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1. Introduction. It is well known that the growth of a meromorphic function is

closely related to the distribution of its poles and zeros. One would, therefore,

expect that two meromorphic functions/(z) and g(z) would have the same growth

if for certain appropriate sets Sufe S¡ if and only if g e Su i=l,2,..., k; k some

positive integer. It was proven by Nevanlinna (see Hayman [1]), for example,

that for any two meromorphic functions fx(z) and f2(z), if the zeros of fx(z) — a

are the same as the zeros of f2(z) — a for five distinct values of a, then fx(z) =f2(z)

or /i, f2 are both constant. In this paper we shall consider pairs of meromorphic

functions / g such that / g S iff g e S for certain sets S of complex numbers and

see how these functions / and g must be related.

2. Preliminaries. We begin with some of the theorems needed in the proof of

our main results.

It is assumed that the reader is familiar with the definitions and basic properties

of the quantities T(r,f), N(r,f), log+, etc.

Theorem 1. Let <f>x(z), <j>2(z),..., <pn(z) be « entire functions with <£¡ —</>, non-

constant for i^j; and let gx(z), g2(z),..., gn(z) be « meromorphic functions affinité

order such that the order ofgx(z)<p, i=l, 2,..., n, where p is the minimum of the

orders of the functions exp (<f>s-<Pt) (s^t) s= 1,..., n; t= 1,..., «.

!flÂgi(.z) exp (<Pi(z)) = 0, then gx=g2= ■ ■ ■ =gn = 0.

In order to state Theorem 2 we need

Definition 1. To each function X(r), positive, continuous and nondecreasing on

0Sr<R, where RS +°o, we associate the class A of functions/satisfying

(i) /is meromorphic in \z\ <R,

(ii) 7(/,/) = 0(A(r))asr->Tv.

It is easily verified that A is a field, and we call any such field a A-field.

Theorem 2. Each A-field is algebraically closed in the field of all functions mero-

morphic in \z\ < R.

Theorem 1 follows from a more general result of Nevanlinna [7]. Theorem 2

is due to Rubel and Hellerstein [3].
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We shall also need

Lemma 1. Let F¡(xx,..., xn, y/)=0; i= 1,...,« +1, where F¡^0 are polynomials

in n+ 1 variables. There exists a polynomial, P^O such that P(yx,..., yn + i) = Q-

This can easily be proved by induction.

Lemma 2. The characteristic function T(r,f) is continuous in r for every mero-

morphic function f(z).

Proof. This follows from an argument which can be found in Titchmarsh [6,

p. 127, line 5].

Lemma 3. T(r,f) is an increasing convex function of log r for any meromorphic

function f(z).

Proof. See Titchmarsh [6, p. 284d].

Definition 2. Given any two meromorphic functions/(z) and g(z) we shall say

that the growth of f(z) is greater than the growth of g(z), denoted by G(f)> G(g),

if and only if T(r,g) = 0(T(r,f)).

Definition 3. Two entire functions f(z) and g(z) are said to have the same

growth, denoted by G(f) = G(g), if and only if G(f) > G(g) and G(g) > G(f).

Note. According to this definition two functions of a given order and different

types may be of the same growth.

3. Two functions attaining certain values at same points.

Definition 4. For any set S and any function g let

Eg(S)= Ult,g(0-a = 0},
aeS

where any $ which is a zero of multiplicity m is included in Eg(S) m times.

Theorem 3. Let St, i= 1, 2, 3 be distinct finite sets of complex numbers such that

no one of them is equal to the union of the other two and let T¡, be any finite sets of

complex numbers having the same number of elements as St; i= 1, 2, 3. Let f(z) and

g(z) be two meromorphic functions such that El(Sl) = Eg(Tx) and Exlf{0} = Exlg{0} for

i"=l, 2, 3. Thenf(z) andg(z) are algebraically dependent.

(Note. In this and in the following theorems St and 7¡ need not have the same

number of elements iff and g are assumed to be entire.)

Proof. Let zi}, j=l,..., «¡ be the elements of 5¡ and z'if, j= 1,..., «¡ be those of

T¡ for i=l, 2, 3.

Let
n¡

Pt(w) = n O-2»)
; = l

and

j=i
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We have

Piifjz)) ov„ , , , ,vv

qJgJz))=™HUZ%

where <f>t(z) is entire for /= 1, 2, 3.

