
ON THE EQUATION n=p+x*(1)

BY

R. J. MIECH

Let n and x be positive integers, p be a prime, (n/p) be the Legendre symbol, and

•»-n[i-£g.
Let ü(n) denote the number of solutions of the equation n=p+x2. Hardy and

Littlewood conjectured that if n is not a square then

Q(ri) ~ ^(n)n1/2/log n

as « -> oo. [3, Conjecture H]. The purpose of this paper is to show that the con-

jecture holds for nearly every integer n.

To be specific we have the

Theorem. Let n, x, p, SP(n) and il(n) be defined as above. Let Nbe a positive param-

eter and let Ax and A2 be any fixed positive numbers. Then the equation

/V(n - 3) Jt /„

holds for all but B2N(log N)A* positive integers n^N. Bx and B2 are numbers whose

absolute value is bounded above by some constant that is independent ofn and N.

It will be evident later that the Hardy-Littlewood conjecture holds for those

integers n which are not exceptions to this theorem.

The proof of (1), given the methods employed by Tschudakoff in [11], follows

from Bombieri's recent theorem on the density of the zeroes of the L-functions.

This latter result is employed to show that the truncated singular series associated

with our problem is asymptotically equal to the product SP(ri).

The equation n=p + x2 is, of course, a special case of the general equation

n = PiH-hps+Xi-l-\-x2

and if we view it as such the theorem of this paper can be considered as an exten-

sion of the work of several individuals who proved, under various conditions, that

the number of solutions of the general equation satisfies a specific asymptotic

equation for all large n if r + 2s>4, [9], [4]; for almost all even n if s=2 [11], for

almost all n if r = 2, s=l, [9]; and for all large n if r = 2 and s = l, [5], [7].

Received by the editors October 4, 1966 and, in revised form, June 23, 1967.

(*) This research was supported, in part, by funds received under NSF Grant GP-3933.

494



ON THE EQUATION n=p + x2 495

1. Several definitions are in order at this point. Suppose that Ais an integer and

Iet,for4^«^2/V,

Q.(n, N) = \{(m,p) : m2+p = n, 1 S m S y/N, 3 S P S N}\,

where |{   }| denotes the number of elements in the set {   }. Let e(x)=exp (2-nix),

y=WN], where [x] is the integral part of x,

y
F(a) = 2 e(m2a),

m = l

and

P(a)=    J   e(pa).
3gpá¡V

Note that
y 2N

(2) F(a)P(a)=2    2   e[(m2+p)a]= 2 0.(n, N)e(na).
m=l3SpSW n=4

Suppose next that a/q is a rational number with a\q ^ 0 and (a, a) = 1. Let

W(a,q)= ¿<?(i»afl/f),

and

Fja) = -^^ J e[m2(a-a/q)]
1 m=l

P („\ - éBÏ V gK«-«/g)]
aqW  m¿3   log«

where p(n) is the Möbius function and </>(«) is Euler's function. The sums Fm(a)

and Paq(a) are, as we shall see later, approximations to F(a) and P(a) at the point

a/q. Finally, let
[A]      q

II
3 = 1   a

Ô(«)=   2 Z'FM-PJa)

where A = [exp (log A)1'4] 4- \ and the prime (') indicates the inner summation is

taken over the set of integers {a} satisfying the conditions : 0 S a < q, (a, q) = 1.

If we substitute the defining sums for Faq(a) and Pa3(a) in this last equation and

make several rearrangements we have

(3) Q(a) =  2 Y(», A)e(«a)
n = 4

where

Y(«, N) = 7(«, A)77(«, A),

lSm£y,3SuSN;m2+u = n      5
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and

m    AA       V <T' w(a> 9) Kq)  r        / ^

Equations (2) and (3) give us

2N

F(a)P(a)-Q(a) = 2 ("(«, N)-Y(n, N))e(na).
n = 4

Consequently, it follows that

(4) 2  l"(",A)-T(«,A)|2=        \F(a)P(a)-Q(a)\2da.
n = i Jo

For the balance of this paper the symbol B will denote a number whose absolute

value is bounded by a constant that does not depend on N or n; its value will

usually be different each time it occurs. The symbol F«G, i.e. F=BG, will also be

employed from time to time.

