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In [6], I gave a systematic presentation of certain kinds of medial properties

such as (P, Q)n, (P, Q, ~)n, etc., and their basic properties, having special regard

for their dualities and relations to local properties. The present paper is supple-

mentary to [6], in that it goes further into the relations between open sets and their

complements and provides certain addition and reduction theorems not given in

[6], as well as their applications.

Most of the proofs depend upon "diagram chasing", and two diagram types

recur frequently. To^avoid repetition, these types and their relevant properties are

given in two lemmas in an Appendix.

Throughout, point sets are assumed to be imbedded in a locally compact

Hausdorff space X.

Point set boundaries are denoted by the symbol "F"; thus F(A) denotes the

boundary of the point set A. As in [6], a pair P, Q of open sets is called "canonical"

if P^ Q and Q is compact. Homology and cohomology groups based on compact

supports are denoted by lower case "A". As in [6], Cech homology and cohomology

with coefficients in a field are used throughout.

If A is a subset of a space X, then a property of A is called intrinsic if it is a

topological invariant of A, and extrinsic if it is a positional invariant of A in A

(see [5, p. 290]). If A is closed, the distinction is of no consequence, since the open

subsets of A coincide with its intersections with open subsets of X. But for A not

closed, the distinction is important—medial properties of A in terms of its own

open (rel. A) subsets are intrinsic, but in terms of the open subsets of X they are

only extrinsic. (For example, the open set M of Example 1.1 of [6]—a domain in

E2 bounded by a closed curve containing a sine curve of form y = sin 1/jc—has

property (P, Q)0 intrinsically but not extrinsically.)

The expression "A has property (P, Q)r" will frequently be abbreviated to "A

has (P, Q)r", and in similar expressions involving other medial properties.

1. Relations between open sets and their complements. In [6], the following

question was considered : If M is closed and both A and M have certain medial

properties, what can be concluded concerning the medial properties of X—Ml

(Compare Theorems II.2a, II.2 and II.3a of [6].)
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Theorem 1.1. IfXhas(P, Q)r+1 and its closed subset M has (P, Q)r, then X-M

has (P, Q)r+1 extrinsically.

Proof. Let U=X—M and apply Lemma Al of the Appendix to the diagram

hT(P, PC\M)-> hr+1(P n U)

(1) hr(R,RnM)->hr+1(RnU)->hr+1(R)

hr+1(Qn U)->hr+1(Q)

in which P, Q is a canonical pair, R an open set such that P => R => R => Q, the hori-

zontal lines are portions of exact sequences for compact cohomology [1] and the

vertical arrows are homomorphisms induced by inclusion.

Remark. Theorem 1.1 is stronger than Theorem II.3a of [6], in which it was

assumed that pr(X) ^ w.

Corollary 1.1. If U is an open set such that Ü has (P, Q)r+1 and F(U) has

(P, QY, then U has (P, Q)r+1 extrinsically.

Theorem 1.2. If X has (P, Q, ~)r + 1 and its closed subset M has (P, Q)r, then the

set U= X-M has (P, Q, ~)r + 1 extrinsically.

Proof. Border the diagram (1), at the top, by the exact sequence

hr(M)^hr+1(U)-^hr+1(X)

and apply Lemma A2 (alternative hypothesis) of the Appendix.

Remark. Theorems 1.1 and 1.2 supplement Theorem II.2a of [6]. It will be

noted that for Y to have (P, Q)r + 1 and U to have (P, Q)r + 1 does not imply that

X— U has (P, QY ; this is shown by the example given in the remark following

[6, Theorem II.2], with r=l.

2. Addition theorems. Consider now the question: If the space Y is the union of

sets A and B having certain medial properties, what can be said about the medial

properties of Y? This type of question was not considered at all in [6]. It will be

understood throughout that P, Q and R are open sets such that P^R^R^ g,and

P, R as well as R, Q are canonical pairs.

Theorem 2.3. // M is a closed subset of a locally compact space X and both M

and X— M have property (P, Q)r extrinsically, then X has (P, QY-
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Proof. Apply Lemma Al to the diagram below:

hr(P-M)->hr(P)

hr(R - M)-> hr(R)-► h'(R n Af )

hr(Q)-► h'(Q n M)

Remark. The corresponding theorem for homology fails, as the following

example shows: Let X consist of the following subspace of the coordinate plane;

the sides of the unit square 51 in the first quadrant which has two sides on the x- and

_y-axes, and the portions of all lines x= 1//I, n=2, 3,4,..., that lie within S. Let M

be the subset of X consisting of all points on the sides of S. Then M and X— M

have (P, 0! but X does not.

