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I. Introduction. In this paper, po-group will mean partially ordered torsion

free abelian group. A Hahn-type po-group Fis defined as follows. Let T be a po-set,

for each y e T, let Ry be a nontrivial po-group. If v is an element of the large direct

sum of the Ry and yeF, v(y) will denote the yth component of v. Let V= V(F, RY)

be the following subset of the large direct sum of the Ry. An element v e V if and

only if S(v) = {ye F \ v(y)^0} contains no infinite ascending sequences; that is,

every nonempty subset of S(v) contains maximal elements. Since the union of two

subsets of T each satisfying the maximum condition, also satisfies the maximum

condition, it follows that V is a subgroup of the large direct sum of the RY.

For each veV, let

M(v) = {y e T | v(y) ^ 0 and v(a) = 0 for all a > y}.

If y e M(v), then v(y) is called a maximal component of v. A nonzero element

v e V is defined to be positive if each maximal component v(y) of v is positive

with respect to the partial order of Ry.

P. Conrad, J. Harvey, and C. Holland [1, P- 145] have shown that V, ordered

as above, is a po-group. They have also shown that V is a lattice ordered group if

each Ry is a totally ordered group (o-group) and F is a root system, i.e., for each

y e F, {a e F \ a>y} is a chain.

In [2], the author considered special cases of Hahn-type po-groups as examples

of Riesz groups. A Riesz group G is defined as a semiclosed po-group (g e G and

ng ä 0 for n > 0 implies g ^ 0) that satisfies the Riesz interpolation property. That

is, whenever xx,..., xm, yx,...,yn are elements of G and xtSyj, i—\,...,m\

j=l,.. .,n, then there is an element z e G such that x¡ S z S y¡. We list in [2] some

conditions that are equivalent to the Riesz interpolation property. The condition

we find most convenient to use is the decomposition property : if x, u, v e G and

0 S x S u + v where u ̂  0, v S: 0, then there exists elements ü, veG such that

x = ii+v and OSüSu, OSvSv.

The purpose of this paper is to determine necessary and sufficient conditions so

the Hahn-type po-group V(F, Ry) will be a Riesz group. In doing so we answer

in the affirmative the following question which we posed at the end of [2]. If F is

an arbitrary po-set and for each y e F, Ry is the naturally ordered group of real

numbers, is V(F, Ry) a Riesz group ?
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Since every lattice ordered group is a Riesz group, the conditions of Theorem

2.2 [1, p. 145] are sufficient for V to be a Riesz group. Our results reflect this and

are a generalization of this theorem to Riesz groups.

II. The main theorem. In this section we establish the terminology and

notations to be used and state the main theorem and some immediate corollaries.

Let T be a po-set. If y and S are elements of V, then y and S are disjoint if y $ S

and 8$y. If y and S are disjoint we write y||S. A nonempty subset A of T is a

disjoint set if y||S for every pair of distinct elements y, 8eA. If ß e F and

(y, 8) e T x T, the notation ß < (y, S) will mean ß < y and ß < 8.

An o-group G is order dense, or merely dense, if x<y in G implies there is an

element z e G such that x<z<y. An o-group G that is not dense will be called

discrete. If G is a trivially ordered group, then G will be called trivial.

For each y e T, let Ry be a trivially ordered group or an o-group. The element

y will be called a dense (discrete, trivial) component if Ry is dense (discrete, trivial).

A nontrivial component will often be called ordered.

Let Aç T x T and 7r(, i= 1, 2, denote the projections. Then A is totally disjoint if

(Í)   77}A n 7T2A= 0,

(ii) 7rxA u 7r2A is a disjoint set, and

(iii) ttxA u 7T2A contains no trivial components.

If A and B are nonempty subsets of T, then B covers A if, for each a e A, there

is ß e B such that ß 2; a. A totally disjoint set A is complete if, whenever A is a dis-

joint subset of {a e F \ a < (y, 8) for some (y, S) e A} and A contains only trivial

components, there is a disjoint subset

B £ {a e T | a < (y, 8) for some (y, 8) e ^ A x 7r2A}

such that no element of B is trivial and B covers A. A subset S of T is complete if,

whenever A is a disjoint subset of {a e F \ a<ß for some ß e S} and /I contains only

trivial components, there is a disjoint subset F s {a e F | a</J for some ß e S} such

that no element of F is trivial and F covers vL Finally, if F is a nonempty subset

of T then we define T* = {aeF | a g y for some y e F}. The notation a < T means

a < y for all y e T.

