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1. Introduction. 1.1. There is an old conjecture that a group of cohomological

dimension one is free. This paper and the ones that will follow it are, in part, an

outgrowth of a desire to make a contribution towards this conjecture. In this we

have had little discernible success. However the approach we have taken has led

to classes of groups which seem to be of considerable interest for their own sake.

It is these groups that are the subject matter of this series of papers. The purpose

of this one, having put these groups into their proper perspective, is to establish

the existence of many groups of this kind. In the second and third papers we shall

investigate some of their properties and their relationship with groups whose

second integral homology groups(2) are zero.

1.2. Let 93 be a variety of groups. P. Hall [12] has termed a group S a splitting

group for 93 if

(i) S is a 93-group, i.e., S e 93, and

(ii) every exact sequence

1 ->K-+E-+S-+l

of 93-groups splits. It is clear that a free 93-group is a splitting group for 93. There

are, conversely, very few varieties for which it is known that the splitting groups

are precisely the free groups in the variety. Essentially, the only result in this

direction is that in a nilpotent variety of exponent zero every splitting group is free

(P. Hall [12]). In his paper [12] P. Hall asks whether, more generally, a splitting

group in an arbitrary variety of exponent zero is free. This seems to be a very

difficult question.

Now it is not difficult to prove

Proposition A. Let G be a group, let N be a normal subgroup of G and let C be

a complement for N in G, i.e.,

NnC = 1,   NC = G.

Let further 93 be a variety of groups. Then C/V(C) is a complement of some normal

subgroup of Gj V(G), where here V(G) is the verbal subgroup of G corresponding to
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(2) See [17].
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the variety S3 {i.e., V{G) is the intersection of those normal subgroups of G with

factor group in S3).

It follows that if S is a splitting group for 33, then S/Sk is a splitting group for the

variety 33(A:) of all 33-groups which are nilpotent of class at most k for k= 1,2, 3,...

(here Sk is the kfh term of the lower central series of S, beginning with Sx = S).

So if 35 is a variety of exponent zero, it follows from P. Hall's theorem that S/Sk

is free in the variety 3${k). Let us term

S/S2, S/S3,...

the lower central sequence of the group S. If

T/T2,T/T3,.,.

is the lower central sequence of F, then we say S and F have the same lower central

sequence if there are isomorphisms 8k from S/Sk to T/Tk such that 9k induces 6k_x

on SISk-x to T/Tk_x, for k = 2, 3,.... Our remarks above show that if 33 is a

variety of exponent zero, then a splitting group for 93 has the same lower central

sequence as a suitably chosen free 33-group (cf. pp. 345-346 and the proof of

Theorem 2 of P. Hall [12], and K. W. Gruenberg [11]). Now an ^-generator

group with the same lower central sequence as a residually nilpotent, relatively

free group of finite rank m is free (W. Magnus [19]). So if 33 is a variety of exponent

zero in which the free groups are residually nilpotent, then an w-generator splitting

group S for 33, whose factor derived group S/S2 cannot be generated by fewer

than m elements, is free (P. Hall [12]). This line of reasoning suggests that a

residually nilpotent group with the same lower central sequence as a residually

nilpotent and relatively free group is free. The main purpose of this paper is to

establish the existence of nonfree groups of this kind.

1.3. In order to explain our results let us term a variety 9K a Magnus variety if

(a) every free 2K-group is residually nilpotent, and

(b) the lower central factors Fk/Fk + x of every free 9K-group are torsion-free, for

fc-1,2,3,....
The Magnus varieties include, in particular, the variety of all groups (W. Magnus

[18] and E. Witt [24]) and the polynilpotent varieties of all polynilpotent groups

of a given class row (K. W. Gruenberg [10]). A group F in a variety SCR will be

termed para 9ft-free or parafree in 9JÎ or, if 9JÏ is understood to be the variety

involved, simply parafree, if

(i) P is residually nilpotent, and

(ii) P has the same lower central sequence as some free group in W.

If we denote by p.{g) the minimal number of generators of a group G, then we

define p{G), the rank of G, by

P{G) = p{G/G2),

and the deviation 8{G) of G by

8{G)p{G=p{G)-).