It follows from Lemma 1 that exp (<f>x(z)), exp (<j>2(z)) and exp (</>3(z)) are alge-

braically dependent. Hence, there exists a relation of the form

(1) 2 Xnmt^P(n<t>i+m<f>2 + t<p3) = 0,
n.m.t

where Xnmt are complex numbers and not all constant.

Applying Theorem 1 to (1) we find that there exist integers a, b and c such that

a<px(z) + b(f>2(z) + c<f>3(z) = k, where k is some constant.

Hence

(Piif)lqi(g)r-(P2(f)lq2(g))b-(P3(f)lq3(g))c - constant.

Thus either/(z) and g(z) are algebraically dependent or (px(w))a(p2(w))b(p3(w))c

is equal to some constant k'. The latter statement, however, implies that

(Pi(w))a(P2(w))b = (p3(w))-c-k'

and consequently that

Sx U o2 = ¿3

contrary to our hypothesis and our theorem follows.

Corollary to Theorem 3. Let St, T¡,fandg, i= 1, 2, 3 be as in Theorem 3, then

f(z) and g(z) have the same growth.

Proof. Since T(r,f) is positive, continuous, and nondecreasing (Lemmas 2 and

3) for any meromorphic function/ we can apply Theorem 2 to the algebraically

dependent functions / and g and we get T(r, g) = 0(T(r,f)) and T(r,f) = 0(T(r, g)).

Hence G(f) = G(g).

In what follows f(0)(z) denotes f(z).

Theorem 4. Let St and 7¡ be as in Theorem 3. Let f(z) and g(z) be any two mero-

morphic functions of finite order. If for some nth derivative f(n)(z) of f(z) and some

mth derivative g(m\z) of g(z), Efw(Si) = Eg™(Tl) and Exir™({0}) = Exlg™({0}),

i=l, 2, 3, thenf(z) andg(z) have the san e order.

Proof. Let the order of/("} be px and that of g{m) be p2. Since

.. log T(r,fM) ,. log T(r, gim))
px = hm sup    b, v J—-,       p2 = im sup    &,     6—'-
ri        r-co v      logr H2        r-,coF       logr

and

Gif™) = G(gn

it follows that px = p2. Furthermore, it is known (see Hayman [1, p. 104]) that the

order of the derivative/'(z) is the same as the order off(z) and our theorem follows.
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Theorem 5. Let St and T¡, i=l, 2, be any two distinct finite sets of complex-

numbers where St and Tx have the same number of elements. Let f(z) and g(z) be a

pair of meromorphic functions of order less than 2. If for some integers w^O and

n^O, Ef^(Si) = Eg^(Tx) and ExlM{0}) = Exlgw({0})for /=1, 2, then f(z) and g(z)

have the same order.

Proof. As in the proof of Theorem 3, let p{(w) and c7¡(vv) correspond to S¡ and

7j, respectively, for i=l, 2.

It suffices to assume that the hypotheses holdfor/andg(seeHayman [1, p. 104]).

We have

(2) Px(f(z))/qx(g(z)) = exp (^(z))    and   p2(f(z))/q2(g(z)) = exp (cA2(z)),

where </>x(z) and (j>2(z) are polynomials.

It follows from Lemma 1 that g(z), exp (</>x(z)) and exp (</>2(z)) as well as f(z),

exp (</>x(z)) and exp (</>2(z)) are algebraically dependent.

Assume that our theorem is false and that f(z) is of greater order than g(z).

One can easily verify that for any polynomial p(w) and any meromorphic function

f(z) of finite order, the order of/(z) = order of p(f(z)). It follows that the orders of

exp (<f>x(z)), exp ((/>2(z)) and/(z) are all equal. Hence,/(z) must be of integral order.

Since by hypothesis the order of f(z) is less than 2, it can be at most of order 1.

Thus, g(z) must be of order less than 1. Since g(z), exp (</>x(z)) and exp (</>2(z)) are

algebraically dependent we must have a relation of the form

(3) 2 X^gn exp (m</>x + t<b2) = 0.
n.m.t

One can now apply Theorem 1 and arrive at j<f>x(z) + k</>2(z) = constant, for some

integers y and k withy or k different from zero. Hence we get

Pi(f(z))iP2(f(z))k = q1(g(z))iq2(g(z)y,

where qx(w) are polynomials. Hence, either/(z) and g(z) are algebraically dependent

and hence of the same order or px(wy'p2(w)k = constant, in which case SX = S2. In

any case we get a contradiction. Thus,/(z) and g(z) must be of the same order.

4. A specific case. In this section we illustrate how additional information

about the sets St, i= 1, 2, 3 may enable one to completely determine/(z) and g(z).

