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1. Introduction. With the aim of carrying over Hilbert space type arguments to

the theory of Banach spaces, G. Lumer [8] constructed on a vector space a type of

inner product with a more general axiom system than that of Hilbert space. He

defined a semi-inner-product (s.i.p.) on a complex vector space V as a complex

function [x, y] on VxV with the following properties:

1. [x+y, z]= [x, z]+ [y, z], [Ax, y] = A[x, y] for all complex A,

2. [x, x]>0 when x/0,

3- \[x,y]\2è[x,x][y,y].

A vector space with a s.i.p. is called a semi-inner-product space (s.i.p. space). An

s.i.p. space is a normed vector space with norm ||x|| = [x, x]1'2 [8, p. 31].

For Lumer the importance of an s.i.p. space is that every normed vector space

can be represented as an s.i.p. space so that the theory of operators on Banach

space can be penetrated by Hilbert space type arguments.

But it is obvious that the generality of the axiom system defining the s.i.p. is a

serious limitation on any extensive development of a theory of s.i.p. spaces parallel

to the theory of Hilbert space. Our aim is to determine what further developments

can be made for classes of s.i.p. spaces which are defined by imposing further

restrictions on the s.i.p.

Outline of the paper. As a preliminary we show that a homogeneity property,

[x, Aj>] = Ä[x, y] for all complex A, can be imposed, and all normed vector spaces

can be represented as s.i.p. spaces with this property. Our main concern is to define

the class of continuous s.i.p. (uniformly continuous s.i.p.) spaces by imposing the

continuity property, 0¿{[y, x + Xy]} -*■ &{[y, x]} for all real A -*• 0 and (uniformly)

for (x, y)e SxS. We define an orthogonality relation and show that in such spaces

it is equivalent to an orthogonality relation as studied by R. C. James [7]. We

show that the continuity restriction on the s.i.p. is equivalent to Gâteaux (uniform

Fréchet) differentiability of the norm. A representation theorem for continuous

linear functionals on a uniformly convex complete continuous s.i.p. space follows

on the lines of the Hilbert space theorem. Defining uniform s.i.p. spaces as

uniformly convex, complete, uniformly continuous s.i.p. spaces we have, as for

Hilbert space, that the dual can be identified as a uniform s.i.p. space with s.i.p.

defined by [fy,fx]=[x,y].
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As an example, we show that H. Rund's work [9], [10] suggests that Minkowskian

spaces can be regarded as affine spaces associated with real finite-dimensional

uniform s.i.p. spaces. This approach shows that the principal dual properties are

independent of the differentiability of the norm as a function of real variables.

As a further example, we show that the real iffp-spaces (1 <p < oo) can be readily

established as uniform s.i.p. spaces. Hence we can deduce immediately the repre-

sentation theorem for continuous linear functionals and properties of the dual.

Notation. In a normed vector space V we denote the unit sphere {x | |x|| = 1}

by S; we denote the dual space by V* and the unit sphere in the dual space by S*.

2. Continuous s.i.p. spaces and uniform s.i.p. spaces. We note at the outset that

the imposition of a homogeneity property adds convenient structure without

causing any significant restriction.

Definition. An s.i.p. space V has the homogeneity property when the s.i.p.

satisfies :

4. [x, Xy] = A[x, y] for all x, y e V and all complex A.

Adapting the corresponding theorem of [8, p. 31] we have

Theorem 1. Every normed vector space can be represented as an s.i.p. space with

the homogeneity property.

Proof. Let F be a normed vector space. By the Hahn-Banach theorem, for each

x e S there exists at least one continuous linear functional, and we choose exactly

one, fx e S* such that fx(x)= 1. For Ax e V where xeS and any complex A we

choose fXx e V* such that fÁX = Xfx.

Given one such mapping from V into V*, (and there exists in general an infinite

number of such mappings), it is readily verified that the function

[x, y] = fy(x)

satisfies the properties 1-4 for an s.i.p.

Throughout this paper it will be assumed that all s.i.p. spaces possess this

homogeneity property.

An s.i.p. space has considerable structure when it possesses a continuity property

on the right-hand member of the s.i.p.

Definition. A continuous s.i.p. space is an s.i.p. space C where the s.i.p. has the

additional property:

5. For every x, y e S

0t{[y, x + Xy]} -> 0t{[y, x]}   for all real A -> 0.

