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1. Introduction. A meromorphic function h(z)=f(g(z)) is said to have f(z)

and g(z) as left and right factors respectively, provided that f(z) is nonlinear and

meromorphic and g(z) is nonlinear and entire (g may be meromorphic when f(z)

is rational). h(z) is said to be prime (pseudo-prime) if every factorization of the

above form implies that one of the functions/(z) or g(z) is linear (a polynomial or

f(z) is rational).

There are numerous questions that one can ask about factorization of mero-

morphic functions. We shall primarily be concerned with two of them.

1. How many factors does a given meromorphic function have?

2. Given certain properties of a meromorphic function, what are some related

properties of its factors ?

2. Generalizations and extensions of previous results.   We begin with the simple

Theorem 1. Any transcendental meromorphic function of finite order which has

at most a finite number of poles and zeros is pseudo-prime.

We shall need the following lemma.

Lemma 1 (Edrei and Fuchs [2]). If f is any meromorphic function and g is entire,

thenf(g) is of finite order implies that either fis of finite order and g is a polynomial

or that fis of zero order.

Proof of theorem. Let « =f(g) satisfy the hypotheses of the theorem and suppose

that it is not pseudo-prime. Clearly/(z) has at most one pole, say b, and at most

one zero, say a. Thus it can be expressed as

f(z) = [(z-ay/(z-by]e^\

where « and m are nonnegative integers and a(z) is entire. By Lemma 1, a(z) must

be a constant and the proof is complete.

We note that/(g) must have either infinitely many poles or zeros unless one of

«, m is zero, so that/(z) is of the form c(z-a)n, where « is an integer and c is a

constant.

This generalizes a result of Thron [11].
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Along these same lines we have

Theorem 2. Let « be an entire (meromorphic) function with at most a finite number

of simple zeros. Either h has only polynomial right factors or every left factor has at

most 2 (4) simple zeros.

Proof. We use the standard notations of the Nevanlinna Theory. In particular

N(r, a; g) is the smoothed counting function of the a-points, a-points of multi-

plicity k being counted as k points; Nx(r, a; g) is the smoothed counting function

of multiple a-points, in which an a-point of multiplicity k is counted k— 1 times. If

6(a; g) = lim inf (m(r, a; g) + Nx(r, a, g))/T(r, g);
r-* co

then [6, Theorem 14.7.1, p. 230]

(1) ^6(a;g)S2   (g meromorphic),       ^6(a;g)Sl    (g entire).
a a

Under the hypotheses of the theorem, if a is a simple zero of/(z), then g(z) — a

has only a finite number of simple zeros, so that 2Nx(r, a;g)^N(r, a;g) + 0(\ogr).

Therefore

m(r, a; g) + Nx(r, a;g)Z %(m(r, a; g) + N(r, a; g)) + 0(log r)

^lT(r,g)+0(logr).

Since g is transcendental, log r=o(T(r, g)) and so 0(a;g)^i and the theorem

follows from (1).

For our next result we shall need

Lemma 2 (Hayman [5]). Iff is any transcendental meromorphic function and g(z)

is a transcendental entire function, then T(r,f(g))/T(r, g) -> co as r —> co.

Remark. Though Hayman states Lemma 2 for entire functions / it remains

valid for meromorphic/as well.

Theorem 3. 7er Q(z) be a nonzero polynomial and let r be a nonzero constant.

IfF(z) is entire, transcendental of exponential type and for some constant c satisfies

F(z+T)—F(z)=Q(z)ecz, then F(z) is pseudo-prime.

[Remark. The theorem is also true if Q(z) is identically zero (see Theorem 9),

but the proof is different.]

Proof. Assume that F(z) =f(g(z)) where / is transcendental and meromorphic

and g is transcendental and entire.

We have f(g(z+r))—f(g(z)) = Q(z)ecz. Therefore g(z+r)—g(z) is an entire

function with a finite number of zeros. By Lemma 2, g(z) and so also g(z+r)—g(z)

is of order one, type zero, at most. Hence by Hadamard's factorization theorem
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g(z + r)—g(z) = polynomial. Hence gw(z) is periodic for some integer «, and since

it is at most of order 1 type zero it must be constant. It follows that g(z) must be

a polynomial.

Definition. z0 is said to be a fix-point of a function/(z) if/(z0)=z0.

Lemma 3 (Rosenbloom [10]). If P(z) is a nonlinear polynomial andf(z) is entire

transcendental, then P(f(z)) has infinitely many fix-points. Equivalently f(P(z)) also

has infinitely many fix-points.