Theorem. Let F be a po-set and for each y eF, let Ry be a trivially ordered group or

an o-group. Then V= V(F, Ry) is a Riesz group if and only if every totally disjoint

subset ofFxF and every disjoint set of discrete components of F is complete.

We first note that, since every o-group is semiclosed and V is a subgroup of the

large direct sum of the Ry, the po-group V is semiclosed. Thus, in all that follows

we concern ourselves with the decomposition property.

Our first corollary answers the question at the end of [2].

Corollary 1. If F is an arbitrary po-set and for each yeF,Ry is an o-group then

V(F, Ry) is a Riesz group.
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Proof. The conditions are clearly satisfied since there are no trivial components.

If T is taken to be a root system, then Corollary 1 shows our results are con-

sistent with those of Theorem 2.2 [1, p. 145]. The next corollary generalizes this.

Corollary 2. If F is a root system and for each yeF,Ry is a dense o-group or a

trivially ordered group, then V(F, Ry) is a Riesz group.

Proof. In the root system F, <x<(y, 8) cannot occur if y\\8. Thus, every totally

disjoint subset F x F is complete.

The conditions of the theorem are somewhat complicated so we offer the

following examples to show what the conditions do.

Example 1. Let F={a, ß, y} where ß>a, y>a and j8||y (Figure 1).

a

Figure 1

i   S

ce

Figure 2

Let RB = Ry be the naturally ordered real numbers and Ra the trivially ordered real

numbers. Then V=Ra © Re © Ry (the direct sum) is a po-group but not a Riesz

group. This can be seen by letting x=(l, 0, 1), u = (0, 0, 1) and v = (0, 1, 0). Then

0 < x < u + v where these elements are strictly positive. If x = ü + v where ü e V, v e V

and OSüSu, O^^î), then ü(ß) = v(ß) = 0, v(y) = 0 and S(y)=l. Thus, v(<x) = 0 and

U(a)= 1 so that v = 0 and w = x. However, x$« so the decomposition property does

not hold. This is because the totally disjoint set A={(/9, y)} is not complete. That

is, there is no way to cover A ={a} by a subset of -nxA x 7r2A.

We can correct this by introducing another element S where a < 8 < (ß, y)

(Figure 2) and by taking Rô to be the naturally ordered reals. Then A={(j8, y)}

is complete since B={8} covers A = {a} and S is ordered and V= Ra © Rö © Re © Ry

is a Riesz group.

Thus, we see that for each trivial a < (ß, y) where j3||y and both are ordered, there

must exist an ordered S such that a < S < (ß, y). However, the next example shows

that this condition, by itself, is not sufficient.

Example 2. Let F={ß,y,Si,ai} where i=l,2,3.  Partially order F as,

ß\\y, 0i <(/3, y), «, < (ß, y) for all i, a¿\oj if i+J, 8¡ < S, if i<j, a¡ < S, if iSj (Figure 3).

For each i, let Ra¡ be the trivially ordered real numbers and for A e F, A/a, let RA
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ß   \ j>y
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Figure 3

be the naturally ordered reals. Then V= V(F, Ry) is not a Riesz group. For let

x, u, v be defined as

X(X) = 1   if A = y,

= 1    if A = a¡, i = 1, 2, . . .,

= 0   otherwise;

«(A) = 1    if A = y,

= 0   otherwise;

v(X) = 1   if A = ß.

= 0   otherwise.

Then 0<x<w+îj. However, every definition of m and v that satisfies x=u+v and

OátZ^w, O^v^v, must be such that either the supports S(u) or S(v) contain an

infinite ascending sequence. Thus, there are no elements of V that satisfy the

decomposition property for x. This is because A={at | i=l, 2,...} is a disjoint

subset of trivial components of {A e F | A < (ß, y)} where, clearly, {(ß, y)} is totally

disjoint. Now, A can be covered by {Sf | i—l, 2,...} but no disjoint subset of this

latter set covers A. Thus, {(ß, y)} is not complete.

The above examples involved dense o-groups. We now give a very simple ex-

ample to show why every disjoint set of discrete components must be complete.