310 GILBERT BAUMSLAG [November

Then we shall prove in §3 the

Theorem 1(3). In the variety of all groups there exist for every pair of integers r

and d satisfying r jg 2 and d ^ 1 infinitely many parafree groups of rank r and deviation

d.

Theorem 1 contrasts with the following rather weaker result, which will be

proved in §4.

Theorem 2. Let M be a Magnus variety which contains 9l2, the variety of all

metabelian groups. Then there exists for every integer rï:2 a parafree group of rank

r which is not free.

Theorem 2 can be sharpened to

Theorem 2#. Let 1R be a Magnus variety which contains 3l2. Then there exists

for every pair of integers r S: 2 and <Fè 1 a parafree group of rank r and deviation d.

However the added labor involved does not seem to merit including this version

here. Even this version of Theorem 2 compares unfavorably with Theorem 1.

This is not surprising in view of our meagre knowledge of varieties. A glance at

the proofs will substantiate this remark.

1.4. Theorem 1 and Theorem 2 leave open a large number of questions. For

example, can a parafree group be of finite rank and yet have infinite deviation?

These and other questions we shall consider elsewhere.

There is, however, a possible offshoot of Theorem 2 which should be mentioned.

Theorem 2 provides us with parafree groups which are not free. But, for example,

is every parafree group in 3t2 a splitting group? If this is the case, Theorem 2

contains a negative answer to Philip Hall's question about splitting groups.

Theorem 1 and Theorem 2 also provide a spectacular illustration of the hopeless-

ness of trying to solve the isomorphism problem of even the best behaved groups

via the lower central sequence (cf. [8]).

1.5. The relevance of splitting groups to groups of cohomological dimension

one(4) is not hard to understand. It is clear that a group G is of cohomological

dimension one if and only if every exact sequence

l^A^E-+G-+l

with A soluble, splits. This implies, on making use of Proposition A, that for every

soluble variety 93, Gj V(G) is a splitting group for 93. It follows from this observation

that every residually soluble group of cohomological dimension one is parafree

(G. Baumslag and K. W. Gruenberg [7]).

(3) The first example of this kind was described by the author in [5].

(4) See [17], pages 103-124.
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Further knowledge of splitting groups in soluble varieties may, in this way,

provide us with more information about residually soluble groups of cohomological

dimension one, perhaps leading even to a proof that residually soluble groups of

cohomological dimension one are free.

2. A useful proposition.

2.1. The object of this section is to prove the following proposition and its

corollary.

Proposition 1. Let G be a finitely generated group in a variety 33. Suppose r is

the rank of G. If G/Gn + 1 contains as a subgroup a free group in 33(«) of rank r and

class nfor every n, then G has the same lower central sequence as a free group in 33.

Proof. An r-generator group in 33(«) with a free 33(«)-subgroup of rank r is

free ([3]). So Proposition 1 follows.

This leads us to the important

Corollary 1. Let W be a Magnus variety, P a group in 9K. Let

ß = gp(F,w)

be a supergroup of P contained in 5DÍ such that

(i) Q is residually nilpotent,

(ii) there are elements al9..., ar of P which freely generate P modulo P2 such

that

u* = afr ■a}' mod Q2       (A # 0)

where at least one of the X} is nonzero and no prime divisor of X is a divisor of every Xf,

(iii) Q/Qn + x contains a free Wn-group of rank r and class nfor every n.

Then Q is parafree of rank r.

Corollary 1 follows immediately from Proposition 1 since, by (ii), Q/Q2 is an

r-generator group.

The point of Corollary 1 is that if we adjoin roots to parafree groups in the right

way we will get further parafree groups.

3. The proof of Theorem 1.

3.1. Corollary 1 suggests a way of producing parafree groups. We push this a

little further by proving

Proposition 2. Let r and « be positive integers, let 77 be parafree of rank r and

let (x) be the infinite cyclic group on x. Let,further, he H and let G be the generalized

free product of 77 and (x) identifying h with x" :

G = (77*(x);« = xn}.

Suppose h is an Ith power ofh' modulo H2, where «' ii itself not a power modulo H2.