Corollary 2.1. If U is an open subset of a locally compact space X such that

F(U) and U have property (P, Q)r extrinsically, then U has (P, Q)r extrinsically.

Proof. Apply Theorem 2.3 with M=F(U), X= V.

For the property (P, Q, ~)r we have

Theorem 2.4. If M is a closed subset of a locally compact space X such that

pr~\M) is finite and both M and X— M have (P, Q, ~)r extrinsically, r>0, then X

has(P,Q, ~y.

Proof. Apply Lemma A2 to the diagram below:

hr~\M)-► hr(X-M)-> hr(X)-► hr(M)

hT(P~M)->hr(P)

hr(R-M)-► hr(R)-> hr(R O M)

hr(Q)-*■ h\Q n M)

Corollary 2.2. If U is an open subset of a locally compact space X such that

pr~\F(U)) is finite and both F(U) and U have property (P, Q, ~)r extrinsically,

r>0, then U has property (P, Q, ~ )r extrinsically.
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Another interesting corollary is

Corollary 2.3. If X is a connected, locally compact space, and X has a 0-lc

closed and connected subspace M such that X—M has property (P, Q, ~)\ then X

is 0-lc.

Proof. M has (P, Q, ~)0 and hence (P, Q, ~)\ Hence Y has (P, Q, ~Y by

Theorem 2.4. Therefore Y has (P, Q, ~ )0.

Remark. If, in the theorem just proved, it had been assumed that X—M has

(P, QY, then the hypothesis that pr'1(M) is finite would not have been needed.

(See Lemma A2, alternative hypothesis.) Consequently the following theorem

holds:

Theorem 2.5. If M is a closed subset of a locally compact space X such that M

has property (P, Q, ~)r and X—M has (P, Q)T extrinsically, r^O, then X has

(p, q, ~y.

Corollary 2.4. If U is an open subset of a locally compact space X such that

F(U) has property (P, Q, ~)r and U has property (P, Q)r extrinsically, r^O, then U

has(P,Q, ~Y-

In the cases so far considered in this section, the two sets whose union is X have

been disjoint. The following theorems do not make this assumption.

Theorem 2.6. If X is a locally compact space which is the union of closed subsets

X1 and X2 having property (P, Q)r + i, such that Xx n Y2 has (P, Q)r then X has

(P, Q)r + 1-

Proof. Apply Lemma Al to the following diagram, in which the horizontal

lines are portions of Mayer-Vietoris sequences, and the vertical mappings are

induced by inclusion:

Hr+1(P n X1) + Hr+1(P n X2)-> Hr + 1(P)

Hr+1(R n Zx)+/f"r+1(J? n Y2)-> Hr+1(R)-> Hr(R n Xt n Y2)

Hr + l(Q)-^H^QnX.nX,)

The following corollary is a consequence of Theorem 2.6 and [6, Theorem III.2].

Corollary 2.5. Let X be a locally compact space which is the union of closed

subsets Xi, X2 having property k(P, Q)n, O^k^n, and such that X1 n Y2 is lck~x

and has property (P, Q)k-X. Then X has property k(P, Q)n.

Remark. It is well known that if a compact space X— X1 u Y2 where Xx and

X2 are closed and lc" and Xx n Y2 is lcn_1, then Y is lcn. The above corollary

generahzes this.
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Theorem 2.7. If a locally compact space X is the union of open sets X1 and X2

having (P, Q)r extrinsically, and Xy n X2 has property (P, Q)r + 1 extrinsically, then

X has property (P, Q)r.

Proof. Use Mayer-Vietoris sequences for cohomology with compact supports,

and proceed as in the proof of Theorem 2.6.

Analogously, the following theorem holds for the (P, Q, ~)r property.

Theorem 2.8. If a locally compact space X is the union of closed sets X1 and X2

which have (P, Q, ~)r + i, r^O, and X1 n X2 has (P, Q, ~')r and Hr+1(X1 n X2) is

finitely generated, then X has (P, Q, ~)r + 1.

Proof. Border the diagram in the proof of Theorem 2.6, at the top, with the

portion of the Mayer-Vietoris sequence of the triad X, A"1( X2 which extends from

HT + 1(X1 n X2) to Hr(X1 n X2); apply Lemma A2 of the Appendix.

