient

condition pertaining to doubly-connected minimal surfaces, i.e., a sufficient

condition for the existence of a doubly-connected minimal surface G spanning two

rectifiable Jordan curves yx, y2 is that the g.l.b. 8, of areas of doubly-connected

surfaces spanning yx, y2 is (strictly) less than the sum a of the g.l.b.'s of areas of

disk-like minimal surfaces spanning yx and y2 individually. Also the area A(G)

of G is less than a.

The present theorem will be proved then if we can prove that the condition of

Douglas is satisfied for sufficiently small e.

The proof will consist of two parts ; these are : ( 1 ) for each e and corresponding yx,

y2 satisfying the conditions of the theorem a special doubly-connected surface

A(e) spanning yx, y2 can be found for which lim£_0 A(a(s))=0, where A(A) repre-

sents the area of A ; (2) as e tends to zero the areas of arbitrary disk-like surfaces

spanning yx or y2 are bounded away from zero. This would imply that a ^ A > 0

for all e < e for some A > 0 and some e > 0.

From (1) and (2) we would have for any e>0 satisfying both e<e and

A(à(e))<X, and for any yx, y2 simply-threading Te(y): 8^A(A(e))<X^o or S<ct

which is the Douglas sufficient condition. We will have proved the present theorem

then if we can verify (1) and (2).

Proof of condition (1). We first describe the surfaces A=A(e). To do this we

choose some point O on y and an arbitrary p>0. From Lemma 3.1 we know

that if e (the radius of Ts(y)) is small enough we can find a point Ot on yt such that

d(0, Ot) ̂  p. With O i as origin on y¡ and the same orientation on yt as on y we

label points on y¡ by their arclengths s¡ measured from Ot: 0^j¡<Z.¡. Let PJ6)

be the point on y( with arclength st=6Li, 0^ 6< 1. As 6 varies from 0 to 1, P((0)

starting from Ot traverses y¡ once.

For each 6 join Px(9) to P2(9) by a straight line segment PXP2(6). Then as 8

varies from 0 to 1, PXP2(9) sweeps out a ruled doubly-connected surface spanning

Vi, 72- We take this surface for A(e).

If 1(6) is the length of PXP2(6) then we have

A(A(e)) ^ max (LX,L2)-  max 1(6) è [L + r,(E)] max 1(6).
0S8<1 0S9<1

We will have verified condition (1) then if we can prove that

lim max 1(6) = 0.
e->o ose<i
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To prove this we reason indirectly. Suppose that for en -> 0 we can find a sequence

of Jordan curves yln, y2n simply-threading TEn(y) and O^0n<l for which Lln

^L+7j(en) and /n(0n)2:A>O, where /„(#„) is the length of the line segment

Fi(0„)P2(0n) and Lin=L(yin). (We will now drop the subscript « to avoid cumber-

some notation.)

From Lemma 3.1 we have d(0, Ot)^p./2 where p is an arbitrarily small positive

number assigned in advance. Applying the triangle inequality we get d(Ox, 02)

fkd(0, Ox) + d(0, 02)^p.. Using Lemma 3.1 again and taking e smaller if need

be we can find a point Q2 on y2 for which d(Q2, Px)íkp-, for we can first find P

on y satisfying d(P, Px)tkp¡2 and then Q2 on y2 satisfying d(Q2, P)^p/2.

Figure 2

We shall assume in the following that 02P2Q2 occur in that order (with respect

to arclength on y2). If the (only) other case 02Q2P2 arises the analysis is similar.

Consider the closed curve ß = 02OxPxQ202 where 02Oi, Fiô2 are line segments

and OxPx, Q202 are arcs of yx, y2, respectively, with arclength increasing from

Ox to Px and from Q2 to 02. [See Figure 2.]

Two cases can arise:

(a) ß simply-threads Tu+E(y); (Figure 2a),
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(b) ß is contractible to a point in Tß+e(y); (Figure 2b).

(The radius p + c is necessary to ensure that Piß2 lies in the tube.)

Suppose that case (a) arises for an infinite subsequence of {en}, which we relabel

and take as the whole sequence. Then ß = ßn tends uniformly to y. From the defini-

tion of the length, L, of the rectifiable Jordan curve y we have (lower semicontinuity) :

lim infn-,00 L(ßn)^L. However,

L(ßn) = d(02, Ox)+L(OxPx) + d(Px, Q2)+L(Q202)

Ú p+L(OxPx) + p+L2-L(02Q2)

= 2p.+L2 + [L(OxPx)-L(02P2)]-L(P2Q2)

^ 2p.+L2 + 0-d(P2, Q2)

S2p.+L2-d(Px,P2)-d(Px,Q2)

t= 2p+L2 — X + p

<, 3p + r,(e) + L-X.