2. The main result of this section is

Lemma A. Ift is any fixed positive number then

2N

2 |Û(«, A)-*F(n, A)|2 = BN2(log N)-',
n=4

where B depends on t.

Following Tschudakoff, [11], we shall prove this lemma by finding an appro-

priate bound for the integral in (4). To this end, let r = Aexp (—9(log A)1'4),

a=-T-1,b = l-T-\

Faq = {a : \a-a/q\ ^ l/rq},

J/x = {Faq : 0 ¿ a < q, (a,q) = 1,1 * q ¿ (log A)2i},

Ji2 = {Faq :0<a<q,(a,q) = l, (log A)2t < q è r},

and Ji be the union of Jtx and Jt2. Then, by the periodicity of the integrand and

by the well-known properties associated with the Farey dissection of the unit

interval,

f \F(a)P(a)-Q(a)\2 da =   f \F(a)P(a)-Q(a)\2 da
J0 Ja

«2Í      \F(a)P(a)-Q(a)\2da.

Furthermore since

\F(a)P(a)-Q(a)\ <i |F(a)P(a)-Foí(«)PM(«)| + \Faq(a)Paq(a)- Q(a)\ ;

\Faq(c¿)Paq(a)-Q(a)\ =

[A]     r

2 2' FMPM
r = l   b

bq - or # 0
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|Fa,Fa9(a)-ß(«)| S \Faq(a)PaQ(a)\ +

[A]    r

2 2' PMPM

for q > A, we have

Lemma 1.

r = l   6

bq-arïO

where

C \F(a)P(a)-Q(a)\2 da = BZUI)
Jo jtl

Si(7) = 2Í      \F(a)P(a)-Faq(a)Paq(a)\2da   for    i=l,2,

[•      I [A]    r 2

S3Í/) = 2     2 2' ^(«yw«) <**.
^   -Tad   |r=l    6

¡)3-or#0

a«a"

^W-     2    I' \Faq(a)Paq(a)\2 da.
A<q^z   a

The next few lemmas deal with approximations for F(a) and P(a).

Lemma 2. If z is a positive integer then

2 e(m2a\q) = - IF(a,a)4-Fa<1/2) + £

wAere £ ö any fixed positive number andB is a constant that depends only on e. Further-

more iflSzSq then

2 e(m2a/q) = Bq(1/2) +s

See Theorem 2, p. 10 of [6].

Lemma 3. If

(a,q) = 1, ¿ JL,   T = /vexp [-9(log TV)1'4],   awJ   j = [VTV]
TO

rAe«

2 e(m2«) = MM) J e(«i2i3)4-F[a-<1'2) + eexp[9(logA)1/4]4-a<1/2) + e]
m=l " m=l

wAere j8=a — (a/a).

Proof. Set

síw) = 2 e(J2aiq) and r = 2 e(w2")-
>=i
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Then, for ß=a—(a/q),

T = 2 e(m2ß)e(m2a/q) = 2 e(m2ß)(S(m)-S(m-l)).
m = 1 m = 1

Rearranging in the usual way we get

F=  2 S(m)[e[m2ß]-e[(m + l)2ß]] + S(y)e[(y+l)2ß].
m = l

If we now apply Lemma 2 we find that Fis equal to

M^-} 2 m[e[m2ß]-e[(m+l)2ß]]+y-W(a,q)e[(y+l)2ß]

4-Fa<1/2> + £ 2 \e[m2ß]-e[(m+l)2ß]\+Bqai2> + e.
m=l

The main term of this last quantity is equal to

^ 2 e(m2ß).
" m = l

As for the sum appearing in the error term, we have,

2 \e[m2ß]-e[(m+l)2ß]\ =  ¿ \l-e[(2m+l)ß}\
m=l m=1

N _ exp [9(log AT)1'4]
« 2 (2m+l)ß « y2ß « — =

If we bring these results together we have Lemma 3.

Lemma 4. If

\a-a¡q\ S l¡rq,    (a,q) = 1,    (log A)2t SqS A1'4,    and   y = WN]

then

2 e(m2a) = 7VA(logA)-

This follows from Lemmas 2 and 3 with e=%.