From Theorem 3 and Lemma 3 we get

Corollary. ez + z is prime.

This last result was stated by Rosenbloom [10] without proof.

Theorem 4. Let F (F*) denote the family of entire (meromorphic) functions with

at most a finite number of fix-points. Then (i) every entire function has at most one

factorization f(g(z)), f transcendental, feF, g entire; (ii) every meromorphic

function has at most two distinct factorizations/(g((z)), / meromorphic, not rational,

f e F*, gx entire.

Proof. We prove the second part only. The proof of the first part is similar.

Suppose h(z) has three factorizations/¡(g,(z)) (/=1, 2, 3) of the type described in

statement (ii). Assume that g¡ are all distinct.

By Lemma 2, T(r, gx) = o(T(r, «)). Hence, by a well-known theorem of Nevan-

linna [7],

(l+öflMr,^!^)

outside a set of r of finite linear measure, or

m a+^)rM)s¿*(r,/7_i_)

outside a set of r of finite linear measure.

Suppose that each of the functions/, i=l, 2, 3 has at most a finite number of

fix-points. Say/ has fix-points z¡j,j= 1,2,..., K{. Then

<3)      »i '-m=ù = 14 g=5>s cn'-sd '0(r<r'*»•

where c is a constant.

Since (2) and (3) lead to a contradiction, our proof is complete.

Corollary 1 below is a generalization of the fact that/n(z), the «th iterate of/(z),

has infinitely many fix-points for «> 1, a result also first proved by Rosenbloom.

The corollary follows from Theorem 4 and the following lemma.
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Lemma 4 (Baker [ 1 ]). Iff(z) is a polynomial, then P(f)={entire g;f(g(z))=g(f(z))}

contains transcendental functions if and only iff(z) has one ofthe forms f(z) = const

or f(z) = yz+h, 8 and y a root of unity.

Corollary 1. Letf(z) be a transcendental entire function and let g(z) be nonlinear

and entire. Iff^g andf(g)=g(f), then one off, g has infinitely many fix-points.

Proof. By Lemma 4, g cannot be a nonlinear polynomial. By the above theorem,

f or g must have infinitely many fix-points since they both are left factors of the

entire function f(g).

Corollary 2. Iff and g are transcendental entire, then f or f(g) must have in-

finitely many fix-points.

Corollary 2 was first proved by Rosenbloom [10].

Corollary 3. Iff is transcendental meromorphic and g and h are transcendental

entire then one off(z), f(g(z)), f(g(h(z))) has infinitely many fix-points.

Proof of Corollary 2. Let r¡(z) be nonlinear entire, then f(g(t](z))) has the two

transcendental left factors / and f(g) and, consequently, one must have infinitely

many fix-points.

The proof of Corollary 3 is similar.

Corollary 4. Iff is a meromorphic (an entire) periodic function and g(z) is

entire, then f (f(g)) has infinitely many fix-points.

Proof. Let fe F*. Suppose / is periodic with period t. For any entire g,

f(g(z) + nT)=f(g(z)) (¡n—1,2,3,...). This implies that/is not rational and the

assertion follows from Theorem 4 (ii). Thus the corollary follows for / mero-

morphic. When/is entire periodic and g is entire, then g(f) is periodic and must

have infinitely many fix-points. It follows that f(g) must have infinitely many

fix-points.

Corollary 5. Iff(g) is periodic and fis meromorphic with at most finitely many

fix points, then g is periodic.

Proof. Let fe F*. Suppose g is entire and f(g(z)) is periodic with period t.

We have/(g(z + «T))=/(g(z)), « = 1,2,.... Again it follows from the last part of

Theorem 4 that g(z + nr)=g(z+mr) for some « and m with n^m.

This generalizes a previous result of the author [4]. If egU)+g(z) is periodic for

an entire function g, then g must be periodic.

It follows from the above discussion that if /is an entire function such that

f(f(z)) is periodic, then / has infinitely many fix-points. An interesting related

problem which the author has not been able to resolve is whether/(/(z)) is periodic

if and only if f(z) is. Another problem of this type is the following :

Let / be an entire function. How many entire solutions, g, does the functional
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equation ff=gg have(2)? The methods of this paper do not seem to work for these

problems. We do have, however,

Corollary 6. Let f and g be entire functions and let fn(z) denote the nth iterate of

f(z). If for some integer «> 1, fn(z) = agn(z) + b, then either f= eg+ d for some con-

stants c and d, and fand g are polynomials or one off, g has infinitely many fix-points.