As £-^0, p-+0 and r,(e)-y0 so that liminfn^m L(ßn)^L — X<L. This contra-

diction implies that case (a) can arise only a finite number of times. Without

loss of generality we suppose that case (b) arises for all en.

Case (b) will be disposed of in a similar manner. Consider the curve

ß' = 02Q2PxOx02 which doubly-threads Te(y) (the dashed curve in Figure 2b).

Choosing any point 7^ on ß' we can find a second point R2 on ß' for which

d(Rx,R2)^p (limc_oju = 0) and R2RXR3R2, R^R^ each simply-thread TE(y)

(from Lemma 3.2 with n = 1). [See Figure 2b.] R2RX is a line segment and RXR3R2,

R2RiRx are on ß'.

For the length L(ß') we have

L(ß') = L(OxQ2) + d(Q2,Px)+L(PxOx) + d(Ox, 02)

úL2-[L(Q2P2)-L(02P2)] + p+[Lx-L(OxPx)] + p.

Í2p+Lx+L2 + [L(02P2)-L(OxPx)] -L(Q2P2)

Í 2p+Lx+L2 + 0-d(Q2,P2)

^ 2p+Lx+L2-[d(Px,P2)-d(Px, Q2)]

^ 3p.+Lx+L2-X.

Since L(R2RxR3R2) + L(R2RiR1R2)^L(ß') + 2p, we obtain

L(R2RxR3R2)+L(R2RiRxR2) ^ 5p+Lx+L2-X.

For one of the curves R2RXR3R2, R^^R^ call it ß*, we must have 7-06*)

=W(Sp+Lx+L2 — X)^\p—^X+L+r,(e) and again we arrive at a contradiction

since this last inequality implies that liminfn^,x L(ß*)^.L — ̂X<L with ß*->y

uniformly. Thus, condition (1) is verified.
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Proof of condition (2). We will now show that for some A > 0 and e > 0 any

disk-like surface 2 spanning a Jordan curve y simply-threading Te(y) with e ¿ e

must have area A(L) ̂  A.

To show this choose some Jordan curve y* interlocking with y with distance

<7(y*, y) = S>0. For e we take s' = 8/3 and for A, A = tt(S/3)2. That this choice of

e and A satisfies the requirements can be seen as follows. Let 2 be an arbitrary

disk-like surface spanning y. Consider the tube Töl3(y*). y* must intersect 2.

In fact y* translated in any direction a distance not exceeding 8/3 must also inter-

sect 2 since such a translated curve still interlocks with y. Consequently, A(S)

S: 7t(8/3)2 = A. Hence condition (2) is verified and Theorem 3.1 is proved.

3.3. Minimal surfaces of the Möbius type. In this paragraph we give a geometric

condition sufficient for the existence of minimal surfaces of the Möbius type.

Theorem 3.2. Let y be a closed, rectifiable Jordan curve of length L in Z?3 and

17(e) > 0 a function of e > 0 w«/c« tends to zero with e. Then there exists an e0>0

with the property that whenever 0<e¿e0 any Jordan curve y doubly-threading

Te(y) with length L' satisfying L' ^2L+r¡(e) bounds a minimal surface G of the

Möbius type. G has area (strictly) smaller than the g.l.b. of areas of disk-like surfaces

spanning y.

Proof. The Douglas sufficient condition needed here takes the following form :

A sufficient condition for the existence of a minimal surface G of the Möbius type

spanning the rectifiable Jordan curve y is that the g.l.b., 8, of areas of Möbius

strips spanning y' is (strictly) less than the g.l.b., a, of areas of disk-like minimal

surfaces spanning y . G has area less than a.

Hence, as in the proof of Theorem 3.1 we need only verify two conditions:

(1) for each e and corresponding y satisfying the conditions of the theorem a

particular Möbius strip M(e) spanning y can be found for which lims_0 A(M(e)) = 0

where A(M) is the area of M, and (2) as e ->- 0 the areas of arbitrary disk-like sur-

faces spanning y' are bounded away from zero so that a^X = 0 for all e-¿e for

some A > 0 and some e > 0.