If I and « are coprime and if G is residually nilpotent, then G is parafree of rank r.
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The proof of Proposition 2 is easy. To see this observe that H/Hc + X is free

nilpotent of rank r. So, by a theorem of A. I. Mal'cev [20] it can be enlarged to a

torsion-free nilpotent group in which hHc + x has an «th root xc + 1, say. Clearly

gp (H/Hc+X, xc + x) is a homomorphic image of G. It follows that G/Gc + X contains

a subgroup isomorphic to H/Hc + 1 for every c=l, 2,.... So Corollary 1 applies

and G is parafree of rank r.

3.2. The crucial condition in Proposition 2 is that a certain generalized free

product is residually nilpotent. So, in order to be able to apply Proposition 2 we

must provide ourselves with a number of generalized free products which are

residually nilpotent. This is the point of the following:

Lemma 1. Let the finitely generated group H be residually torsion-free nilpotent

and let //¡ be an indexed copy of H for each i = 1, 2, ...,«(«< oo) (thus the mapping

« -> «¡ is an isomorphism between H and Htfor all relevant i(h e //)). Suppose ueH

generates its centralizer in H. Then the generalized free product

P = {Hx* H2*-* Hn;ux = u2 =■■■ = un}

is residually a finite p-group for every prime p.

Proof. Let p be any prime and let a e P (a ^ 1). If a is of length 0 or 1 then the

homomorphisms which take H¡ to H as follows

hi^h       (i=l,2,...,n),

can be continued to a homomorphism 6 of F onto H. Notice that ad # 1. Since H

is finitely generated and residually torsion-free nilpotent, H is residually a finite

/?-group (K. W. Gruenberg [10]). So there is a normal subgroup of F of/?-power

index not containing a.

Suppose then that

is of length /, the factors h$ coming strictly out of alternate constituents Hir

This means that hU) $ gp (u) for /= 1,..., /. Hence [hU), u]=t 1, since u generates

its centralizer(5). It follows that we can find a normal subgroup N of H of /»-power

index so that [hw, u]$N for j=l,..., I. Consequently

a) h"wtgp(uN)   a=i./)•

Now denote the image of N in Ht by N¡. Form

Ö = {Hx/Nx * H2/N2 *■■■* H/N, ; uxNx = u2N2 =■■■= UlN,}.

It follows from (1) that if a is the homomorphism of F onto Q which is defined as

the extension of the natural homomorphisms from //¡ to HJNi for each i, then

ao = h\?Nh.AJPM, * 1.

(5) [*» y] denotes the commutator x~1y~1xy.
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Observe that Q is a generalized free product of finite isomorphic ^-groups with

a cyclic subgroup amalgamated. Now in this case the isomorphisms from 77,/./V(

to H/N defined by h¡N¡ -> hN can be continued to a homomorphism $ of Q onto

77/A7. Let K be the kernel of <f>. Then clearly Q/K is a finite /?-group and

KnHJN^l       (i= 1,2,...,/).

So by a theorem of H. Neumann [22], K is free. Consequently Q is residually a

finite />-group, since an extension of a residually finite /?-group by a finite /»-group

is residually a finite/j-group, the main point here being that free groups are residually

finite p-groups (K. Iwasawa [14]). So once more there is a normal subgroup of

/j-power index not containing a in P, since there is such a normal subgroup in Q

not containing aa. This completes the proof of Lemma 1.

Corollary 2. Let 77 and ue H satisfy the hypotheses of Lemma 1. Then for

every prime p and every infinite cyclic group (x) generated by x, the generalized free

product

{H*{x);u = x"}

is residually a finite p-group.

Proof. Let Hi = x~tHxi {i=0, 1, ...,/>-1). If F is the subgroup of

{H*{x);u = xp}

generated by 770, Hlt...,/?,. i, then

F = {770* Hx *■ ■ •*77p_1;m0 = «!=■••= up_x},

where wi=x"iMxi. So by Lemma 1 F is residually a finite />-group. But F is a

normal subgroup of {77 * (x); u=x"} of index p; therefore {77 * (x); u=x"} is re-

sidually a finite /7-group.