Lemma 5. If

\a-a/q\ S l\rq,   (a,q) = 1,   A1'4 < q S r,   and   y = [VA]

rAe«

2 e(m2a) = 7VAexp(-(logA)1/4).
m = l

We shall first prove the following:
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Let

P and F be integral parameters with 1 ̂  Y<P;

a and q be any two integers such that 0^a<q, (a,q) = l and l^q^P2;

a2 be any real number such that \a2—a/q\ á l/q2,

and

ax be any real number.

Set

F(x) = a^-r-cí!*

and

S = f e(F(x)).
x = l

Then

|S|2 «P3/Y2+P3/Yq+Pq/Y+ Y2.

We can obtain Lemma 5 from this result by taking

P=h/A]   and    Y = [VAexp(-(log A)1'4)].

The scheme we shall use to obtain the stated bound for |S| is a simple version of

the proof of Lemma 5.10 of [6]. We begin by setting

2 e(F(x+y)-F(y)) = 2
x=l x-1

So(y) = 2 e(F(x+y)-F(y)) = 2 e(<f>(x))

where

</>(x) = F^(y)x + F^ x2,    F™(y) = 2a2y + ax,

and

F™(y) _
—2 "2-

Since we also have

So(y)=    2    e(F(m)-F(y))
m = y + l

it follows that

ISoOOI = \S\+2&y

where [#| á L Adding, we find that

Y

Thus

\s\ = \r2\So(y)\+BY.
y = X

\s\2 « I 2 \SMÏÏ+ Y2«yï \s0(y)\2+ Y2.
1 v=i J y=i
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Next, let

Sx(ß) - 2 e(ßx + a2x2)
x = l

and

Cl(y) = {ß:0SßSl, <ß-Fa\y)> S Y/(2P2)}

where <z> is the distance from z to the nearest integer to z. Now if ß is in il(y)

then

ß = 1+ Fa\y) + &YK2P2)

where 7 is an integer and \&\ S 1. Hence, since a2 = F(2)(j')/2!,

SAß) = 2 ^^"X^+^T^F^ + ÍF^X^Dx2]
x=i

= 2 e(<f>(x)) + B f (Tx)/P2 = S0(y) + BY.
x=l x=l

That is,

|So(j)l2«|Si(jS)|24-y2

if the ß appearing in the definition of Sx(ß) is in 0-(y). If we integrate over Q.(y)

we have

ISoOOl2 « Ç Í     \Sx(ß)\2 dß+ Y2
1   Ja(y)

since the measure of D.(y) is greater than Y/(2P2).

At this point we have

|s|2 « Ç2 2 Í   \s^\2 dß+ Y2-

We must now find a bound for the number of times any point in the unit interval

is covered by an Q(y). Let y0 be a fixed integer and suppose ß e ü.(y0). Then if

ß e Q.(y) n Q(y0) we have

<ß-Fa)(y0)) S Y/2P2   and   <j8-F(1>(>>)> S Y/2P2.

Thus, since Fm(y)-Fa)(y0) = 2a2(y-y0), it follows that

<a22(y-y0)} S Y/P2.

According to Lemma 5.7 of [6, p. 56] the number of y that satisfy this inequality

does not exceed

2( Yq/P2 + l)(Y/q 4-1).

In short, the number of Q.(y) that cover any given point of the unit interval is

bounded above by a number of order

l4-T/a4-Ta/F2.



2) dß = P.

1968] ON THE EQUATION n=p+x2 501

The results of the preceding paragraph give us :

\s\2 « Ç2 (i +1+3) £ M)!2 43+y2.
But

i'\Sx(ß)\2 dß =  f I f e(ftx + a2x2
Jo Jo   \x = l

Consequently,

|S|2 «Ps/Y2+P3/Yq+PqlY+ Y2.

This is the result we set out to prove.

Lemma 6. If

\a-a/q\ g l/rq,   (a,q) =1    and   1 ^ q g (logA)2t

/Aen

2   '(/-) - ES Í Ê? + ̂ exP i"vVdog A))

wAere ß = a — (a/q) and y is some positive constant.

See [8, Theorem 31, p. 180] for a proof.

From this point on the symbol y will denote a positive constant that is bounded

below by a positive number that is independent of N; its value will usually be

different each time it appears.