Theorem 6. Let fand g be nonconstant entire functions such thatfe St if and only

if g £ Sx for i=l,2, and 3 with the same multiplicities, where Sx={1}, S2={— 1} and

S3={a3, a4}, SxSj= 0 for i^j. Then f and g must satisfy one of the following

relations:

(4) f=g,      fg= 1    or   (f-l)(g-l) = 4.

Since the proof of this theorem is quite lengthy, we shall give only an outline

of the proof.
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Sketch of Proof. From the hypotheses of the theorem, one obtains

(5) f=exp(<t>x)g+(l-exp(<px)),

(6) / = exp (</>2)g+ex p (<j>2) -1

and

(7) f2 - (a3+a4)/+ a3a4 = exp (<f>3)(g2 - (a3+a4)g+a^),

where fa are entire functions. Eliminating/and g above we get

- 4 exp (3<f>x) + (3 - (a3+a4) - a3a4) exp (2fa) + (1 - (a3 + a4) + a3aé) exp (2fa)

+4 exp (3fa + <f>2) + ( - 4 + 2(a3 + a4)) exp (2fa+<f>2)

+ (-4 + 2(a3 + a4))exp(¿1 + 2<¿2)

(8)
+ (4 - 2(a3 + aj) exp (<f>x + fa) + (1 - (a3 + a4) + a3a4) exp (fa + 2<f>x)

+ (2(a3 + a4)) exp (<p3+<f>x) + (3 - a3at - (a3 + a4)) exp (<f>3 + 2</>2)

+ ( - 4 + 2(a3 + a4)) exp (^3 + <f>2) - (2(a3 + a4)) exp (<f>x + <f>2 + <j>3) = 0.

In the following, two terms will be said to cancel if their exponents differ by a

constant. We now apply Theorem 1 to (8). The first seven terms of the left side of

equation (8) do not involve exp (<£3), while the last five do. If any two nonvanishing

terms in either of these two groups cancel with each other we get a relation of the

form exp (<f>x) = k exp (c<f>2) (c rational). If no cancellation occurs in the first group,

then two of these first seven terms must vanish identically.

Thus we have the following identity

- 4 exp (3^0 + (1 - a3a4) exp (2<f>x) + (fl3a4 -1) exp (2<¿2) + 4 exp (3<f>x + <f>2)

+ (a3a4-l) exp (<f>3 + 2<f>x) + 4 exp (<¿3+<¿i) + (l-a3a4) exp (<p3 + 2cf>2)

-4exp(<f>x + <p2 + <p3) = 0

and since a3 # 1 by hypothesis, none of the coefficients are zero.

Now exp (3<£i) can cancel with one of 4 terms and we have

(a) 3<f>x=<)>3+24>x or <f>3=<f>x,

(b) 3tj>x=<p3+<f>x or </>3 = 2cf>x,

(c) 3<¿!=<f>3 + 2<j>2 or <f>3 = 3<f>x - 2(f>2,

(d) 3<t>x = <f>x+<f>2 + <¡>3 or <f>3=2cf>x-cf>2.

(For convenience the constants of these equalities are omitted.)

Careful analysis of the various cases which arise leads to the conclusion that

either/and g satisfy one of the equations (4) or

exp (<px) = k exp (c<j>2)

where c is one of the numbers 2,-1, 2/3, 1 and 1/2.

This takes care of the situation when no cancellation occurs in the first group of

seven or in the second group of five terms.
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When cancellation occurs within the first group a somewhat similar analysis leads

to the possible relations exp ((/>x) = k exp (c</>2) where c is one of the numbers

2/3, 1/2,2, 1 and -1.

Further investigation shows that c cannot equal 2/3. The remaining possibilities

lead to one of the equations (4).

Corollary. Let SX = {1}, S2 = {- 1}, S3={a3, a4}, St={bx,..., bn} be such that

Sx-S¡= 0 for i^j where « is an odd integer. If fe St if and only if g e Si with the

same multiplicities for i=l, 2, 3 and 4 and ifbj^O or 3 for j= 1,2,...,« thenf=g.

Proof. Assume that/^g. Looking at the remaining possibilities we find that if

some bj is not attained then b¡ must be 0 and if all are attained then some b¡

must be 3.

This result can be generalized to functions of several complex variables. Once the

following definition is introduced the proof remains the same.