3.3. We are now in a position to apply Proposition 2 so as to obtain

Proposition 3. Let H be parafree of rank r, let (x) be the infinite cyclic group on

x, let he H and let I be a positive integer which is not divisible by the prime n. If h

generates its centralizer in 77 and ifh = h'x modulo 772, where hx is not a proper power

modulo H2, then

G = {H*{x);h = xn}

is parafree of rank r.

Proof. By Corollary 2, G is residually nilpotent. So Proposition 2 applies,

ensuring that G is parafree of rank r, as desired.

3.4. Before proceeding to the proof of Theorem 1, which will actually be accom-

plished by making use of Proposition 3, we require some facts about some of the

following groups.

Lemma 2. Let

G = {a,b,...,c,x,y,..., z; a'bm = x", a'b* - /,..., asb( = z"),
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where the integers l, m, n,p,q, r,..., s, t, u are all greater than 1 and l,p,...,s are

distinct. If v is a positive integer such that v${l,p,..., s}, then for every nonzero

integer w the centralizer C(a"bw; G) of avbw in G is generated by avbw:

C(avbw;G) = gp (avbw).

Proof. The proof is by induction on the number k of elements in {x, y,..., z).

If A:= 1 then G is simply the generalized free product of the free group F on

a, b,..., c and the infinite cyclic group (x) on x amalgamating a'bm and xn:

G = {F*(x);a'bm = xn}.

Notice that a'bm generates its centralizer in F and that a°bw is not conjugate to an

element in gp (a'bm). So by Lemma 28.2 of [2],

C(avbw;F) = C(avbw;G);

but C(avbw; F) = gp (avbw) and the result follows.

Suppose now that k> 1. Put

H = gp(a, b,..., c,x,y,...);

thus H is generated by all of the generators of G excluding z. Clearly,

G = {H*(z);asbt = z"}.

Now it follows from the fact that the integers l,p,...,s,v axe all distinct that

each of the elements a'bm, apb9,..., as6', a°bw generate their centralizers in F. By

induction then we find

C(asbl; H) = gp (asbl)   and    C(a°bw; H) = gp (avbw).

It follows also, as part of the induction hypothesis, that H belongs to the class of

groups F„, where it is the set of all primes (see p. 256, Theorem 29.1 and Lemma

28.2 of [2]). Moreover as avbw is not conjugate in F to an element in gp (asbl) it

follows by a fairly easy induction that avbw is not conjugate in H to an element in

gp (asbl). Thus we may apply Theorem 29.1 of [2] to deduce that G gF„. It follows

then from Lemma 28.2 of [2] that

C(avbw; G) = C(avbw; H) = gp (avbw)

is desired.

3.5. The second fact that we shall need can be formulated in rather more general

terms than we choose to.

Lemma 3. Let n,r,...,ube distinct odd primes and let

G = (a,b,...,c,x,y,...,z; a2b2 = x\ aW = /,.. .,a2kb2" = z%

(where k is the number of elements in {x, y,..., z}). Then modulo G2, a2" + 1b2k +

is the 2k + 1-n-r.ut h power of an element which is itself not a proper power.



1967] GROUPS WITH THE SAME LOWER CENTRAL SEQUENCE 315

Proof. The crux of the matter is that if A is an abelian group generated by two

elements /and g such that fv=gw, where v and w are coprime positive integers,

then A is cyclic in a rather special way. In fact suppose we choose v and p so that

vv+p-w = 1. Then

'{2) f={fugT   and   g = {pgy;

so A is a cyclic group generated by fg". It follows from (2) that if A is torsion-free

then/is an z'th power if and only if i divides w. The complete proof of Lemma 3

follows without much difficulty from this observation.

3.6. The third fact we need is

Lemma 4. Let

G = {a,b,...,c,x,y,...,z; a2b2 = x\ aW = y',.. .,a2kb2" = zu),

where the integers n,r,...,u are all at least two. Then the minimal number of

generators of G isj+k where j is the number of elements in {a, b,..., c}.

Proof. We add the further relations a2 = b2= 1 to G. The resultant factor group

G of G is simply the free product of two groups of order two, a free group of rank

7-2 and cyclic groups of orders «, r,... and u respectively. By the Grushko-

Neumann theorem (see e.g., A. G. Kurosh [16, Volume 2, p. 57]) G is a {j+k)-

generator group. So it follows immediately that G is a (y'+/<)-generator group.