The space is a uniformly continuous s.i.p. space when it possesses the property:

5u. The limit in 5 is approached uniformly for all (x, y) e S x S.

A relation, that we might call an orthogonality relation, can be defined on an

s.i.p. space V.
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Definition. For x, y e V, x is normal to y and y is transversal to x if [y, x] = 0.

A vector x e Fis normal to a subspace Wand /Vis transversal to x, if x is normal

to all vectors y e N.

It follows from properties 1, 2, and 4 that a vector is normal and transversal to

every vector in V if and only if it is the null vector.

Since the s.i.p. is not commutative this orthogonality relation is not symmetric,

i.e., if x is normal to y then y is not necessarily normal to x. However it follows

from property 1 that the relation is additive, i.e., if x is normal to y and to z then x

is normal to Xy+pz for all complex A, p.

For a normed vector space, R. C. James [7] studied the orthogonality relation

defined by :

x is orthogonal to y if ||x+Ay|| ^ ||x|| for all scalar A.

We show that in a continuous s.i.p. space our s.i.p. orthogonality relation is

equivalent to James' norm orthogonality relation.

Theorem 2. 7n a continuous s.i.p. space x is normal to y ifand only if'\\x+Xy\\ = ||x||

for all complex X.

Proof. If x is normal to y then

\\x+Xy\\ ||*|| = \[x + Xy,x]\

= ||x||a+Ar>,*J| = ||x||2,

therefore ||x+Aj>|| = ||x|| for all complex A.

Conversely, if ||x+Ay|| — ||x|| =0 for all complex A, then

||x+Aj||2-||x|| ||x + Aj|| 2; 0.

Therefore 0l{[x, x+Xy]}+0t{X[y, x + Xy]}-\[x, x + Xy]\^0,  which implies  that

0t{X[y, x+Xy]} ̂ 0 for all complex A.

Therefore for real A,

0l{[y,x+Xy]} ^ 0   for A SO,

á 0   for A = 0.

By the continuity condition 5, we have for real A, 0l{[y, x + Xy]} -> 0t{[y, x]} through

positive values for A -> 0 + and through negative values for A ->- 0 -.

Therefore 0t{[y,x]} = O.

For imaginary A, say A=/Ai where Xi real,

0t{X[y,x+Xy}} = Xx0t{[iy,x+Xxiy]} = 0

and again by the continuity condition 5 0ï{[iy, x]} = 0, i.e., J{[y, x]} = 0.

Therefore [y, x]=0.
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Definition. A normed vector space is Gâteaux differentiable if for all x, y e S

and real A,

lim-^~—!LJ exists.
A-.0 A

A normed vector space is uniformly Fréchet differentiable if this limit is

approached uniformly for (x, y)e SxS.

Now we have as a corollary to Theorem 2 that James' norm orthogonality in a

continuous s.i.p. space is additive. But James proves that norm orthogonality is

additive if and only if the norm is Gâteaux differentiable [7, p. 274]. Therefore we

can conclude that our continuity property 5 is equivalent to Gâteaux differentiability

of the norm. However, this can be established directly as follows:

Theorem 3. An s.i.p. space is a continuous s.i.p. (uniformly continuous s.i.p.)

space if and only if the norm is Gâteaux (uniformly Fréchet) differentiable.

Proof. Let V be an s.i.p. space.

For x, ye S and real A > 0

ll*+Ay|-11*11 >. |[*+Ay,x]|-||x||2
A||x||

0¿{[x+Xy,x]}-\\x\\
Allxll

(i)

But also

0l{[y, x]}

|x+Aj||-|x||      ||x+Aj|l2-|[x, x+Xy] \

00

A|x + Aj||

| [x, x+Xy] | +X0t{[y, x+ Ay]}-1 [x, x + Aj] |
A||x+Aj||

®{[y,x+Xy]}

||x + Aj||

Inequalities (i) and (ii) show that the continuity property 5 (5u) implies that the

norm is Gâteaux (uniformly Fréchet) differentiable, and that the differential is

0t{[y,x]}/\\x\\.