Example 3. Let T={a, ß} with a<ß, Re the naturally ordered integers and Ra

the trivially ordered reals.

.ß
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Thus, V=Ra ® Re is not a Riesz group. For let x=(l, 1), u = v = (0, 1). Then

0<x<m+jj. If x = ü+v where O^u^u, 0^v = v then, without loss of generality,

ü(ß)=l so v(ß) = 0, 5(a) = 0 and «(a)=l. Thus, ü=(l, 1)$«.

In an attempt to simplify the constructions to follow we first prove the

following

Lemma. Let F be a po-set and for each yeF, let Ry be a trivially ordered group or a

dense o-group. Then V= V(F, Ry) is a Riesz group if and only if every totally disjoint

subset ofFxF is complete.

III. Proof of lemma—sufficiency. For each yeF, let Ry be a dense o-group or

a trivially ordered group and suppose every totally disjoint subset of F x F is

complete. Let x, u and v be positive elements of V = V(F, Ry) such that O^x^u + v.

If x=0 or x=m + v, there is nothing to prove so it may be assumed that 0 < x < u+v

and 0<w, 0<v. Let w = u + v — x. Thus, M(x), M(u), M(v), M(w) are nonempty

collections of the dense components.

In the following, we repeatedly use the fact that if y e M(x) u M(w), then there

exists ß e M(u) u M(v) such that ß^y.

We first decompose F into three disjoint subsets. Let

r0 = M(x)* n M(u)* n M(v)* n M(w)*

and r1 = r\r0. Let r2={« e T0 [ C n M(x)= 0 or C n M(w)= 0 for all maximal

chains CsT such that a e C} and r3 = ro\r2.

We now construct ü, v e V such that ü+v = x,0^ü-=u and 0^ v^v by defining

ü(a), v(a) for each a e T.

Thus, let a e T. If a e Fx and

(1) a $ M(x)*, let Ü(a) = v(a) = 0,

(2) a e M(x)*\M(w)*, let ü(a) = u(a), v(a) = v(a),

(3) a e M(x)* n M(w)* but

(i) a i M(u)*, let ü(a) = 0, v(a) = x(a),

(ii) a $ M(v)*, let Ü(a) = x(a), v(a) = 0.

It frequently happens, as in (i) and (ii) above, that two definitions are duals of

each other. We will denote this by merely saying, "dual".

Now define Aç M(x) x M(w) as, (y, 8) e A if and only if y¡|8 and there is an

element A e T2 such that A<(y, 8). Let J denote the set of maximal elements of

T2 n [S(x) u S(u) u S(v)] and A the trivial components of J.

Let A(u)={a e A \ there is (y, S) e A such that a < (y, 8), y e M(u) and 8 e M(v)}.

Let A(v)={ae A\A(u) \ there is (y, 8)eA such that a<(y,8), y e M(v) and'

8 e M(u)}. Define A(M) as (y, S) e A(u) if and only if (y, 8) e A, y e M(u), 8 e M(v)

and there is a e A(u) such that a<(y, 8). Then A(u) is totally disjoint, A(u) is a

disjoint subset of trivial components of {A e F | A<(y, 8) e A(u)}, tt1A(m)çM(x)

n M(u) and tt2A(u)^M(w) n M(y). Thus, there is a disjoint subset Bx of ordered
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components of {XeF \ X<(y, 8) eTrxA(u)xTr2A(u)} such that Bx covers A(u).

Clearly, Bx £ F0 and, without loss of generality, we may assume for each ß e Bx

there is ce s A(u) such that ß>a. Thus, Bx £ F2.

By a dual argument, A(v) exists and is totally disjoint. Moreover, A(v) is a dis-

joint subset of trivial components of {A e I\ < (y, S) e A(i>)}. Thus, there is a disjoint

subset B2 of ordered components of {A e F | A<(y, 8) e trxA(v) x n2A(v)} such that

B2 covers A(v). As above, B2^F2.

Let 53 = {i7 e A/(w) u M(z;) | there is a e A\[A(u) u A(v)] and (y, 8) e A such that

a<r¡<(y, 8)}. Then B3 is a disjoint subset of ordered components and B3çF2.

Let A2 = {ae A\[A(u) u ^(t;)] | a<ß, for some ß e i?3}.