Proof. When / and g are transcendental, the assertion follows at once from

Theorem 4 (i). If/and g are polynomials they must be of the same degree, as

comparison of the highest powers of fn(z) and agn(z) + b shows. Therefore fn _ x

and gn _ ! are also of the same degree and it is possible to choose the number A

so that 7 =/, _ ! — Agn _ ! is of degree lower than the degree of gn _ i. We show that 7

is a constant. The theorem then follows by induction on «.

Suppose that 7 is of degree m and that gn _ x is of degree « > m. If

f= A0 + Axz+ ■■■+Akzk,       Ak^0

and

g = B0 + Bxz+ ■ ■ ■ +Bkzk,       Bk # 0,

then f(Xgn_x+L) = ag(gn-x) + b. Comparison of the terms of degree kh yields

AkXk=aBk. After cancellation of the gS_!-terms, the highest power of z on the

right-hand side of the equation is  ú(k-l)h; the highest power on the left is

(k—l)h + m. Therefore «i = 0, 7 is a constant.

We now give a generalization of a theorem of Rényi [9] and the author [3].

Theorem 5. Let f(z) and h(z) be arbitrary nonconstant meromorphic functions.

The functional equation f(g) = « has at most a denumerable number of solutions g.

Proof. For given w0 the number of solutions g(z) of f(g(z)) = h(z), g(z0) = w0 is

finite by the inverse function theorem for entire functions. The possible values of

w0 must satisfy f(w0) = h(z0). This gives a finite or denumerable set of w0.

The same proof also shows :

Corollary 1. For any rational function P(w) and any meromorphic function h(z)

the functional equation P(f(z)) = h(z) has at most a finite number of solutions f(z).

Corollary 2 (Rényi [9] and the author [3]). For any polynomial P and any

entire function f(z), P(f(z)) is periodic if and only iff(z) is.

Corollary 3. Let f be an entire function. Iff(z0 + n)=f(zQ)for an infinite number

of integers « and some complex number z0 and if for some meromorphic function,

g, g(f) is periodic with period 1, then f is periodic.

(2) Subsequent to the completion of this paper, I. N. Baker and the author showed that there

are at most denumerably many such g.
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Theorem 5 leads to an interesting conjecture. For any factorization of a mero-

morphic function «, say

(4) h=f(g),

(5) h =fUL-lg)

is another such factorization, where 7 is a linear transformation. The only mero-

morphic functions with meromorphic inverses are the linear transformations. It is,

therefore, reasonable to expect that if one considers such factorizations of « as (4)

and (5) equivalent, then

Conjecture. Any meromorphic function has at most denumerably many non-

equivalent factorizations.

Theorem 6. Let g(z) = u(z) + iv(z) be entire. Let f(z) be entire and periodic with

real period. Iff(g(z)) is periodic with real period and v(z) is bounded on some hori-

zontal half line L, then g(z)=P(z) + Hz, where P(z) is periodic with real period and H

is a real constant.

Proof. Without loss of generality we may suppose that L is the positive x-axis.

Let f(w) have period a > 0, f(g(z)), period b > 0. Every point g(mb) (m a positive

integer) is congruent (moda) to a point Zm in 0^x<a, |_y|<A. Also f{g(mb)}

=f(Zm). If the point-set {Zm} is infinite, it has a limit point in OSxSa, |j>| SK

and therefore f(z)=constant. If/is not constant, then the point set Zm is finite, and

there is an infinite set M of m such that there is a Z and an integer Km with

g(mb)—kma=Z, (m e M).

The equation

(6) Av(z)) = f(g(z)),      y(0) = Z

has the solutions y(z)=g(z+mb) — Kma, (meM). But (6) has at most a finite

number of solutions (see the beginning of the proof of Theorem 5), so that

g(z + mxb)-Kxa = g(z + m2b)-K2a.

This proves the theorem with T7= —(K2 — Kx)a/(m2 — mx)b.

As a further generalization of Corollary 2 of Theorem 5 we have

Theorem 7. If fis any entire function of order less than \ and g is entire, thenf(g)

is periodic if and only if g is.