Conversely,  suppose the s.i.p.  space   V has  Gâteaux  (uniformly  Fréchet)

differentiable norm. Since

!£±Mzl£l (A>0)^^i*^M±M^N (A<0)>
A ||x|| A

therefore

1I*+aj>||-N    my, x]}
lim
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For x, y e S and real A > 0,

||x + Aj>||-||x|| = 0?{[x,x+Xy]} + X02{[y,x + Xy]}-\\x\\ \\x + Xy\\
X A||x+A.y[|

(¡¡i) > *«* «P

from (i). I.e.,

0t{[x,x + Xy]}-\\x\\ \\x+Xy\\+X^my,x + Xy]}-0ê{[y,x]}^±^j = 0;

therefore

liminf{^{[x,x+Aj]}-||x|| ||x + A^||} ̂  0.
A-.0 +

Since the norm is differentiate, we have from (iii) that

^r^fex+y-iixiiiix+A^in
a^o+  \ A|x+Aj|| J

is finite and ^ 0. Therefore

,.      ||x + Aj>||-||x|| _   ,. 0l{[y, x+Xy]} _   0t{[y, x]}
hm --¿f——- = hm sup     m  —.   „   ' =      i,  n "

A-.0+ A A-.0 + ||x+A>>|| ||x||

and from (i) and (ii) limÄ^0+ @{[y, x + Xy]}/\x+Xy\ exists and is equal to

0?{[y, x]}/||x||.

We conclude that 0l{[y, x + Xy]} -> 0ï{[y, x]} as A -> 0 when the norm is Gâteaux

differentiable (and uniformly for (x,y)e SxS when the norm is uniformly Fréchet

differentiable).

To extend Hubert space type argument to the theory of the dual of an s.i.p.

space we need to impose further structure on the s.i.p. chiefly to guarantee the

existence of normals to closed vector subspaces.

Definition. A normed vector space is uniformly convex if given e>0 there

exists a 8(e) > 0 such that, for x, y e S, ||x+j||/2 = 1 —8(e) when ||x—y||>e.

Lemma 4. 7n a continuous s.i.p. space which is uniformly convex and complete in

its norm there exists a nonzero vector normal to every proper closed vector subspace.

Proof. It is well known that, in a uniformly convex Banach space, given a

proper closed vector subspace N and a vector y$N, then there exists a unique

nonzero vector x0 e N such that

|b-Xo|| =inf{\\y-x\\\xeN},       [12, p. 110].

Writing z0=y - x0, then

||z0|| Ú ||z0 + x||       forallxeiV

i.e., z0 is normal to N.
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Definition. A normed vector space is strictly convex if whenever ||x| + \\y\\ =

\\x+y\\ where x, j^O, then y=Xx for some real A>0.

It is convenient to characterize strict convexity of the norm in terms of s.i.p.

properties. E. Berkson [1, p. 281] states, and it can be proved simply:

Lemma 5. An s.i.p. space is strictly convex if and only if whenever [x, y] = ¡|x|| \y\

where x, y^=0, then y = Xxfor some real A>0.

It is well known that uniform convexity implies strict convexity.

In Hilbert space the representation theorem for continuous linear functionals

sets up a natural correspondence between vectors and continuous linear functionals

by means of the inner product. We show that there is a similar representation

theorem in a continuous s.i.p. space which is uniformly convex and complete in its

norm. An equivalent form of the following theorem has been proved by James

[7, p. 288] but we proceed directly by an adaptation of the corresponding Hilbert

space theorem using s.i.p. representation.

Theorem 6. In a continuous s.i.p. space C which is uniformly convex and complete

in its norm, to every continuous linear functional f 'e C* there exists a unique vector

yeC such that f(x) = [x, y] for all xeC.

Proof. (Existence). If/(x) = 0 for all x e C, then we choose y as the null vector

in C.

If f(x) ^ 0 for some x e C, then the null space N off is a proper closed vector

subspace of C. Hence by Lemma 4, there exists a nonzero vector y0 normal to N.

When xe N, f(x) = [x, y]=0 for y=ayQ any complex a.

When x=y0, f(x) = [x, y] =f(y0) for

y-(Kyo)l\\y0\\2)yo.

Since each x e C can be represented in the form x=z+Xy0 where ze N and y0

is normal to N and A =f(x)/f(y0), we have for all x e C

f(x) = f(z + Xy0) = f(x) + Xf(y0) = [z, y] + X[y0,y] = [z+Xy0,y] = [x, y].

(Uniqueness). Suppose that there exist vectors y,y'eC, y^y' such that

f(x) = [x,y] = [x,y'] for all xeC. Then [y,y] = [y,y']ú\\y\\\\y'\\, therefore

Iblálb'll and hence |j|| = ||/||.
From \\y||2 = [y,y'] it follows that \\y\\ \\y'\\ = [y,y'], and we conclude from Lemma

5 that y=y'.