Now, if a e ^3 = ^\[^4(m) u A(v) u ,42], then y e Af(M) and S e M(u) for all

(y, 8) 6 A such that a < (y, 8), or y e Af(u) and S e M(v) for all (y, 8) e A such that

a < (y, 8). Moreover, there exists an element r¡ e M(u) u M(v) such that a < tj and

i|<ye Af(x) or 7) < 8 e M(w), but not both. Let A(x) = {a e A3 \ there exist elements

t¡ e M(u) u M(v) and y e 7TjA such that a<r¡ <y} and A(w) = A3\A(x).

We construct a new set A(x) as follows. For each a e A(x) pick (jS, S) 6 A such

that a<(ß,8), and pick t) e M(u) v M(v) such that a<T;<y for some ye^A.

Let (77, 8) e A(x). Then A(x) is totally disjoint and A(x) is a disjoint subset of trivial

components of {A e F | A < (y, 8) e A(x)}. Thus, there is a disjoint subset Bt of

ordered components of {Ae F \ \<(y, 8) 6 7TiAx7r2A} such that 54 covers A(x).

Clearly, l?4£r0 and again we assume for each ß e 54 there is an element a e A(x)

such that ß>a. Thus, BtçF2.

Finally, if a e A(w) and a<-q e M(u) u M(v), then 77 < 8 e tt2A. Construct A(w)

similar to A(x) above. Then there exists a disjoint set B5 of ordered components

such that 2?5 covers A(w) and B5 £ F2. If any of A(u), A(v), A(x) or A(w) is empty,

we take the corresponding Bt to be the empty set.

Thus, A is covered in T2 by 1J Bf, i= 1,..., 5 where each B¡ is disjoint. Let B'

be the maximal components of ([J B¡) u (J\A). Then 5'£ F2.

(4) If a e r2\(5')*, let u(a) = v(a)=0.

(5) (i) If a e B' n M(m), let m(«)=0, S(ci)=x(a),

(ii) dual of (i).

(6) (i) If a e B'\[M(u) KJ M(v)] and for all (y, 8)eA such that a<(y, 8), no

17 e M(t;) exists such that a<-qSy, let «(a)<{0, u(a), x(a)} and y(a) = x(a) — ¿7(a),

(ii) dual of (i).

(7) If a e B'\[M(u) u M(v)], ß e M(u) such that a<ßSyx for some (yx, 8X) e A,

r¡e M(v) such that a<-qSy2 for some (y2, 82)e A where a<(y(, 8,), /=1, 2 and

(i) for all (y, 8) e A such that a<(y, 8), no /S e M(u) is such that «<0g 8, let

Ü(oí)<{0, «(a), x(a)} and v(a) = x(a) — ¿7(a),

(ii) dual of (i).

(8) If a e T2, a < r, e B' and ß e M(u) for all ß e B' such that ß > a, let ¿7(a)=0,

¿5(a) = x(a).

(9) For all other a e r2, let ¿7(a)=x(a), u(a)=0.
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Let K={XeF3\ Xe M(x) u M(w) u M(u) u M(v)}, K' = {o eFa\ o<X for some

A e K} and L= F3\K*. Let a e F.

(10) (i) If a e M(x) and a £ M(u) u M(y) u M(w), let ä(a) = x(a), 0(a) = 0.

(ii) If a e M(x) n M(v) and « <£ M(u) u M(h>), let «(a)=x(a), 0(a) = 0,

(iii) dual of (ii).

(11) (i) If a e M(v) and a £ M(w) u M(x) u M(w), let ö(a)=x(a), 5(a) = 0,

(ii) dual of (i).

(12) If a e M(w), then x(a) < u(a) + v(a). If b e Ra such that

b < {0, x(a), u(a), v(a)},

then by applying the decomposition property to 0 < x(a) — 2b< (u(a) — b) + (v(a) — b),

there are elements y, z e Ra such that x(a) — 2b=y + z where 0<y<u(a) — b and

0<z<v(a) — b. Let ü(a)=y + b and v(a)=z+b. We note that if u(a)>0 or /j(a)>0

then w(a) and 0(a) may be chosen so that 0 < Q(a) < u(a), 0 < v(a) < v(a), (but not

necessarily both).