Remark. To show the necessity for assuming Hr + 1(X1 n X2) finitely generated

in Theorem 2.8, consider the following example:

A" is a subspace of coordinate 3-space consisting of a denumerable collection of

finite, circular, hollow cylinders Cu C2, C3,..., closed at both ends, with bases in

the planes z = 1 and z= — 1 and successively tangent along common line elements

lying in the plane x=0 which converge to the interval E between z= 1 and z= — 1

on the z-axis. (See the figure on p. 343 of [4].) Let Mn denote the set of all points in

the intersections of Cn with the planes z= ±p/2n~1, p=0, 1,..., 2"~1 —1. Let

M=E\J \Jñ=\Mn. The circles constituting Mn divide Cn into components Knl,

Kn2, ...,Knk where k = 2n. Let X2n = Kn2 u Kni u- ■ -u Knk. Let Xln = closure of

CB-X2n and It-Uf-ilTta, /= 1, 2, and X, = Xl. Then X1 and A2 ha\e(P, Q, ~\;

for E3 — X¡ has (P, Q, ~)0 and consequently A", has (P, Q, ~)1 by virtue of Theorem

II.5 ("Fourth fundamental duality theorem") of [6]. Also, M=X1 r\ X2 has

(P, Q, ~)0 since M is 0-lc. However, X does not have property (P, Q, ~)^

Theorem 2.9. If a locally compact space X is the union of open sets A\ and X2

having property (P, Q, ~)r extrinsically, while A^ n X2 has property (P, Q, ~)r + 1

extrinsically and hr(X1 n X2) is finitely generated, then X has (P, Q, ~)r.

Proof. Apply Lemma A2 to the diagram

hr(Xx n X2)-► Af(A"1)+Âr(A'a)-> hr(X)-> hT+1(X1 n X2)
A A À

Ar(,P n Xx)+hr(P n X2)-► hr(P)

hr(R n Xj) + hr(R n X2)-► h'(R)-► Ar+1(^ n X1 n X2)

hr(Q)-»>Ar+1(ßn ^nJTa)
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where the horizontal lines are portions of Mayer-Vietoris sequences for cohomology

with compact supports (see [1]).

3. Reduction theorems. If a space X and closed subsets Y1; Y2 of which X is

the union all have certain medial properties, what can be said about medial

properties of the intersection of X1 and Y2? Analogous questions concerning

global properties have been studied in the past; for instance, if a 1-acyclic continuum

is expressed as the union of subcontinua Xx and X2, then X1 n Y2 is connected

(unicoherence).

Theorem 3.10. If a locally compact space X having property (P, Q)r + ! is expressed

as the union of closed sets Xu X2 having property (P, Q)r then X1 n Y2 has property

(P, Q),

Proof. Extend the sequences in the diagram of the proof of Theorem 2.6 one step

to the right, again applying Lemma Al.

Remarks. Theorem 3.10 is the analogue, for medial properties, of the theorem

which states that if a locally compact, (r+l)-lc space X is expressed as the union of

closed sets Xu X2 which are r-lc, then X1 n X2 is r-lc. (The proof of the latter

may be given by a diagram like that for Theorem 3.10, with localized P, R and Q.)

Examples can be given to show that for locally compact spaces X having

property (P, Q)r + i, the converse of Theorem 3.10 does not generally hold.

The theorems just proved have interesting applications to common boundaries.

For example, it is known that if a closed set separates «-space into two ulc" domains

of which it is common boundary, then it is lc* [5] ; this is an immediate corollary of

Theorem 3.10, since ulcfc domains have lcfc closures [5, p. 301, Theorem 5.8] and

hence closures having property (P, Q)k. Even more generally, however, it follows

from Theorem 3.10 that if any locally compact space is known to be lck + 1 and is

separated into ulck open subsets by a common boundary B thereof (see [2]), then B

is lck. Also, it follows from Theorem 3.10 that if a locally compact space X having

property (P, Q)1 is the union of closed subsets Xu X2 having (P, Q)0, then Xl n X2

is locally connected.

Theorem 3.11. If a locally compact space X which has property (P, Q, ~)r + i

ii expressed as the union of closed subsets X1 and X2 which have property (P, Q, ~)r

and such that HrJrl(X-¡) and Hr + 1(X2) are finitely generated, then Yj O Y2 has

property (P, Q, ~)r.

The proof may be obtained by an extension of the diagram used in proving

Theorem 3.10 and applying Lemma A2.