We have then, in such a space, that the mapping x -*-fx induced by the s.i.p.

is a one-to-one map of C onto C*. It is a simple matter to show that this is a

norm-preserving mapping.

To make further progress in duality theory we specify that our space be a

uniformly continuous s.i.p. space which is uniformly convex and complete in its

norm. It is convenient to introduce
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Definition. A uniform s.i.p. space is a uniformly continuous s.i.p. space M where

the induced normed vector space is

6. uniformly convex and

7. complete.

A complete duality between a uniform s.i.p. space M and its dual M* is estab-

lished by

Theorem 7. For a uniform s.i.p. space M, the dual space M* is a uniform s.i.p.

space with respect to the s.i.p. defined by [fx,fy] = [y, x].

Proof. 1. [fx +/,/] = (fx +fy)(z) =fx(z) +fy(z) = [/,,/] + [/,/J. From the right-

hand distributive rule for M we derive a "left-hand distributive rule" for A7* of

the form :

[f,fx] + [f,fy] = [x,z] + [y,z] = [x+y,z] = [f,fx+y].

Properties 1-4 follow from the corresponding properties of the s.i.p. in M and the

definition of the s.i.p. in M*.

5u, 6. It has been proved [11, p. 647] that a Banach space is uniformly Fréchet

differentiable if and only if it is uniformly convex. It follows that M* has property

5u and is uniformly convex.

7. It is well known that the dual of a Banach space is a Banach space.

It is of interest to note the relation between orthogonality in uniform s.i.p.

space M and its dual M* : If x is normal to y in M thenfx is transversal to/y in M*,

and vice versa.

Since finite dimensionality implies many uniformity characteristics, a finite-

dimensional uniform s.i.p. space Mn has a simpler defining structure.

Theorem 8. Every finite-dimensional, strictly convex, continuous s.i.p. space is a

uniform s.i.p. space.

Proof. In a continuous s.i.p. space, the function f(x, y)=0?{[y, x]} defined on

Sx S, is continuous in the sense that 0?{[y, x + A>>]} -> 0i{[y, x]} for all real A -> 0.

But in a finite-dimensional space S is compact and hence Sx S is compact.

Therefore 0i{[y, x + Xy]} -> 0g{[y, x]} for all real A -> 0, uniformly for (x, y) e S x S.

It is well known that every strictly convex finite-dimensional normed vector

space is uniformly convex [12, p. Ill], and that every finite-dimensional normed

vector space is complete.

3. Examples of uniform s.i.p. spaces. Interest in uniform s.i.p. spaces depends

largely on the examples of such spaces and on the insight into the nature of the

example spaces given by the uniform s.i.p. space structure.

Minkowskian Space. H. Rund's treatment of Minkowskian space [9], [10]

suggests that Minkowskian space can be expressed quite naturally as an affine

space associated with a real finite-dimensional uniform s.i.p. space.
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A Minkowskian space is an «-dimensional affine space with metric d(x, y)

= F(y — x) where F is the Minkowskian norm function of the associated vector

space where

(i) ir(x)>0forx^0,

(ii) F(Xx)=\X\F(x), for all real A,

(iii) F(x+y)^F(x) + F(y), equality holding for x, y^O if and only if y=Ax for

some real A > 0.

(iv) jF(x) is of class C2 in each of its « arguments, the components of vector x.

We aim to determine a suitable form for an s.i.p. in the associated vector space

and to verify that the associated vector space is a uniform s.i.p. space. We shall use

the summation convention.

Euler's theorem on homogeneous functions gives,

(1) Fxix)x' = F(x)

and

(2) Fx>Xx)x< = 0.

From the identity %F%ix)(x)=Fx<(x)Fxi(x)+F(x)Fx'xi(x) and using (2) we have

(3) iF2v(x)x< = f(x)¿v(x)

and

(4) mx'(x)x^ = F2(x).

We write gn(x)=\Fx^xi(x) and define our s.i.p. for Minkowskian space by

[y, x] = g(X*)*y.

It is easily seen that this s.i.p. satisfies properties 1, 2, 4, and 5. Property 3 is

established from the differentiability property (iv) and the convexity property (iii)

as follows :

From a known theorem on convex functions, [6, p. 80],

(5) Fx>Ax)yy = 0   for all*, 7.