(13) If a eK' and

(i) «(,8) = 0 for all ß e K such that ß> a, let ¿7(a) = 0, 0(a) = x(a),

(ii) otherwise, let w(a)=x(a), 0(a) = 0.

Now let U={ße M(u) | for all maximal chains CçF such that ß e C, either

C n M(x)= 0 or C n M(w) = 0} and let If be similarly defined for M(v). Let

A = {(y, 8) e M(x) x M(w) | yjt8 and there is A e L such that A < (y, 8)}. Finally, if {/

and If are not empty, let A(u) =Ux {min {y, 8} | (y, S) e A and max {y, 8} e M(/j)}

and A(v)= Wx {min {y, 8} | (y, S) e A and max {y, 8} e M(w)}. It follows that both

A(w) and A(v) are totally disjoint.

The set L n [5(x) u S(u) u S1^)], if not empty, contains a subset A1- of all the

maximal elements. Let D he the trivial components of N,

D(u) = {A e D I A < (y, 8) e A(w)}

and

£>(t>) = {A e £>\F(w) I A < (y, 8) e A(v)}.

By hypothesis there are disjoint subsets

Ex S {A e T I A < (y, S) e A(m)}

and

F2 £ {A E T I A < (y, 8) E A(/j)}

such that Fj covers D(u) and F2 covers D(v). We again assume, for each ß e Exkj E2

there is an element A e D(u) u D(v) such that A<j8. Thus, Ex u E2^L. Denote by

F' the maximal elements of Ex u F2 u (N\D). If F(«) or Z)(t>) is empty, we take

Fi or F2 to be empty.

(14) If a eL\(E' u F)*, let w(a) = 0(a) = O.
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(15) (i) If a e E' anda<ße M(u) implies C n M(w)= 0 for all maximal chains

C£T such that ßeC, let 0¿¿7(a) < u(a), v(a)=x(a)-U(a),

(ii) dual of (i).

(16) (i) If aeF' and a<ßeM(u) implies C n M(x)= 0 for all maximal

chains C£T such that ß e C, let 0<¿7(a), v(a) = x(a) — ¿7(a),

(ii) dual of (i).

(17) Otherwise, for a e L let ¿7(a) = x(a), v(a) = 0.

A straightforward check shows that cases (1)-(17) are mutually exclusive and

for any a e F, ¿7(a) and v(a) are determined by one of these cases. Thus, ¿7 and v so

defined are elements of the large direct sum of the Ry. Moreover, S(ü) and S(v)

are subsets of S(u) u S(v) u S(x) u B' u F' where each set in this union satisfies

the maximum condition. Thus, ¿7, v e V. Clearly, ü+v=x.

If a e M(u), then ¿7(a) can only be defined by (2), (3ii), (6ii), (7ii), (lOi), (lOii),

(12) or (16i). In all of these cases ¿7(a) >0. Thus ¿7>0. If a e M(v), then v(a) can

only be defined by (2), (3i), (6i), (7i), (lOiii), (12) or (16ii). In all these cases v(a) > 0.

Thus0>O.

Finally, if a 6 M(v — v), then v(a) can only be defined by (1), (3i), (5ii), (6ii),

(7ii), (lOii), (Hi), (12) or (15ii). In all these cases v(a)>v(a). If a e M(u-u) then

¿7(a) can only be defined by (1), (3ii), (5i), (6i), (7i), (9), (llii), (12), or (15i). In all

these u(a) > ¿7(a).

Thus, we have constructed elements ¿7, v e V such that x=ü+v and 0<¿7<k,

0 < v < v. Hence, F is a Riesz group.

IV. Proof of lemma—necessity. Let V= V(F, Ry) be a Riesz group and let A

be a totally disjoint subset of F x F. Suppose A'={a e F | a < (y, 8) e A} and let A

be a disjoint subset of trivial components of A'. For each y e 7TjA u n2A choose

a(y) e Ry such that a(y)>0 and for each ß e A choose b(ß) e Re such that b(ß)^0.

Let

x(a) = a(a)     ifaE7TiA, u(a) = a(a)     if a e ttxA,

= b(a)   if a Ev4, =0        otherwise;

= 0       otherwise;

v(a) = a(a)    if a e n2A,

— 0       otherwise.