Let/and g be entire functions of two (or more) complex variables. If/vanishes

at the origin, then by virtue of the Weierstrass preparation theorem f(z, w) =

l~lx(z, w)Qx(z, w) in a neighborhood V of the origin, where Ux is a polynomial in

w with functions of z, analytic on V, as coefficients and where Qx is nonvanishing

and analytic on V.

Definition 5. Let/(z, w) and g(z, w) be two entire functions such that/=0 if

and only if g=0. A common zero (£x, £2) off and g is said to be a zero of the same

multiplicity with respect to both functions / and g if and only if 11! = n2, where

f(z+Ílt w + &) = Ylx(z+ix, w+£2)-Q(z + tx, w+$2)

and

g(z+Çx, w+Ç2)= n2(z+f1; w+£a)Qa(z+Ç1, w+£2).

An equivalent definition to Definition 5 is

Definition 6. Two entire functions / and g have the same zeros with the same

multiplicities if and only ifffg=e\p (</>), where </> is entire.

5. Images and pre-images of certain sets. In this section we give some appli-

cations of the results of §3. Though these applications, as we shall see, yield much

weaker results about reduced sets (defined below) than the direct application of

Nevanlinna's second fundamental theorem, nevertheless the methods used and the

intermediate theorems are interesting in themselves and hence have been included

in this paper. Certain generalizations of reduced sets are also discussed.

Definition 7. A set S of complex numbers is a simply attained set of an entire

function/(z) iff, for every se S,f-s has only simple zeros.

Definition 8. Let/(z) be meromorphic and S be a set of complex numbers such

that/(S) = S. Then S is said to be a reduced set off(z) iff it is a simply attained set

of/(z) and/(z) e S implies that z e S.

Theorem 7. 7er f(z) be a transcendental entire function. Let Sx, S2, and S3 be
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finite sets of complex numbers such that no one is the union of the other two. If

Sx, S2, and S3 are simply attained sets of f(z), then f~1(Sx), /_1(52) and f'l(S3)

cannot all be reduced sets of any transcendental entire function g(z).

Proof. Assume that the theorem is false. It then follows that Ef(Si) = Eí(g)(S¡)

for i= 1, 2, 3. Hence by the corollary to Theorem 3 it follows that/(z) and/(g(z))

must have the same growth. It is well known (Hayman [1]), however, that

T(r,f(g))/T(r, f) -> co as r-»co, so that the growth of f(g(z)) must be greater

than the growth off.

Theorem 8. Let f(z) and g(z) be two nonconstant entire functions with a common

Picard exceptional point a. If S, &{a}, is any finite set of complex numbers and

Ef(S) = Eg(S), thenf(z) = ei'{:£) + a and g(z) is either of the form ce""-z)+a with cn = l

for some integer n, or of the form fce~*<z) + a, where k is a constant and faz) is an

entire function.

Proof. We may assume without any loss of generality that a=0, so that

f(z) = e^z) and g(z) = enz) ; faz) and y(z) entire. As in Theorem 5 we find a polynomial

p(w) = wn+X1wn~1+-he (we may assume c^O) such that

p(e""-z))lp(ens)) = ev(z);   r¡(z) some entire function.

Thus we get

en<t>_Srxxe{n-1)t,+ - ■ ■ +c = eny + " + X1e(n-1)y + 'n+- --+cen.

By virtue of Theorem 1 we conclude that n<j>=jy + -n + cx and ty+r¡ = c2, where cx

and c2 are constants. Hence <j> = cy + c3, where c is a rational number and c3 is a

constant.

Thus e* = exp (cy+c3). By our hypotheses, however, exp (y(x0)) e S implies that

exp (fax0)) = exp (cy(x0) + c3) is also in S. Thus

exp(cny(xo) + c3(l + c+c2+-. .+c»-i))eS

for all «. If \c\ t¿ 1 then we may assume that |c| < 1 and we get

cM*o) + c3(l+c + c2+ • • • +C*"1) = cny(x0) + c3((cn-l)/(c-l))

= cn(y(x0) + c3l(c-l))-c3l(c-l).

If y(x0)= —c3/(c— 1), then we may . ¿place c3 by c3 + 27r/, so that we may assume

"/(xq)^ —c3/(c—l). Hence we get an infinite sequence of complex numbers

approaching a constant as « approaches infinity. Consequently the numbers

exp (c"y(xo) + c3(l+c + c2+ ... +c»-i))

are distinct for infinitely many « which is impossible since S is finite.

It follows that \c\ = 1 and, since c is rational, c= ± 1.

When c= 1, we get f=kg where k is a constant. When g(x) e S, so is/(x)=&g(x)

and hence kng(x) e S for every «. Thus k must be a root of unity. Our proof is

complete.