Proof. Let F(z)=f(g(z)) and suppose that F(z+t)=F(z). Let L be the line

Zq + At, —oo<A<oo. The periodic function F(z) is bounded on 7. If g(z) is un-

bounded on L, then g(L) is a path extending arbitrarily far from the origin on which

f(z) is bounded. This, however, is impossible, since by a well-known theorem of

Wiman any entire function of order £ must be unbounded on every curve going to

infinity. It follows that g(z) is bounded on 7. Choose a value z0 on L such that

a=f(g(z0)) is not an algebraic singularity of f-x(z), the inverse function of f(z).
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Now {g(z0 + «r)}, « = 1, 2,... is bounded, say |g(z0 + «T)| 5[M, while/(g(z0 + «r))

=/(g(z0)) = a. Thus all g(z0 + nr) are among the finite set of solutions of/(M>)=a

which belong to |w| á M. Hence for some m + n, g(z0 + mT)=g(z0+nr). Moreover,

for all small e, f(g(z0 + e+mT))=f(g(zQ + e + nr))=ß(e), so that g(z0 + e + mr) and

g(z0 + e + nr) are both equal to the unique root of f(w)=ß(e) which lies near

g(z0 + «2T)=g(z0+«T). Thus we must have g(z+«iT)=g(z+«T), and g(z) has

period (m — n)r.

Wiman's theorem mentioned in the proof can be generalized to lower order

(see Whittaker [12]). Thus we have

Theorem 7 A. Iff is any entire function of lower order less than \ and g is entire,

thenf(g) is periodic if and only if g is.

Note. The function cos z illustrates that \ is the best upper bound in the above

theorem.

Earlier we asked the question whether for an entire function /, ff is periodic if

and only iff is. More generally one can ask:

If/and g are entire and f(g)=g(f)=F is periodic, then can one expect that/

and g are periodic? In other words, if/or g is nonperiodic can F be periodic?

Theorem 7A yields the following partial answer.

Corollary. If fand g are entire functions, not both periodic, which commute and

F=f(g) has the property that for some e>0, MF(r) < exp (exp (rxl2~s)) for an infinite

sequence ofr approaching infinity, then F cannot be periodic.

Lemma 5 (Pólya [8]). If <f>(z), g(z) and h(z) are entire functions such that,

</>(z)=g(h(z)) and «(0) = 0, then there is a positive constant c, independent of g(z),

h(z) andr with M$(r)>Mg{cMh{r/2}}, where Mf(r) = max^l=r \f(z)\.

Proof of corollary. One can, after some simple transformations, apply Lemma 5

to Fand conclude that either/or g must be of lower order less than \. Thus by the

above theorem F cannot be periodic.

From the arguments of Rosenbloom [10] one can conclude that ez is pseudo-

prime. This also follows from Theorem 1. More generally we have

Theorem 9. Every periodic entire function of exponential type is pseudo-prime.

Proof of Theorem. Let F=f(g) satisfy the hypotheses of the theorem.

By Lemma 1 either g is a polynomial or/is of order zero. If/is of order zero,

g must be periodic, by Theorem 7. But then g(z) has to be of order ^ 1 which

by Lemma 2 contradicts the fact that f(g(z)) is of exponential type, unless /isa

polynomial.

We conclude this paper with

Theorem 10. A meromorphic function and its derivative cannot have a common

right factor other than one of the form ecz+b + d where c, b and dare constants.
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Proof. Suppose that h=f(g) is meromorphic and h' = l(g). Then g'(z)f'(g(z))

= /(<?(*))•

Letting H(w) = l(w)/f'(w) we have g' = H(g).

Since T(r, g')<(2 + o(l))T(r, g) as r-^co, it follows from Lemma 2 that

H(w)=P(w)/Q(w), where P(w), Q(w) are relatively prime polynomials.

Thus for some constant c we have

(7)     C(g-axyi(g-a2y* ■ ■ ■ (g-aky* = g'(g-bx)mi(g-b2)m* ■ ■ ■ (g-bt)m>,

where a, and bi are distinct complex numbers and the «'s and «i's positive integers.

Each üj and each b¡ are Picard values of g(z), as can be seen by considering the

order to which each side of (7) vanishes at a root of g(z) = a¡ (or g(z) = b,). Since

there can only be one finite Picard value, the equation must be of the form

c(g—d)k=g', where k is an integer.

Elementary integrations show that the only solutions g(z) are of the desired form.

Added in Proof. After this paper was completed, the author discovered that

Theorem 7 has already been proved by I. N. Baker. (See On some results of A.

Rényi and C. Rényi concerning periodic entire functions, Acta Sei. Math. (Szeged)

27 (1966) 197-200.)
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