Lemma 7. Let 2X(I) be defined as in Lemma 1. Then

2a(7) = BN2 exp (-yVOog A)).

Proof. We have

\F(a)P(a)-Faq(a)Paq(a)\2 « \P(a)\2 \F(a)-Faq(a)\2 + \Faq(a)\2 \P(a)-Paq(a)\2.

By Lemma 3, with e = \,

2f      |P(a)|2|F(a)-Fa5(«)|2¿a

« 2 Í     l^(«)|2 (?_1/* exp (9(log A)1/4)+?3'4)2 da
J#Í Jra,

« exp (18(log A)1'4) f  |F(a)|2 da « exp (18(log A)1'4) p~

Moreover, by Lemma 6,

2Í      \Faq(a)\2 \P(a)-PM(a)\2 da
Ji.   JTaa

« 2 N{N2 exp [-2yV(log A)]}

j(x Jl\i

rq

« — exp [-yVOog A)](log A)2i = A2 exp [-yV(log A)].
T
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The lemma follows from these results.

Lemma 8.
S2(7) = 7JAr2(logA)-t.

Proof. We have

22(7)«2f     \F(")P(*)\2 da+2 f     |Fa,(«)Pa7«)|2aV

By Lemmas 4 and 5,

2  f      |F(a)P(«)|2 da « 2   f     JT^Kt \P(«)\2 da
XJr"" ^2Jraq(iOgl\)

« A2(logA)-(.

Furthermore, if ß = a—a/q and y = WN],

S=2\      |Fa7a)POQ(a)|2 da

W     \W(a1q)p^)^        2     ^e(^
% Jru3 |     q     <f>(q) Ä        " Ä log "

d<a

y |IF(a,a)[2lMg)| f1 *   *  V   V e[(m2-j2 + u-k)ß]
Á     Mi)?     J0mèXjèxué3A     log« log k     aa

Í Ma)?    l }
where e is the constant of Lemma 2, and F(A) is the number of solutions of the

equation m2—j2 + u — k = 0, subject to the conditions lSm,jS ^/N and 1 S u, k S N.

Since for any arbitrary choice of m, j and u there is at most one possible choice of

k it is clear that T(N)SN1I2N1I2N=N2. Thus if e= 1/10, then

2     v       J_ A2
,>á«*í3,a<<(log*)''

This completes the proof of Lemma 8.

Lemma 9.
Z4(7) = FA2A"1'2.

Proof. We have, if ß=a—a/q,

¿!)=      2     2'   Í       l^,(«)Fa3(«)|2^

<<c   y   ^l^a.a)!2!^)] y f1 I ̂  eQ/ff)

2,    Z   ní-^U(a\\2 N2 «

2

a«

t" 1 W2 #"_
<A<4,t'i1-2£(^))2   <<A1/2'

provided we set e = 1/10.
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Lemma 10. //

\a — a/q\ ^ l/rq,   a/q ^ b/r,   (a,q) = (b, r) = 1,   and   r ^ A

then there is an integer b ', which is equal to one of the numbers b — r,b, or b + r, such

that ar—b'q^O and

Pbr(a) = B loglog A q/\ar-b'q\.

Proof. First of all there is a b' such that Pbr(a)=Pb,r(a) and

\\a/q-b'/r\ < \a-b'/r\ ^ \.

To see this set b'=b if |a-è/r|=i- If a-b/r>\ set b' = b+r. Then \a-b'/r\-^\

and a/q^b'/r, for a/q = b'/r implies that a/q = b/r+l, or a/q7>l. Similarly if

b/r — a>% set b'=b — r. Moreover, since a = a/q+9/rq where |0|^1, we have

V
a-

r

a__V_    0
q    r    rq

a   b'

q   r

1       1
rq      2

a__V_

Q    r

Next, set ß = a—b'/r and

S(u) = J e(jß).

Note that
i = 3

\S(u)\
1 rq

| sin 7tjS | == \ar—b'q\

since, by the previous inequalities,

|sin 7tj3| à 2ß ^ \a/q-b'lr\.

Applying these results, we have,

A'r(a)~^)¿Íoi^

_ éù y 5(U)( 1        i    \Mr)
<l>(r)ué3   W\logu   log (u +1))+<f,(r)

p(r)     5(A)

log (A+1)

«

Lemma 11.