The theorems for cohomology which correspond to the two preceding theorems

are stated below without proof (the proofs are quite analogous to those of the

preceding theorems, being based on Mayer-Vietoris sequences for cohomology

with compact support, with applications of Lemmas Al and A2).
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Theorem 3.12. If a locally compact space having property (P, Q)r is expressed

as the union of open sets Uu U2 having property (P, ß)r + 1 extrinsically, then U1 n U2

has property (P, Q)r +1 extrinsically.

Theorem 3.13. If a locally compact space having property (P, Q, ~)r is expressed

as the union of open sets Ux, U2 having property (P, Q, ~)r + 1 extrinsically and such

that Ar(i71) and hr(U2) are both finitely generated, then Ui n U2 has property

(P, Q, ~)r+1 extrinsically.

Consider now the situation where medial properties are known to hold for a space

A" as well as for the intersection of closed sets whose union is X; can one say what

properties are inherited by these closed sets ?

Theorem 3.14. If a locally compact space X having property (P, Q\ is expressed

as the union of closed sets A"lr X2 whose intersection has property (P, Q)„ then both

A\ and X2 have property (P, Q)r.

Corollary 3.6. If a locally compact space X having properties (P, Q)r and

(P, Q)r+i is expressed as the union of closed subsets Xx and X2, then a necessary and

sufficient condition that Xx and X2 each have property (P, Q)r is that A\ n X2 have

property (P, Q)r.

Proof. The necessity follows from Theorem 3.10. The sufficiency follows from

Theorem 3.14.

Remark. The case r = 0 of Theorem 3.14 reduces to the statement that if X is le

and is expressed as the union of closed sets Xx and X2 whose intersection is le, then

both Xx and X2 are le. Other applications include notably the «-gms, which all have

"P, Q "-properties ; thus if an open set C/in an w-gm has an \ck boundary, then Ü

is lcfc (as is also the complement of U).

Theorem 3.15. Let a locally compact space X have property (P, Q, ~)r and

hr + x(X) finitely generated. If X is expressed as the union of closed sets Xx and X2

whose intersection has property (P, Q, ~), then Xx and X2 have property (P, Q, ~)r.

For cohomology, the theorems corresponding to the last two above are:

Theorem 3.16. If a locally compact space having property (P, Q)r is expressed

as the union of open sets Ux and U2 whose intersection has property (P, Q)r ex-

trinsically, then Ux and U2 have property (P, Q)r extrinsically.

Theorem 3.17. Let a locally compact space X have property (P, Q, ~)r and

hr_y(X) finitely generated. If X is expressed as the union of open sets U1 and U2

whose intersection has property (P, Q, ~)r extrinsically, then U^ and U2 have

property (P, Q, ~ )r extrinsically.

4. Applications to local connectedness in //-manifolds. It was shown in [5] (see

p. 301, Theorem 5.8) that if D is a ulc* open subset of an orientable n-gcm X, then
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D is lcfc. Since (P, Q)r is generally weaker than r-ulc, it is of interest to note that the

result cited can be generalized as follows :

Lemma 4.1. Let D be an open subset of an orientable n-gcm X such that D is ulck

and has property (P, Q)k + i extrinsically. Then D is lck + 1.

Proof. It is sufficient to show that D has property (P, Q)k + i since for D to be

lck + 1 is equivalent to D having property 0(P, Q)k + i', and it is already known, from

the result cited, that D is lc" and hence has property 0(P, Q)k.

Let/1, Q be a canonical pair of open sets of Y. Since D has (P, Q)k + 1 extrinsically,

«fc + i(ô n D | F n D) is finitely generated [6, p. 207]. Consider

hk+1(QnD\FnD);

let {Z[ + 1} be any collection of independent elements of it. By [5, p. 168, Theorem

19.7], there exists an open set U containing F n D such that the Zk + 1 are also

independent elements of hk+1(U). However, by [5, p. 300, Lemma 5.7], this implies

the existence of equally many independent elements in hk + 1(Qr\ Dn U\ U).

But the latter, because of the inclusion maps

hk + i(Q nDnU)^ hk + 1(Q nfl)^ hk + 1(F n £>) ̂  hk + 1(U)

cannot have more independent elements than hk + 1(Q n D \ F n D)—which, as

observed above, is finitely generated. It follows that hk + 1(Q n D \ F n D) must be

finitely generated.