3.7. If X is a group and / is an integer, then we denote by X' the subgroup of X

generated by its /th powers. This type of subgroup will be useful in the proof of

the last fact we shall need in order to be able to prove Theorem 1.

Lemma 5. Let

G = {a, b,..., c, x, y,..., z; a2b2 = xm, a*b* = yp,. ..,a2"b2" = z"),

and

G* = {a,b,...,c, x, y,..., z; a2b2 = x\ a*b* = ys,..., a2kb2" = z%

where m,p,.. .,q, r, s,..., t are distinct odd primes. Then G is not isomorphic to G*.

Proof. We consider

GIG2"   and    G*IG*2«.

Notice that the primes 2, m, p,..., q, r, s,..., t are all distinct. So it follows that

G*IG*2q can be generated by j elements (here j is the number of elements in

{a, b,..., c}). However we claim that G/G2" can not be generated by j elements.

To see this consider the wreath product(6)

W = (C2 x C2 x ■ ■ ■ x wr C2)Cq

(6) See, e.g., [13].
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of the direct product of/ groups of order two and a (cyclic) group of order q. W is

clearly a homomorphic image of G/G2". In order to complete the proof of Lemma 5,

it is therefore enough to show that W requires at least /+1 generators. Here a

simple counting argument suffices since a /-generator subgroup of W has order at

most

2q2"u~1\

whereas W itself has order

q2<".

3.8. We are now in a position to prove Theorem 1. To this end let r be an integer

at least 2, and let m be an integer exceeding r. Put, for i'= 1, 2,...,

G(i) = (a, b,..., c, x,y,..., z; a2b2 = xp">,

aW =y^^,...,a2m"b2m" = zp<« ♦ - - r),

where px, p2,... are the odd primes arranged in order of magnitude and the number

of elements in {a,b,..., c] is r. By Lemma 4 each of the groups G(i) requires precisely

m generators. Moreover by Lemma 5 no two of the G(i) are isomorphic. Finally,

it follows by induction, Lemma 2 and Lemma 3 that Proposition 3 applies. Hence

each of the G(i) is parafree of rank r and the proof of Theorem 1 is complete.

3.9. Suppose now that we choose r = 2, «i = 3 in 3.8. Then it follows easily either

directly or by applying a theorem of D. B. A. Epstein [9] that the groups G(i) are

freely indecomposable.

We define now, for every properly increasing sequence

a: ax, a2,...

of positive integers, G(a) to be the free product of the groups G(a¡) :

G(a) = G(ax) * G(a2) * • ■ ■.

It follows from A. I. Mal'cev [21] that (7(a) is residually torsion-free nilpotent.

By a variation of the arguments used to prove Proposition 3 it then follows that

G(a) is parafree of rank X0. If ß'-ßx,ß2,- ■ ■ is another increasing sequence of

positive integers, then G(a)^G(ß) if and only if a=ß. For if a^ß there is a first

integer i for which a¡ # /?,. If a¡ < ßt then G(a) has precisely one free factor isomorphic

to G(a¡) ; since the groups G(j) axe nonisomorphic, G(ß) does not have such a free

factor (cf. R. Baer and F. W. Levi [1]); so G(a) is not isomorphic to G(ß). Similarly

if a, > ßt we have again that G(a) is not isomorphic to G(ß). Since the number of

such sequences a is the power of the continuum, this means we have proved the

following corollary of Theorem 1.

Corollary 3. There are at least continuously many parafree groups of rank N0.

Corollary 3 is clearly only part of a longer story.
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4. The proof of Theorem 2.

4.1. We start out by trying to apply Corollary 1. Our aim is to prove that there

exist nonfree parafree groups in every Magnus variety ffl containing 9I2, of every

rank. With this in mind, let F be a finitely generated free group in 9JÍ freely generated

by the r elements

(3) a, b,b',..., c.

Our procedure in the variety of all groups is to make use of generalized free

products. But this is impossible in an arbitrary variety M since very little is known

about the existence of such generalized products (see e.g., J. Wiegold [23]). We

shall construct a nonfree parafree group G with the same lower central sequence as

F by adjoining a cube root of a2b2 to F.