As in the proof of Theorem 3.1 we would then have 8^A(M(e))<X^a for

e<e' and A(M(e))<X, i.e., the Douglas sufficient condition would be satisfied

and the theorem proved.

Condition (2) here is proved in the same way as was condition (2) in subsection

3.2. Except for a small modification the proof of condition (1) here is the same as

for condition (1) in paragraph 3.2. We present the modification.

Proof of condition (1). As in 3.2 for M(e) we take a ruled surface swept out by a

segment PxP2(8) with Px(0) and P2(6) points chosen appropriately on y. To

describe Pt(6) we use the result of Lemma 3.2 that for any p>0 and point O on

y if e > 0 is chosen sufficiently small another point O' on y can be found such that

d(0,0')Sn and 0'OOmO', 0'0"00' simply-thread Tc(y). See Figure 2 with

O, O', 0", Om replacing P, P', P", Pm, respectively.
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With orientation on y the same as on y let Px(6) be the point on y with arclength

6Lx, arclength measured from O as origin; let P2(0) be the point on y with arc-

length dL2, arclength measured from O' as origin. Lx is the length of arc OOmO',

L2 the length of 0'0"0 (so that Lx+L2=L).

The rest of the proof will be omitted since it follows exactly the reasoning in

3.2 with O'OO'O', 0'0"00' corresponding to yu y2.

3.4. Generalizations. Theorems 3.1 and 3.2 can easily be generalized to the

following

Theorem 3.3. Let y be a rectifiable Jordan curve in R3 with length L, r¡(e) a positive

function of e tending to zero with e and n a positive integer. Suppose yx, y2, y to be

three rectifiable Jordan curves of lengths Lx, L2, L', respectively, such that yx and y2

n-fold thread Te(y) while y ', 2n-fold threads TE(y). Then for some e0 > 0, whenever

0<bSb0, if Li^nL + r](E), (i'=l, 2) and L'^2nL + r¡(£) we can conclude that yx, y2

bound a doubly-connected minimal surface G while y bounds a minimal surface

G' of the Möbius type.

The area A(G) is (strictly) less than the sum of the g.l.b.'s of areas of disk-like

surfaces spanning yx and y2 individually and the area A(G ') is (strictly) less than the

g.l.b. of areas of disk-like surfaces spanning y '.

The proof of this theorem (not presented here because it has essentially been

given in subsections 3.2 and 3.3) is based on Lemmas 3.1 and 3.2.

4. Examples. (1) Let Cj be a circle with circumference 2L. We suppose that

C0 is continuously deformed in Z?3 into the double-circle C0 and that intermediate

positions are denoted by C0 with 0<a< 1. Then according to Theorem 3.2 there

is a value a=aQ such that whenever 0<a^ao, Ca bounds a minimal surface of the

Möbius type.

Also, if y is an arbitrary rectifiable closed Jordan curve in Z?3 and y0 congruent

to y but displaced a distance a from it, then by Theorem 3.1 there is an a0>0

such that whenever 0 < a ¿ a0, y, ya bound a doubly-connected minimal surface.

(2) Let y and y0 be two facing squares of unit edge length, ya displaced a distance

a from y in the direction of the normal to the plane of y. Then from the Douglas

sufficient condition we have that if a<\, y, y0 bound a doubly-connected minimal

surface. From Theorem 2.1 we have that a > 0.6627... -21/2=0.9370... implies no

doubly-connected minimal surface spans y, ya.

It would, of course, be interesting to know that for y any plane curve, a number

a* exists for which 0 < a ^ a* implies that y, ya, bound a doubly-connected minimal

surface and for which a* < a implies no doubly-connected minimal surface spans y,

y a (as in the classical case of coaxial circles).

(3) Let ya, y'a be two facing rectangles each with edge lengths 1 and a and

separated by the distance \. The Douglas sufficient condition then tells us that if

1 <a, ya, y'a bound a doubly-connected minimal surface.
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Keeping the distance between ya and y'a fixed and decreasing a, Theorem 2.3

tells us that there is an a*>0 such that if a<a* then no doubly-connected minimal

surface spans ya, y'a. The best (smallest) value of a* to be obtained from Theorem

2.3 we get by minimizing a=a(c) in the relation l/4 = ccosh (a¡2c). The result is

a*=i0/cosh 6 with 6 tanh 6 = 1 or a* = 0.331....
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