Proof. Set

and

T?-\ i—S^l « log l°g A i— uT-r
<p(r)\ar-bq\ °    °    \ar-bq\

S3(/) = 5A3(log log A)2A2 exp (-9(log A)1'4).

[A]      r

*(A) =2 2' i^(«)ia
r = l    b

[A]      r

M(H,a,q)= 2 2'IP^«)I2-
r = l    6

or - bo / 0
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Then, by the Cauchy-Schwarz inequality,

S3(7)^2f    *(A)M(A,a,a)oa.
M  "*raC!

By Lemma 2,

*(i)«f2'M„
r = l   b '

« A 2 ^^2— « AA1 + 2£ = AA2,
r=l r

if we take e=\. By Lemma 10,

f     \Pbr(*)\2 da « (log log A)2 |—Ç-^ 1.
Jra, \ar-bq\2 rq

Consequently,

AT I LAJ      3 r

Z3(7) « Z (A log log A)2 2 2 2' 2' JaJ^bW-
T 3=1 r=l   a       6      I"'      "i/l

ar- bq¿ 0

Fix a and r. Then since 1 Sa<q, (a, q) = 1, |A'| <2r, and since the set {A'} forms a

reduced residue class modulo r we have

3      r ,

<£ r k-a#
Hence

S3(7)«-(AloglogA)22?2 !
3 = 1    r»l

« ArA3(log log A)2

= A2A3(log log A)3 exp (-9(log A)1'4).

This completes the proof of Lemma 11.

Since A=[exp (log A)1,4]4--£, Lemma A follows from (4) and Lemmas 1, 7, 8,

9, and 11.

Suppose now that A(log N)~A¡¡<nS A and that

(5) |Q(«, N)-Y(n, N)\ > V« (log n)~AK

Then

(6) |Q(«, N)-Y(n, N)\2 > «(log n)~2Ai > A(log A)"24i-^.

Let F(A) be the number of integers n, with A(log N)~Az<nSN, for which (5)

holds. Then by Lemma A and (6)

F(A) S BN/(logNy-2Ai-A2.
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Hence if we set t=2Ax + 2A2 we can conclude that the equation

(7) Q(n, N) = T(n, A)+/V«/(log n)Ai

holds for all but BN(log N)~Az integers n^ A.

3. The purpose of this section is to show that if A3 is any fixed positive number

then

(8) T(n, A) = 0>(n) ̂  log™_**) + *>/» exp (-y(log n)1'8)

for all but BN(log N)~Aa integers nfZN.

By definition,

Y(n, N) = L(n, A)77(n, A)

where

V 1
L(n, A) =

lémSy.3¿uSN;m2 +u = n *°S U

and

^ ^   W(a,q)p(q)zir    »n       V V' rvya,q)p\q)   ,        . .
77(«, A) = 2 2 -IT- tt <-nalq).

,=io     q   <Kq)

As for L(n, A), since u=n — m2^3, we have

lgm<V(n-3)

A large part of the balance of this paper is devoted to proving :

2 1 fV(n-3) ¿x

T—r—R = ,    ,     2.+B.Sm<V(n-3)l0g(/3-W2)        Jx lOg(n~X2)

Lemma B. Let A3 be any fixed positive number. Then there is a positive constant y

such that the relation

(10) H(n, N) = &>(ri) + B exp ( - y (log n)1'8)

holds for all but BN(log N) ~ Az positive integers n^N.

We begin with

Lemma 12. Ifn is any fixed integer then

G(n,q) = ^2 W(a,q)e(-na/q)

is a multiplicative function ofq; that is, if(q, r) = 1 then G(n, qr) = G(n, q)G(n, r).

This is a straightforward consequence of the Chinese remainder theorem.