206 FRED GROSS [April

One can easily find a number of sets S for which/(z) and g(z), with c= + 1,

have the desired property.

As an application of Theorem 8 we give an alternate proof of the well-known

fact:

Theorem 9. Let f(z) be any entire function and let I denote the set of all rational

integers. If Ef(I) = I, then f(z) must be of the form Az + B, where A is ±1 and B is

an integer.

Proof. e2niz is never zero, is equal to 1 if and only if z e I, and all the roots of

e2ni2=l are simple roots. Let/(z) be an entire function such that Ef(I) = I. Then

e2jii/(z) js equa] to 1 if and only if f(z) e I and hence if and only if z £ 7 Thus e2niz

and e2"if<2) satisfy the hypotheses of Theorem 8 and hence e2RiHz) must have either

the form ce~2niz or ce2niz, so that/(z) must be of the form ±z + B. Since this has

integral values at the integers, B must be an integer and our theorem follows.

We now prove a generalization of Theorem 9. The author is indebted to E. G.

Straus for suggesting the proof of the following theorem.

Theorem 10. Let F(z) = cx exp (axz) + • • • + cn exp (anz) with a^Oj («à2) for

i^j, where cx are constant for /= 1, 2,..., «. 7er Z={zx, z2,...} be the zeros of

F(z). If all the zeros of F(z) are simple zeros and Ef(Z) = Eg(Z) for any two entire

functions f(z) and g(z) then f(z) = Ag(z) + B where A is a certain root of unity and B

an appropriate constant.

Proof. From our hypotheses it follows that F(f(z))/F(g(z)) is entire and has no

zeros so that we have

F(f(z)) = F(g(z))e^\

where </>(z) is entire. By Theorem 1,

a¡/(z) = aig(z) + <j>(z) + bi       for i = 1,..., «.

Since « ^ 2 we get at least two such equations and it follows that f(z) = Ag(z) + B

and </>(z) = Cg(z) + D for some constants A, B, C, and D. We may assume A^l.

Substituting we get

2 Ciexp(ai(Ag+B))= ¿ C exp ((a( + C^+7>).
i=i i=i

We now introduce vector notation using inner product multiplication. Let

a={ax,..., a„} and 1* = (1, 1,..., 1). We have aA = a+C-1*,

aA2 = aA + CA-l* = a+C-l* + C41* = a + (l+^)Cl*,

and in general

aAn = a + (l+A + A2+ ■ ■ ■ +An~x)C-l*,

so that

a = a/An+l*((An-l)l(A-l)An)C^O + (C/(A-l))-l*       asn-*oo,
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unless m = l. Here 0 denotes the 0 vector. Since this is impossible by our hy-

pothesis, we must have \A\ = 1.

Assume that A is not a root of unity. Then the expression for a, namely

1 — An I        C        \       C
nA-n_L__L_t±_T-l* — A-n\aA_—.1*1_—-1*
aA    +(l-A)A"C l   ~A   \a+l-A l j    l-Al

attains infinitely many values unless

o=-(C/(l-i4))-l*   or   a, = -C/(l-¿)       for i = 1,..., «,

which is contrary to our hypothesis in any case. Thus A must be some root of

unity.

We note that any F(z) with « = 2 can have only simple zeros. Hence applying

Theorem 10 to sin 7rz one can easily derive Theorem 9.

We now proceed to develop an extension of Nevanlinna's second fundamental

theorem and to apply the result to a number of problems involving reduced sets.

Consider the polynomials r)(w) = 0?=! (w —at), a t distinct. Let^ = maxiSfc{|fli|, 1}.

The polynomials
k «

P(x) = r¡(x) 'S , ,,   ..2,-r
ái W(ßt)f\x-at)

and

ßW - í TVM^T%
,tl (x-at)(v'(ai))2

satisfy Pr¡' + Qt) = 1. When |x| ^2A one can show after some calculations that

max(|P(x)|, |Ô(x)|) è k(3Ä)k-xß(kyk'X) = kx,

where 8(k) is the minimum of the distances between the points <7j.

Let/be a meromorphic function such that /(0) =£ at, 0, oo.

Let S(k) = {r;r> A}.

When x>2^|i?(x)|^|x/2|'c, so that if \t¡(x)\ S 1, then \x\^2A. Thus when

h(/)| á 1 one easily verifies that

m(r,7fij = 21og+A:1+log2 + m(r,^^)

+ m(r,fj} + N(r,f')-N(r,j^+m(r,f)-log\C'K\,

where f'(z) = C'Kzx+■ ■ ■ ;C'Á^0.