But we have by the second Mean Value Theorem,

F(y) = F(x) + FAX*? - *<) + Fx<Ax + 9{y - x})(y' - x%? - x'),

where 0< 6< 1. Using (1) and (5) we deduce that F(y)'¿¡Fx<(x)yi. From (3) we have

then that

&X*)*y - F(x)Fxl(x)yi ï F(x)F(y),

which is the required inequality.

From our general theory we can deduce the form of the linear functionals in

Minkowskian space. The linear functional fx corresponding to vector x is given by

fx(z) = [z, x]   for all z

= ftA*)*v>
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so that the covariant components of vector x are given by

(6) fi = aX*)*'.

This also gives us the form of the mapping x -*-fx of M onto M*.

In his development of the theory of Minkowskian spaces Rund adopts, instead

of the strict convexity condition (iii), the stronger Legendre condition of the

calculus of variations expressed as :

(7) The quadratic form, gi3(x)/y is positive definite for all x and y, [10, p. 5].

It is known that this condition implies that det | gi;(x)| is nonzero for all x, [10, p. 8],

thus guaranteeing that the inverse map/* -> x, of M* onto M can be determined

for any x, from the equations (6). However, the uniform s.i.p. space theory informs

us that the inverse map fx -> x, of M* onto M is determined under the weaker

strict convexity condition (iii).

The Legendre condition (7) is also imposed to provide that the norm of the dual

space possesses the same differentiability properties (iv) as the function F, [10,

p. 23]. However, without this condition the dual is still a uniform s.i.p. space and

the principal dual properties of the space are seen to be derived from this uniform

s.i.p. space structure.

There are many important Minkowskian spaces which do not obey the Legendre

condition, for example, all the /J-spaces where 2<p<co, [10, p. 17]. The uniform

s.i.p. space theory shows how well behaved such spaces are despite this lack.

£P„-space (\<p< go). The real Banach space ^CP(X, S?, p) where 1 <p < oo can

readily be expressed as a uniform s.i.p. space with s.i.p. defined by

[y,x] = ||Y||p-2 i j|^|p_1sgnxi//i.
||X||j,        Jx

We first consider

¿¡fp-space where 2fíp<co. It is obvious that the function satisfies s.i.p.

properties 1, 2, 4. We proceed to establish

3. Using Holder's inequality we have

)iii/ r \iip(J>l'+) ■
where l/p + l/q=l, and the required inequality follows.

5u. Considering x, y, z e S we have

\[z,x]-[z,y]\ = £ |(|x|"-2x-M»-2>>)z| dp.

If for a certain teX,v/e assume x(r) > 0 and |x(r)| > \y(t)\, then

0= \x(t)\>-2x(t)-\y(t)\»-2y(t)

è (p-l)\x(t)\"-2(x(t)-y(t)),       [6, p. 39].

\Ly\x\" x sgn x dpi é a
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Therefore in general

| |x|p-2x-|y|p-2j| ^ (j»-l)|x-j|(|x|p-2 + |j|p-2).

Now by Holder's inequality, since p ^ 2,

£ |x|"-2|(x-y)z| dp Ú (£ \(x-y)z\*'2 dp^'* S (£ |x-j|"^1,P.

Therefore | [z, x]-[z, y] \ ¿2(p-l)\\x-y\\p, which implies that property 5u holds.

It has been established that such spaces are uniformly convex [3, p. 403].

We now consider

¿ifp-space where l<p^2. The representation theorem for continuous linear

functionals on =S?p-space where 2^p<ao now follows from the general results

obtained for s.i.p. spaces. The continuous linear functional fx corresponding to

vector x s J£?p is given by

fÁz) = i,   Mp-2     ylxl"'1 sgn x dp   for all y.
\\x\\p     Jx

Further we have that the dual áC* of an =S?p-space where 2^p<oo is itself a

uniform s.i.p. space with s.i.p. defined by

[fx,fy] = i.iip-2 f ylxl"-1 sgn x dp
\\x\\p     Jx

= 0^2 i ^hl'-'sgnT?^,
Wvu    Jx

where l/p+l/q=l, and í=(l/||x||r2)|*|p~1 sgnx and7, = (l/||j||r2)blp_1 sgny.

From this s.i.p. for ■&* we deduce that JSfJ where 2¿/?<oo is Jz"a where

l/p+l/q=l. We conclude that =S?p-space where l<p<co can be expressed as a

uniform s.i.p. space with our defined s.i.p.
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