Then, x, u, and v are strictly positive elements of V such that x\\u and x\\v. More-

over,

«(a) 4- v(a) — x(a) = 0 if a 6 7Ti A,

= a(a)        if a £ 772 A,

=  — ¿>(a)    ifa€^4,

= 0 otherwise,

so 0<x<w4-t>. Thus, there are elements ïi,ve F such that x=¿74-¿' and OSüSu,
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0 = v^v. It easily follows that M(ü) = ttxA, ü(a) = u(a) for all a e irxA, and for each

ß e M(v) there is an element 8 e 7r2A such that ß < 8.

If aeA, then ¿7(a) #0 or 0(a) #0 since 0 ,¿x(a) = ¿7(a) + 0(a). If ¿7(a)^0, then,

since ¿7 - 0 and u £j ¿7, there is an element j3eT such that ß > a and u(ß) > ü(ß). Now

ß$TTXA so u(ß)=0 which implies ü(ß)^0. Thus, there is ye^A such that /J<y.

Also, ß ^ /I, since u(ß) > ü(ß) impliesßis ordered. Thus, x(ß) = 0 and v(ß) = — ü(ß) =£ 0.

Consequently, ß<Se7r2A. This shows that, for each aeA, there is an ordered

component ß such that a<ß<(y, 8) e-nxA xrr2A and ü(ß)^0^v(ß).

Let B={ß e F \ ß is ordered ß> a e A, ß< (y, S) e nxA x tt2A and ü(ß)¿0¿ v(ß)}.

Then Bç,S(u). If B' denotes the collection of maximal elements of F, then B' is a

disjoint collection of ordered components that covers A. This completes the proof

of the lemma.

V. Proof of the theorem. In this section we consider the case where an o-group

Fy need not be dense. If Ry is discrete then there are elements x, y e Ry such that

x<y, and x^z, zfiy implies z = x or z=v. If O^aáy—x then x^x+a^v, so

a=0 or a=y—x. Thus, every discrete Ry contains a minimum strictly positive

element. We will denote this element by m(y). We now prove the main theorem.

Theorem. Let F be a po-set and for each yeF, let Ry be a trivially ordered group

or an o-group. Then V= V(F, Ry) is a Riesz group if and only if every totally disjoint

subset ofFxF and every disjoint set of discrete components of F is complete.

Proof. The only place, in the proof of the sufficiency of the lemma, where

density is used is in (12) and (13). We confine our attention to these and assume

everything else is defined as before. Using the same notations as before, let

K = {X e T3 I A e M(x) U M(u) U M(v) \J M(w)}

and let

K' = {o e F3 | a < A for some A e K}.

Let Y = {Xe Kr\ M(w) | A is discrete}. If a e K n M(w) but a <£ Y, then a is dense

so define 5(a) and 0(a) by (12). Thus, let a e Y.

(12a) If a £ M(u), let Ü(a) = x(a) — v(a), v(a) = v(a).

(12b) If a E M(u) but a £ M(v), let Ü(a) = u(a), 0(a) = x(a)-¿7(a).

If a e M(u) n M(v) and

(12c) x(a)<u(a), let w(a) = x(a), 0(a) = 0,

(12d) x(a) >«(«)> let U(a) = u(a), 0(a) =x(a) —«(a),

(12e) x(a) = u(a) and x(a)<t;(a), let ¿7(a) = 0, 0(a) = x(a),

(12f) x(a) = u(a) and x(a)>i;(a), let 0(a) = i;(a), ¿7(a) = x(a) —0(a),

(12g) x(a) = u(a) = v(a), let Ü(a) = m(a), v(a) = x(a) — m(a).

Let F={A 6 Y | u(X) = v(X) = x(X) = m(X)} and T' = {o e F3 \ o< A for some A e T}.

If D is the collection of maximal components of T' n [S(x) u S(u) u S(v)] and A

is the set of trivial components of D, then A is a disjoint subset of {A e F | X<o for
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some a e T}. Since F£ M(w), T is a disjoint set of discrete components. Thus, by

hypothesis, there is a disjoint subset 2?£{A e F \ \<o for some a e T} such that B

contains no trivial components and B covers A. We again assume for each ß e B

there is a e A such that ß > a. Thus, 1?£ r3.

Let B' denote the maximal components of B u (D\A).