Now F is residually nilpotent. So F is a subdirect product of the groups F/Ft ;

i.e., there is a monomorphism <f> of F into the cartesian product F of the factor

groups F/Fi of F, such that the projection tt¡ of F onto F/F¡ maps F<f> onto F/Ft :

(4) ^:F^F = nF/Ft.
t = i

Henceforth, we identify F with its image F<p in F.

Consider now the element a2b2 in F. In order to adjoin a cube root of a2b2 to F

we adjoin a cube root of (a2/32)7r¡ to F/Fi for each /. A little care is necessary here.

Thus we recall that a torsion-free nilpotent group can be embedded in a minimal

torsion-free nilpotent divisible group lying in the same variety (see [20] and [6,

Proposition 2]). Now F/Fi is torsion-free nilpotent and clearly lies in 9JÎ. So we can

choose a minimal, torsion-free nilpotent, divisible supergroup G{i) containing

F/Fh which lies in Wl. G{i) contains a (unique) cube root í/¡ of (a2/32)7r¡. Let

(5) e = n <ko.¡=i
Obviously then (cf. (4) and (5)) a2b2 has a cube root d, say, in Q. We put

G = gp (F, d).

4.2. Clearly G is residually nilpotent and lies in SJi. Since

a2b2 = d3,

it is clear that G/G2 can be generated by r elements. This means that G satisfies the

conditions laid down by Corollary 1. So G is parafree in 9JÏ of rank r.

4.3. It remains to prove, and this turns out to be a little awkward, that F and G

are not isomorphic. It is obvious that G can be generated by r +1 elements ; in

fact, we shall prove that G can not be generated by r elements, ensuring that F

and G are not isomorphic. The proof will be facilitated by making use of the

following proposition (which can be formulated in rather more general terms, cf.

Proposition 1 and the proof of the corollary on page 274 of [4]) ; the argument is

essentially that of [4] and is therefore omitted.
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Proposition 4. Let H eW be residually a finite 2-group and let I be a mapping

of (cf. (3))

{a, b,..., c}

into H. If (aÇ)2(bÇ)2 has a cube root e, say, in H, then £ can be extended to a homo-

morphism of G into H taking d to e.

A.A. Our aim now is to use the above proposition to produce an (r+ l)-generator

homomorphic image of G.

To this end let D be the free abelian group with basis

(6) z;..., ax_-x, axo, axx,...;..., a2_x, a2-0, a2X,...;..., am-_i, am¡0, am¡x,....

The mapping i/> of this basis of D given by

(7) chj = aiJ + x    (1 á i £ m,j = 0, ± 1, ±2,...),       z<\, = a\Qz^

clearly defines an automorphism, which we again denote by <]>, of D, of infinite

order. Let F be the splitting extension of D by this automorphism i/c

F = gp (D, x; x-1 dx = d<f>(de D)).

Thus D is a normal subgroup of F and

(8) E/D is free cyclic on xD.

Moreover

(9) F = gp (x, a1¡0, a2tQ,.. .,am¡0, z);

so F can be generated by m+ 2 elements. It is important to notice that

(10) x'2(xz)2 = x~2x2x~1zxz = a3¡0z~lz = ai>0.

We shall show that if m = r— 1, then F is the desired (r+ l)-generator homo-

morphic image of G.

4.5. We need two facts about F. The first of these is that F is residually a finite

2-group, while the second is that F is not an (m+ l)-generator group.

First we prove

Lemma 6. F is residually a finite 2-group.

Proof. By (8) E/D is free cyclic. So in proving that F is residually a finite 2-group

it is enough to show that any given element u e D («# 1) can be omitted from a

normal subgroup of F of 2-power index.

Notice now that u lies in a finitely generated subgroup of D. In fact, without loss

of generality, we may assume that

(11) wegp(ai.o. •• •»fll.m^.O, ■   .,<h,„. ■ .,Om,o>.. -,cm¡s,z)

where s is of the form

(12) s = 2*-l.
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We observe next that for some k = 2l (/^ 1)

(13) u£gp{dk\deD) = Dk.