Thus

Lemma 4.

4'^) = 2l08+'1+l0g2+m(r'^C7f)

+ m(r,^+N(r,f')-N(r,j^+m(r,f)-log\C'x\

for all r in S(k).
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Lemma 5.

m(rj-j\ < 41og+ 7(7,/) + 41og+ log +
l/(0)|

+ 51og+Tv + 61og+^- + log+-+14,
R — r r

R>r for all r.

Proof. Hayman [1].

Lemma 6. m(r,f'¡f) = 0(\og rT(r,f))for all r outside a set, E0, of finite measure.

Proof. Hayman [1].

Using Lemma 5, some standard Nevanlinna arguments and the fact that

h(/(0))| = n l/(°)-«-:!i=i > c\

where C is a positive constant, one easily verifies

Lemma 7.

ir,V~v9P) - Clog' k + °(l°zrT(r>f»'

C a constant, for all r in S(k) except a set E0 of finite measure. E0 and 0(\og rT(r,f))

are independent ofk.

Also one verifies easily

Lemma 8. T(r, r¡(f))^ kT(r,f)- k log 4A.

Lemma9. T(r, v(f))=T(r, l/v(f)) + logk(AB)k, whereB=max |4i|,/(*)*2-o*^-

Proof.  T(r, ^(f)) = T(r, l/r,(f)) + log \CÁ\, where r¡(f)=CÁz* + ■■■, C^O. Clearly

\Cx\Sk(ABf.
As an immediate consequence of the above lemmas we have

Theorem 11. Suppose f(z) is a nonconstant meromorphic function withf(0)^0, co.

For any sequence ax, a2,..., [a¡| S \ai + x\, with at^f(0), let 8(k) = minimum of the

distances between the first k points of the sequence Then for every k^2,

(k-l)T(r,f) S N(r,f)+ | N(r, j^)-\2N(r,. ) + N(r,j-}j-N(r,f')

+ C'k log r+4(k-1) log ¿r + 0(log (rT(r,f)))
6(k)

for all r in S(k) outside a set '".. of finite measure. 7, and 0(log rT(r,f)) do not

depend on k.
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Remark. The above proof is a refinement of an unpublished proof of Nevan-

linna's second fundamental theorem given by P. C. Rosenbloom during a series of

lectures at Syracuse University a few years ago.

Definition. Let/(z) and g(z) be any two meromorphic functions. We shall say

that f(z) grows faster than g(z) almost everywhere, denoted by G(f) > a.e. G(g),

if and only if
lim    T(r,f)/T(r, g) = co,

r-*oo;reE

where E is the complement of a set of finite measure.

Theorem 12. Let f(z) and g(z) be any two meromorphic functions and let S and

T be any finite sets containing three or more points of the extended plane. Iff(z) e S

iff g(z)eT then G(f)>a.e. G(g).

Proof. Let ax, a2, and a3 be distinct elements of S and bt, i= 1,..., k be the

elements of 7. We use the definition of N(r, l/(f—a)) with multiple poles being

counted only once.

Assume that G(f) > a.e. G(g). Thus we have

lim    T(r,f)/T(r,g) = co.
T—x-.reE

We have

for each /= 1, 2, 3. Thus for any s>0,

N(r, ll(f-at))      f Ñ(r, l/(g-¿,))
T(r,f)       = ¿        T(r,f)

for sufficiently large r in E. This, however, contradicts Nevanlinna's second funda-

mental theorem.

Theorem 13. If fis transcendental meromorphic and of finite order and g is entire

of positive lower order, then

T(r,f(g(g)))/T(r,f)^co

outside a set of finite measure.

Proof. We first note that for any transcendental entire g and/as above

(9) T(r,f(g))/T(r,g)^ co

as r -> co (see Hayman, p. 54). Though Hayman stated (9) for entire /, it remains

valid for meromorphic/as well.

It is well known, however, that since g is of positive lower order, gg must be of

infinite lower order, i.e. for any constant C

liminflog7(r,gg)>c
r- co log r

or T(r, gg) > rc for sufficiently large r.
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Since fis of finite order we also have for some c' <c that

T(r,f) < r*

for sufficiently large r.

Thus

T(r,gg)/T(r,f)>r<-°'->cc

with r. Thus

T(r,f(g(g)))/T(r,f)-+co

with r ->• co.