(13a) If a £ T'\(B')*, let ¿7(a)=0, ¿5(a)=0.

(13b) If a e T and a <ß for some ß e B', let ¿7(a) = x(a), ¿5(a) = 0.

( 13c)  If a £ B' let ¿5(a) > {0, x(a) - «(a)}, ¿7(a) = x(a) - ¡5(a).

(13d) If a 6 K'\T' and there is ß e y such that ß>a and ü(ß) is defined by (12b)

or (12d), let Ü(a) = u(a), ¿5(a) = x(a) — ¿7(a).

(13e) If ae K'\T' and no ß e Y exists such that ß>a and u(ß) is defined by

(12b) or (12d), but there is y £ Y such that y>a and ¿7(y) is defined by (12a) or

(12f), let v(a) = v(a), ü(a) = x(a) — v(a).

(13f) If a e K'\T and for all ß e K such that ß>a, ü(ß) = 0 but ü(ß) is not de-

fined by (12a), let ¿7(a) = 0, ¿5(a)=x(a).

(13g) Otherwise, for a e K'\T', let ¿7(a) = x(a), ¿5(a)=0.

It follows that the above cases are mutually exclusive and exhaust Y u K'.

Moreover, ¿7 and v are defined so that ü, v e V and x = ¿74-¿5. The maximal compo-

nents of ¿7 can occur only at (12b), (c), (d), (f) and (g), and those of ¿5 can occur

only at (12a), (d), (e), (f), (g) and (13c) and in all cases are strictly positive. The

maximal components of « — ¿7 can occur only at (12a), (c), (e), (f), (g) and (13c),

and those of v — v can occur only at (12b), (c), (d), (e), and (g) and in all cases are

strictly positive. Therefore 0 < ¿7 < u and 0 < ¿5 < v. Thus, F is a Riesz group.

Suppose now that F is a Riesz group. Since the proof of necessity in the previous

lemma does not depend on the density of the o-group, it only remains to show

every disjoint set of discrete components is complete. To this end let F be a disjoint

set of discrete components and A a disjoint subset of trivial components of

{A e T | A < a for some a e T}.

Well order T, and for each ß e T let A(ß) = {a e A | a<ß and a<v for all -q e T

where -q<ßin the ordering of T}. If A(ß) ^ 0, define x, u and v as

x(a) = m(a) if a = ß, w(a) = i;(a) = m(a)    if a = ß,

= b(a) #0 if a e A(ß), = 0 otherwise.

= 0 otherwise;

Then, x, u, v are positive elements of V, x\\u, x\\v and x<u + v. Thus, elements ¿7

and ¿5 exist such that x = ¿74-v and OSüSu, 0 = ¿5 ̂ i>.

Either ü(ß)=m(ß) or v(ß) = m(ß). Suppose ü(ß)=m(ß), then v(ß) = 0. If a e A(ß)

and ¿7(a) ̂0 then w^¿7 implies there is a y such that ß>y>a and ¿7(y)<0. But

x(y) = 0 so ¿5(y)= -¿7(y)>0. If ¿7(a) = 0, then ¿5(a) ̂0 and ¿52:0 implies there is a 8

such that ß>8>a and ¿5(8)>0. Again x(8)=0 so ¿7(8)= — ¿5(8)<0. Thus, for each

aeA(ß) there is a nontrivial component y such that a<y<ß and ü(y)^0^v(y).

Let B(ß)={y e T | y is nontrivial, y<ß, ¿7(y) + 0#¿5(y) and y>a for some aeA(ß)}.
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Then B(ß)^S(ü). Let B'(ß) be the maximal components of B(ß). Then B'(ß) is a

disjoint set that covers A(ß). If A(ß)= 0 let B'(ß)= 0.

Now if ß, r¡ e T, then B'(ß) u B'(r¡) is a disjoint set. To show this we need only

consider A e B'(ß), o e B'(tj) and A < o. There exist elements ax e A(ß) and a2 e A(r¡)

such that ax < X and a2 < r¡. If ß < r¡ in the ordering of F, then a2 <£ ̂(77) and if

77</8, then ax <£ A(ß). Thus, {JßeT B'(ß) is a disjoint subset of {A e F \ X<o e T}.

Moreover, [JeeT B'(ß) contains no trivial components and covers A. This com-

pletes the proof of the theorem.
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