Lemma 13. Let pbe a prime andoj(p, n) be the number of solutions of the congruence

x2=n mod p. Then

G(n,p) = (l-oi(p,n))l(p-l).
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Proof. By the definition of W(a, p)

G^p)=pW)%Xe[(m2-n)a,p]

-1    ^   fp-1 if m2 = «mod//I _ l-w(p, ri)

~ P<P(P) m4i l -1  otherwise J "       <f>(p)

Set

a« = ÁQ) IIKp. «)-!)•
pi«

Then, by the definition of 77(«, A) and Lemmas 12 and 13, we have

[A] [A]

We shall evaluate 77(«, A) by considering the properties of the function

Z(s) = Z(s, n)=  y   ,, *». .-

Lemma 14. Suppose that n = (n*)(n')2 where n* is square free and «*> 1. Set

d = d(n) = «* ;/ n* = 1 mod 4,

= 4«* ifri* = 2 or 3 mod 4,

Xd(w) = (d\m) where (d/m) is the Kronecker symbol, and let L(s, x¿) be the L-function

defined by the character yd(m). 7er

FAe«, ;/ Re(5) = a > \ and L(s, xa) ï 0,

Z(s) = 7(5, «)/7(5, xa)-

Proof. Since co(2, «) = 1 for all «, w(p, «) = 1 if p\n, w(p, «) = 2 or 0 if (p, 2«) = 1,

and since am is a multiplicative function we have, for a> I,

z(s)= n ii («j>.")-o\
( J (P.U=i I   ¿w1 i

Moreover if (/>, 2«) = 1 then [1, Chapter V],

(œ(p, n)-l) = («//,) = («*//>) - (d/p) = XÁP).

Hence, if a > 1

Z(5)=7(5,«)(7(5,Yd))-1.

This equation also holds at the points in the half-plane o% for which 7(5, Xai^O

since the product representing 7(5, ri) converges for any a > %.
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Lemma 15. Ifb>l andT>l then

y   _Ç±n_  _  ±   r* Z(S)A°-1
¿A^m)-2ni)b_iT   (s-l)   ^^A,/)

where

\.b-l nn„ A^2^

^-'kfrffl-
The methods employed to prove this type of result are well known; see, for

example, the proof of Theorem 3.1 in the appendix of [8].

Lemma 16. There are absolute positive constants cx, c2, and c3 such that

J(l, n) > cx exp (-c2 log log log n)

for n¡tc3. Furthermore, if v(n)^A4 log log n, where v(n) is the number of distinct

prime divisors andAt is any fixed positive constant, and //Re(s) = o ̂  3/4 then there are

positive constants Bx and B2, which depend on A4, such that

\J(s, n)\ ^ Bx exp (B2(log log n)1'4).

Proof. First of all,

Secondly, if qt is the rth prime,

n(l-^)áexp  2log(l+I)
j>|2n   \ Ft p\2n V       Fl

f(n)   i

= exp y - =i exp (c2 log log log n),
i = ltfi

for n ̂  c3. Hence

J(l, n) > cx exp (- c2 log log log n).

The proof of the second part of the lemma is similar.

From this point on the symbols c4, c5,... will denote absolute positive con-

stants.

The evaluation of H(n, N) will be based on

Lemma 17. Let Xd and L(s, xa) be defined as in Lemma 14. Then the number of d,

with 1 <d^4N,for which L(s, Xa) has a zero in the rectangle

(12) 1 - 1/log log A £ a Ú 1,    \t | S exp (log A)",

where 0 < 8 < 1, does not exceed c4A3'8.

The proof of this lemma is based on Bombieri's recent density theorem. Several
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definitions are needed before his result can be stated. Let Q be any finite set of

positive integers. Set

M = M(Q) = max a
qsQ

and

D = D(Q) = max d(q)
«SO

where d(q) is the number of divisors of q. Let x be a character modulo q and

Hx) = 2, x(.a)e(a/q).
a = l

If X is a primitive character we have |r(x)|2=a [1, Chapter V, §4]. Finally, let

N(a, T; x) denote the number of zeros of 7(5, x) in the region o^a, \t\ ST. We

then have

Lemma 18.

2 ¿À 2 lTtól2 N(.«> T; x) « DT(M2 + MTy«-"V«-2« log10 (M-t-F).
qeQ 9V1)    x

See [2] for a proof.