It was shown by R. L. Moore [3] that if the simply connected domain D in S2

has property (P, Q)Q, then F(D) is 0-lc. In [6, Theorem V.2], I gave an «-dimensional

generalization of this result, viz. ; if U is an open subset of an orientable «-gem

having properties (P, Q, ~)0 and (P, Q, ~)„_a as well as/>„_!(£/) finite, then the

boundary of every component of U is 0-lc. A generalization of another kind can

now be given, in the form of a condition sufficient that a boundary be lcn~2.

Theorem 4.1. Let U be an open subset of an orientable n-gcm X which is ulcn~3

(ifn>2), has property (P, Q)n-2 extrinsically, and />n_1(i7) finite. Then the boundary

ofUislcn~2.

Proof. By [4, Corollary VII.3] and [6, Corollary IV. 1], X- C/is lc""2. By Lemma

4.1, Ü is lcn_2. And as a consequence of Theorem 3.10, (X— U) n Ü is lc"-2.

Remarks. We could not conclude, in addition, that F(U) is («- l)-lc. For if M

is the union of an infinite set of solid balls Sn is S3, successively tangent but other-

wise disjoint, and converging to a point p, the complement U of M is 0-ulc, has

property (P, Q\ and/72(i/) = 0; but F(U) is not 2-lc. However, we could conclude

above that X— U is lc"-1, since U has property (P, Q)n-i (see [6, Lemma IV.l])

and hence 0(.P, Q)n-i (see [6, Theorem IV.3]).

If U were actually ulcn "2, then F(U) would be much more restricted ; in particular

each component of F(U) would be either a point or an orientable («— l)-gcm [5, p.

311, Theorem 8.3].
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The necessity for assuming pn-i(U) finite is shown by the example, in S3, of a

sequence of points approaching a limit point/?; the complement U of this sequence

is 0-ulc, and has property (P, Q)u but does not have p2(U) finite.

Finally, the ulc"-3 condition could not be weakened through replacement by

"P, Q" conditions. For example, consider the example in the Remark following

Theorem 2.8 above. The space A of this example, considered as a subset of S3, is

the boundary of a domain which has property 0(P, Q)lt but X is not lc1.

Lemma 4.1 also enables us to strengthen the theorem which states that a set

which separates the «-sphere into two ulc'' open sets of which it is the common

boundary must be lc* (see Remarks following Theorem 3.10):

Theorem 4.2. If X is an orientable n-gcm and F is a closed subset of X which

separates X into ulck open sets Ux and U2, each of which has property (P, Q)k + 1 and

which have F as common boundary, then F is lck + 1.

Appendix. The following two lemmas concern types of diagrams that occur

repeatedly in the establishing of reduction and addition theorems.

Lemma Al. Consider the commutative diagram

in which the G's, F's and H's are vector spaces, the i's, fs, f's and h are homo-

morphisms, and the middle horizontal line of homomorphisms forms an exact sequence.

7/Im g and Im hj2 are fg. (^finitely generated), then \mff2 isf.g.

Lemma A2. Consider the commutative diagram :

e in J
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of vector spaces in which E, g(Kern g±g) and «(Kern «!«) are fg., and the horizontal

lines are exact. Then ff^Kernff^) is fig.

Alternatively, if Im g is fg., then the same conclusion follows without the assump-

tion that E is fig.

Proof. Let A"0 = Kern^i/2. Since jffif2K0 = h1h(j2K0) = 0, j2KQ is a subspace of

Kern hxh and therefore h(j2K0) =jif2K0 is f.g. We may, then, represent f2K0 as a

direct sum K+L where L is f.g. and Ac Kern yV

Since the horizontal lines are exact, K has antecedent Kx in G2. And since

io(gigXi)=ffJiX1=ff1K=0, gigKi must be a subspace of Kern i0. Hence gigA^

has antecedent K2 in E and must be f.g. Then Kx is representable as a direct sum

K3+Ly where Lx is f.g. and A,3 = Kerng1gA'1. But then gK3 must be f.g., since

g(Kerng!g) is f.g. by hypothesis. Hence gK~i is f.g. and igK1=f1i1K1=f1K is f.g.

It follows that f1f2K0=f1(K+L) is f.g.

The proof under the alternative hypothesis should be clear.

Remark. In the application of Lemma A2, it frequently happens that Kx of the

proof is a homology (cohomology) group based on chains with compact supports.

In this case, the antecedent K2 in E of gigA^ may be f.g. even though E itself is not.

In such cases, reference is made to "Lemma A2, Remark."
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