Theorem 14. Iff(z) is any transcendental entire function and S is any finite set

containing three or more elements, then f~ X(S) is not a reduced set of any entire

function g(z).

Proof. Assume that f~\S) is a reduced set of g(z). Then g(f~\S))=f~\S)

and f(g(f-1(S)))=f(f-\S)) = S. On the other hand, if f(g(x)) = se S, then

g(x) ef~\S) and hence x ef~\S). Hence f(g(z)) e S if and only if f(z) e S and

by virtue of Theorem 12 G(f(g)) > a.e. G(f). But by Theorem 13, G(f(g)) > a.e. G(f)

so that our theorem follows.

In a similar manner one proves

Theorem 15. If f(z) is transcendental and meromorphic of finite order and S is

any finite set with 3 or more elements, thenf'1(S) is not a reduced set of any entire

function g(z) of positive lower order.

The argument is the same as before once we note that S is a reduced set of gg

whenever it is a reduced set of g.

Note. We have actually proved more than is stated in Theorems 14 and 15

since no assumption need be made about the multiplicity of the roots of g(z) — t,

where tef-\S).

Corollary 1. The set of rational integers is not a reduced set of any transcen-

dental entire functions.

Corollary 2. A point lattice is not a reduced set of any transcendental entire

function.

Proof. One can easily construct a Weierstrass /^-function / which maps a given

point lattice into a finite set {ax, a2, a3,...} having more than two points such that

no other complex numbers go into these points.

Theorem 16. Let S={a¡}, i= 1, 2,..., be a discrete set, |a¡| < |aJ + i|. If S is a

reduced set of a transcendental entire function f, then for every t, &(nf(r, S))Sr~l

for all r outside a set of finite measure. If in addition fis of lower order < 1/2, then S

cannot be a reduced set off. Here ns(r, S) is the number of elements of S in \z\Sr
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and for any positive integer k, h(k) = minimum of the distances between the first k

elements of the sequence S.

Proof. First assume that/has positive lower order. Then g =/°/has infinite

lower order and 5 is also a reduced set for g. Let ax, a2e S (ax, a2 finite), then it

follows from the standard form of the Second Fundamental Theorem that

lim MN(r,ll(g-ai))+N(r,l/(g-a2)) =

for every finite A, provided r$E0, E0 of finite measure. Since N(r, l/(g-a))

ún(r, l¡(g-a)) log r, it is immediate that for every finite A

lim M*>lfo-aù)+<r,lte-aJ) = +œ       ^ ^

Hence for any real A and all r sufficiently large (r <£ E0), n(r, S) ^ rh (since

c?_1({ai, a2})S). If 8(«(r, S))> l/rK~x for some A and r; then n(r, S)èr/8(n(r, S))<r\

In view of the preceding, this is only possible if r < r0(X) for a suitable r0 or if

reE0.

For/of lower order < 1/2, denoting by p(r,f) the minimum modulus of/on

\z\ =r, Kjellberg [2] has extended Wiman's Theorem and has shown that

lim sup {log p(r,f)/log M(r,f)} ä c > 0,
r-* co

where c depends only on the lower order. Let {rk} be an increasing unbounded

sequence for which this inequality holds. Since / transcendental implies that

lim infr-,00 {log M(r,f)/log r}= +co; choosing any A> 1, there exists k0 so that for

k>k0, p(rk,f)^r^. Let S consist of the sequence {c¡} and denote by Dr the open

disc centered at the origin of radius r. Since a nonconstant entire function of lower

order < 1/2 has no finite Picard exceptional value, for all sufficiently large k>kx,

0ef(DrJ. But p(rk,f)^rk for k>k0. Hence for A:>max(A:0, kx), we must have

DTk ̂f(Drk) and in particular Dr¡c <=f(Drk). Since S is a reduced set for / each c,

with |c(| <rk must have a pre-image among the c¡'s in DTk, i.e. f~1(ci) = cj e Dr¡c.

Hence each c, e D,k has one and only one pre-image in DTlc. Keeping ct fixed and

letting k ->■ oo, we see that c¡ has exactly one pre-image in the plane. Thus /must

be a linear polynomial by Picard's Theorem.

It is worth noting that if S is a discrete infinite set, then S cannot be a reduced

set of a meromorphic function which is not entire.

This clearly gives us another proof of the fact that a point lattice is not a reduced

set of any transcendental entire function.

If/is transcendental entire and S is a finite set with two or more elements, say

{ax, a2,...} then it follows from the standard form of Nevanlinna's second funda-

mental theorem that for every e > 0

(10) n(r,f~x(S)) ^ (l-e)(n(r, S)-2)T(r,f)/log r
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one can easily verify that (10) remains valid if/ is transcendental meromorphic

and not entire and S is an infinite discrete set.