In order to derive Lemma 17 from Lemma 18 let X be any number such that

exp(log A)á< XS4N; let g be the set of integers d with X<dS2X. Let E(X)

denote the number of din g for which 7(5, x<j) has a zero in (12). We apply Lemma

18 with M=2X, F=exp (log A)a and a= 1 -(log log TV)-1. As for D and \t(Xí¡)\2:

since d(q)«qe for any e>0 we can take 7J«ZC; since xa, the character defined by

the Kronecker symbol, is a primitive character we have |T(xd)|2 = a'. Thus it follows

that

E(x) « xs ■ t(x2+x- ry log10 (x+ t),

where

40-a) 4      j
F       3-2a  - log log A

Since we are assuming that F= exp (log A)"5 < X we have

F(Z) « TX£XBno*losN log10 Z « Z2£ exp (log A)á.

If we take

X = 2' exp (log N)0,

where 0g;'^(log A)/log 2, it follows that there are at most

2      22e' exp (e +1) (log A)" « A3£
iSloerWlog2

integers d in the interval (exp (log A)*, 4A) for which 7(5, x<¡) has a zero in (12).



1968] ON THE EQUATION n=p + x2 509

If we take e = 1/8 those integers 7^ exp (log A)d can be absorbed by the bound

A3'8. This completes the proof of Lemma 17.

Lemma 19. 7er x Ae a nonprincipal character modulo k and suppose that L(s, x)¥=0

foro>l-ß,\t\ST, where 0<ß<lßandT> 2\ß. Let log L(s, x) be that branch of the

logarithm of L(s,x) that is zero at s = a= +co. Let r¡ be any number such that

2IT<7,<ß. Then for

l-ß+i) S o S l+r¡   and   \t\ S T¡2

we have

logL(s,x) = (Bxh2)(logk(l + \t\)r
where

a = (l-<j)lß+B2(vlß)

and Bx and B2 are constants that are independent ofk, T, ß, and r).

This lemma is a refinement of Theorem 14.2 of [10].

Proof. Set ct0 = 1/i?; then 2^a0<F/2. Let, for /=1,2, 3, 4, Q be the circle

centered at s0 = a0 + it of radius r( where rx = cr0—(l+ti),r2 = a0 — a,r3 = a0—(l—ß)

-r¡ and ri = a0-(l-ß)-r,ß.

Since x is not a principal character we have

7(5,x) = M(l + |r|)

for cr^ 1/2 [8, Chapter IV, Theorem 5.4]. Consequently on C4,

Re log 7(5, x) = log |7(5, x)l S c5 log k(l + \t\).

Hence on C3 [8, A., Theorem 4.2]

That is, since a0 ̂  2

|log7(5,x)| =(Bo0lv)logk(l + \t\)

for 5 on C3. On Cx

|log7(5,x)| = yl0Jl-áP})\< fJ- = ê.

Now, let Mi be the maximum of | log 7(5, x)| on Q. We have

Mi = B\t]   and   M3 = (Fa0/ij) log k(l + \t\).

Thus, by the three-circle theorem

M2 S (B/vY-a((Ba0/v) logk(l + \t |))« = («(log k(l + \t\)Y

where
_ log (r2/rx)      l_-a      M

log(r3//-i)        ß   +"W
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This proves the lemma.

Lemma 20. Suppose that v(n)^A4 log log A and that the d associated with n by

Lemma 14 is not an exception to Lemma 17. Then

H(n, A) = &(n) + B exp (-y(log A)1'8)

where y is a positive constant that depends on At.

Proof. By Lemmas 14 and 15 we have

rb + iT

where

1    Cb + tT J(s n\ As_1
H(n, N) = ^-.\        Ç&2L *ds + E(A, T)

2tti Jb_iT L(s,Xd)s-l

F(A T) «    A'"1    ,(logA)2

E(A'T)<<ñb=Y)+—f—

and

A = [exp (log A)1'4]+ 1/2.

According to our assumptions we have L(s, Xd) i= 0 for

ct^I- 1/log log A,    |/| g exp (log N)6.