The idea now is to make certain that if we factor out Dk and some large 2-power

of x, then the result is a factor group of E of 2-power order in which the canonical

image of u is not 1. With this in mind, let D be a direct product of m2'+ 1 cyclic

groups of order 2' with basis ây, z:

(14) 73 = gp {àu, z (/ =1,2,..., m,j = 0, 1,..., 2'- 1)).

Observe that the mapping

</¡: äiti^äu + x       if 7+1 ú 2*-l,

(15) .M^-x^.o ¡0-4-1=2',

<f>: z^äl^z-1

defines an automorphism again denoted by i/5 of D.

Notice now that i/r is of order a power of 2. To see this, first observe that às + 1

leaves every </íi>; fixed. But a simple calculation shows that (cf. (15))

(16) z$s+1 = arjáf.1... 5r,f. &J = />z,

where

P = 3r.lalx...ax3-xàï,s.

It is clear, therefore, that after repeated use of (16)

2frs + i)k = pk% = 2,

So $ has order {s+ \)k=2l2l = 2t + l, as desired.

Let then Ebe the splitting extension of D by $:

E = gp (D, Jc; x"1 dx = dfae 73), xis+1)k = 1).

Consider the mapping

a: x —> x, a1-0 —> ûi,o, • ■ ■, ufm-0 -*- ûm>0, z —> z.

Since the relations satisfied by x, a1¡0, • • -, flm,o, z are also satisfied by

X, «1,0, • • •> am.0í Z

(cf. (6), (7), (15)) o defines a homomorphism t of F onto Ë. It follows on noting

(11), (12), (13) that

HT   ̂     1.

But £is a finite 2-group. This means that Fis residually a finite 2-group as claimed.

4.6. Second we prove

Lemma 7. The minimum number of generators of E is m+ 2.
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Proof. It suffices to show that E has a subgroup F of index 2 which cannot be

generated by fewer than 2m+ 2 elements. For if E could be generated by m+ 1

elements every subgroup of index 2 could be generated by

2m + 1 < 2«7 + 2

elements, since a subgroup of index y'of a free group of rank « is of rank 1 +j{n— 1)

(see A. G. Kurosh [16, Vol. 2, p. 37]).

Let then E* be the normal closure in E of

X , Û1.0, #2,0, • • -, am,0i z-

Clearly (cf. (7))

E*  =  gp (X2, öit0, üx,x, «2.0, fla.l» • • -, «m.0, «m,l, z).

In order to find a complete set of defining relations for E* it is necessary to give a

complete set of defining relations for E. For example, the relations

[x'saii0xs, ajt0] = 1,    [x~sauoxs, z] = 1,    x_1zx = ai,0z_1

where i = 0, ±1, ±2,..., i,j= 1, 2,. . ., m suffices to define E—this follows easily

by inspection. Then one finds, via the Reidemeister-Schreier procedure (see e.g.,

[15]), that the defining relations of E* are simply

[{x-2YaUx2y,auo] = 1,    [(x-^lx2)',^] = 1,    [(x-^.ii*2)',«/.!] = 1,

[{x-2yau0{x2y, z] = 1,    [(x-*r\¿x*f,z] = l,   x-2zx2 = allais

Let us now consider E*/E*. The defining relations then give us E*/E$ as an abelian

group on the generators

2
X , ûi.o, • ■ -, am,0t ax,l, • • -, am¡x, Z

subject to the single defining relation

<o = «fa-

it is therefore clear that E*/E$ cannot be generated by fewer than 2«î + 2 elements.

Hence E* itself is a {2m + 2)-generator group.

4.7. We are left finally with the proof of Theorem 2. For this it is certainly

enough to prove that G cannot be generated by r elements. Now 90Í contains the

variety of metabelian groups. Put m = r— 1 and consider the group F corresponding

to this choice of m. Now E is residually a finite 2-group. Therefore, in view of (10)

and the Proposition 4, the mapping (cf. (3))

i-.a^x'1, b^xz, ¿>'->a2>0,..., c->am>0

can be continued to a homomorphism, again denoted by £, of G into £ taking dto

a1>0. Obviously I is onto. Now Lemma 7 tells us that G£ cannot be generated by

fewer than r-f-1 elements. This completes the proof of Theorem 2.
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