Actually more is true.

Theorem 17. Let f(z) be a transcendental meromorphic function j'(0) ^0, co. If a

discrete set S={ax, a2,...}, a¡^f(0), with three or more elements, satisfies for some t,

8(n(r, S)) â F1

for a set, E, ofr of infinite measure, then for every e>0

n(r,f-\S)) § (l-£)(«(r,S)-2)7(r,/)/logr

for all r in E outside a set of finite measure. Here n(r, S) denotes the number of

elements of S in \z\ Sr.

Proof. One easily verifies

n(r,S) _ ntr,/"1«))

2 N(r, / a¡) S      2      loê TTT + A log r>
¡ = i j = i I °i I

where b¡ are the totality of «¡-points off (i= 1,2,...).

Thus

(n(r, S)-2)T(r,f) S n(r,f~\S))(\og r + A') + Cn(r, s) log r + 0(log rT(r,f))

for all r in E outside of finite measure; C, A' constant. Our theorem follows.

Corollary 1. If f(z) and S are as in Theorem 17, then for any constant k

n(r,f_1(S))>kn(r, S)for all r in E outside a set of finite measure.

Corollary 2. If ' f(z) is a transcendental meromorphic function and S is any

lattice, then f~ 1(S) is not a lattice.

Proof. Choose A such that/L4)^0, co, at, i=l, 2,..., where S={ax, a2,...}.

f(z + A) satisfies the hypotheses of the above corollary and our assertion follows.

Corollary 3. Leta¡, i=l,2, 3 be any three numbers in the extended complex plane.

For any positive real numbers « and m let

Snm = {An + iBm; A and B any integers}.

If f(z) is a meromorphic function such that its only arpoints for i=l, 2, 3 are in

Snm, thenf(z) is at most of lower order l/n+l/m.

Corollary 4. If for any meromorphic function, / there exist at;i = 1, 2, 3, satis-

fying the hypotheses of Corollary 2 and a point a such thatf~ 1(a) g 5nm., «', m' positive

reals, then

l/n' + l/m' S pLS l/n+l/m,

where pL denotes the lower order off. In particular when n = ri and m = rri', f must be

of lower order l/n+l/m.
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We note that for « = 1 and m = 1 this corollary is sharp as illustrated by the

Weierstrass /^-function.

As an extension of Theorem 16 we state

Theorem 18. A finite set is not a reduced set of any rational function other than a

linear transformation.

The proof is trivial.

Theorem 19. Let f(z) be a meromorphic function and let S be any set containing

three or more points. If the infimum of the distances between points off" ^S) is nonzero

thenf(z) is of lower order less than or equal to 2.

Proof. We may assume that / and S satisfy the hypotheses of Theorem 17.

The theorem follows by noting that n(r, f~1(S))SCr2; C a constant.

The Weierstrass /^-function illustrates the sharpness of this theorem also.

As we have indicated in Corollary 4, one can also get lower bounds for the

lower order of meromorphic functions, provided that the poles of a point are at

least of a certain density. Much more is known about lower bounds for order and

lower order in the case of entire functions (see [4], [5]). One could easily state

theorems of the same type as Corollary 4, which satisfy somewhat different con-

ditions. As an illustration we prove

Theorem 20. If for any entire function, f, there exist a¡, i=l, 2, 3, satisfying the

hypotheses of Corollary 3, with n and m greater than 2 and if for some number a

fm(a) is a Gaussian integer for sufficiently large k, then f is a polynomial.

Proof. One need only note that by the first hypothesis / is at most of lower

order less than 1, while by the second hypothesis/must be at least of lower order

1 unless it is a polynomial.

A number of questions remain open. Do there exist discrete sets S containing

three or more elements which are reduced sets of a transcendental meromorphic

function? Can nonlinear polynomials have discrete reduced sets?

One could also ask questions about nondiscrete denumerable sets. However,

the methods of this paper could not be used to deal with such problems.

Remark. For any entire function/ the sets S formed by taking all combinations

of images and pre-images of a denumerable set, 7, i.e. fnf~1 ■ ■ -f(T) certainly

satisfies f~1(S) = S. It is difficult to determine, however, whether or not S is

discrete. E. G. Straus suggested that S is even dense.

The author is indebted to the referee for useful remarks and for the statement

and proof of the second half of Theorem 16.
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