Thus if we set

ß = 1/log log A   and   r¡ = l/(loglogA)2

in Lemma 19 we have

log L(s, xa) « (log log A)4(2 log N)\

where n = (loglogN)(l—o), in the region

1_!_<„<!+_!_     |f|<exp(logA)^
2 log log A =     =    ^(loglogA)2'    ll= 2

Let R be the rectangle with vertices a ± iT, b ± iT where :

a  -, 1 h      , ,        1 expOogjyT
(log log A)2' +(logA)1/4' 2

Then we have

1    fa+iT J(s,n)   A5"1   , .     _     „..,

2^Jb+ir/ia(^r)*<<exp(-y(l0gAr))'

1    p-ir /(j,/i)   A5-1 /        (log A)1/4 \

2ni ja + tT L(s, xd) (s-l) dS <<C CXP \   y (log log N)2)

and

F(A,7')«exp(-y(logAf)i).
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If we take S = 1/8 we have Lemma 20 since the residue of the integrand at s=1

is 0>(ri).
The exceptions to Lemma 20 occur if v(ri)>Ai log log N or if the d associated

with « is an exception to Lemma 17. It is known [8, I, Theorem 5.3] that the

number of positive integers « S A for which v(ri) > A± log log A does not exceed

BN(log N)g where g=—Ai log 24-1 = — A3. As for the second type, if « = «*(«')2

then d—n* or 4«*. If we take d=n* we have « = d(n')2 S N; that is there are at most

(A/7)1'2 S A1'2 integers « associated with any given d. Since there are at most c4A3'8

exceptional integers d we have at most c4A7/8 exceptions to Lemma 17. This com-

pletes the proof of Lemma B.

According to (9) and (10)

fV(n - 3) J„

T(«, A) = &(ri) Ji log(^_x2) + F^(«)+FV* exp (-yilog »)»").

By Lemma 14

^(«) = Z(l)=7(l,«)/7(l,x<i).

By Lemma 16,

7(1, ri) = Fi exp (B2 (log log A)1'4).

Furthermore if d is not an exception to Lemma 20 we have, from the proof of

Lemma 20,

logL(l,x,i) = F(loglogA)4.

Hence, for all but A(log N)~A* positive integers nS A,

fV(n-3) Jx

Y(«, A) = S?(ri) Ji        log(^_x2)4-F[V« exp (-y(log »)"")].

This proves (8).

If we set A3 = A2 then our theorem follows from (7) and (8). Finally, since

I***-*       dt V("-3)-l

and

it follows that

)x log(n — tz) log«

^(«)=7(l,«)(7(l,xd))-1

0 < 7(1, xa) < c6 log d < c7 log «       [8, IV, 8.1]

7(1, ri) > cx exp (-c2 log log log «)

&(n) £
^(n-3>       dt a/"

> c8 -
log (« -12)       B (log «)2(log log n)c2

That is, the main term in (1) dominates the error term, provided that Ax S 3.



512 R. J. MIECH

Bibliography

1. R. Ayoub, An introduction to the analytic theory of numbers, Math. Surveys No. 10, Amer.

Math. Soc, Providence, R. I., 1963.

2. E. Bombieri, On the large sieve, Mathematika 12 (1965), 201-225.

3. G. H. Hardy and J. E. Littlewood,   Some problems of partitio numerorum: III: On the

expression of a large number as a sum of primes, Acta Math. 44 (1923), 1-70.

4. H. Halberstam, On the representation of large numbers as sums of squares, higher powers,

and primes, Proc. London Math. Soc. (2) 53 (1951), 363-380.

5. C. Hooley, On the representation of a number as a sum of two squares^and a prime, Acta

Math. 97 (1957), 189-210.

6. L. K. Hua, Additive theory of prime numbers, Transi. Math. Monos., Amer. Math. Soc,

Providence, R. I., 1965.

7. Ju. V. Linnik, The dispersion method in binary additive problems, Transi. Math. Monos.,

Amer. Math. Soc, Providence, R. I., 1963.

8. K. Prachar, Primzahlverteilung, Springer, Berlin, 1957.

9. G. K. Stanley, On the representation of numbers as a sum of squares and primes, Proc.

London Math. Soc (2) 29 (1928), 122-144.

10. E. C. Titchmarsh, The theory of the Riemann zeta-function, Clarendon Press, Oxford,

1951.

11. N. G. Tschudakoff, On the density of the set of even numbers which are not representable

as a sum of two primes, Izv. Akad. Nauk SSSR Ser. Mat. 1 (1938), 25-39. (Russian)

University of California,

Los Angeles, California


