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Let p be a Borel measure on Rn, and <.,. > the usual scalar product thereon.

In the first part of this paper we will describe some properties of the Laplace

transform

Lu(x) =       exp (x, r> dpt

which arise incidentally in the study of holomorphic functions in tube domains.

Some of these properties are not new, or are known in special cases, and we refer

the reader to [1], [2] for background. In the second section we make some appli-

cations; one of these gives Bergman Kernel for arbitrary tube domains; thus

generalizing results of [5], [6].

I. From Holder's inequality, it is apparent that the set of x for which Lß(x) is

finite is convex. We denote the interior of this set by Fu, and we are principally

interested in cases where Fu is nonempty. The following lemma, whose proof can

be found in [1, p. 129], is useful in such cases.

Lemma. Let p e Fu. There is an e > 0 such that

n exp </>, r> exp le ^ |r'| I dpt < °°-

This result will be used without specific mention to justify the assorted analytic

manipulations of the integral for Lu(x) which we subsequently perform.

Holder's inequality may be interpreted as saying that logL^x) is a convex

function of x e Fu ; and this implies that the « x « symmetric matrix

Hu(x) = [82 log 7H(x)/ax4 dx}]

is positive semidefinite. If the convex hull of the support of p has a nontrivial

interior, then it is easy to see that we only have trivial cases of equality in Holder's

inequality, which suggests that TT„(x) is positive definite. Now let Su be the interior

of the convex hull of the support of p, and define p to be satisfactory if both 7„

and Su are nonempty. Then we have

Lemma. If p is satisfactory, Hu(x) is positive definite for x e Fu.
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As a straightforward calculation shows

n(x) 2 -ffiffi0 rV = £|(x) £ log 7„(*+ Ar)(A = 0)

= \ J <r, /-j>2 exp <x, í+í> c//is dpt

for any r e R", which immediately proves the lemma.

We define a mapping «„: F„ -s-Ä" by setting «„(*) = grad log7u(x). Note that

the matrix Hß gives the Jacobian of the mapping «„.

Lemma. If p is satisfactory, «„ is c7« injection.

Let r e Rn, r^O, X e R. As the last lemma shows,

(hu(x+Xr), r) = (d/dX) log L^x+Xr)

is   a  strictly  increasing  function   of  A,  where  defined.   Put  r=y — x.  Then

x + X(y-x)eFu for all 0^ Aá 1. Hence

<K(y)>y-x> = <.K(x+(y-x)),y-x)

> <hß(x),y-x}.

Thus if y ,¿ x, then «„(>>) ̂ «H(x).

By virtue of the last result, the range of hu becomes of some interest. The deter-

mination of the range depends on the boundary behavior of Lu(x). First we have

Lemma. Let p be a point of Su. Then Lu(x) exp < — x, />> -> co as x -> co.

Let 5 be an «-simplex contained in Su and containing /> in its interior. The

vertices of B are each convex combinations of finitely many points of support of

the measure p, and p is a convex combination with positive coefficients of the

vertices of B. So we may write p = 21"= x A^, A¡ > 0, r¡ being a point of support for p,

and the convex hull of the tx has a nonempty interior. Let e>0, and consider the

set Te of xeRn for which <x, t{— p}^e\x\, i=l, 2,..., k. We claim Te consists

only of the origin for sufficiently small e. Otherwise we can find a point s on the

unit sphere for which (s, tx—p^úO for all i. Since /> = 2 Vi» ^¡>0, we conclude

<í, r¡ —/»> = 0, which means of course that s = 0. This contradiction proves the

claim.

Now let e be such that TE consists only of the origin. Integrating exp <jc, r> dpt

over a disjoint union of spheres, each of radius at most e/2, centered at points

t\, t2,..., tk, we obtain, for suitable positive constant c,

Lu(x) S; c exp (—e\x\/2) 2 exp <\x, í¡>
i

or

Lu(x)exp(-x,p} ^ cexp(-£|x|/2)2exp<x,/¡-p).
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For some i we must have exp <x, t¡— /j>^e|x|. Thus

Lu(x) exp < — x, p) ^ c exp (e|x|/2)

and the lemma is now clear.

Subsequently we will have need of the estimate of the last lemma, rather than the

lemma itself.

The complete description of the range of «„ will be possible only in case of some

additional information on the boundary behavior of Lu(x).

Definition. We say p is pioneering if p is satisfactory and Lu(x) approaches

infinity as x approaches the finite boundary of Fu.

Note that a satisfactory measure of bounded support is automatically pioneering.

Theorem. If p is pioneering, then hu gives a bijection of Flt with Su.

We have

grad log 7„(x) = j-j-rr j t exp <x, f) dpt.

The expression on the right is a convex combination of all the support points of

p; hence it belongs to Sß. Now we know that «„ is an injection of Fu to Su. To see

that «M is onto, let/? g Su, and consider the function on Fu given by 7#(x)exp <—x,p}.

This function approaches infinity as x approaches infinity, or as x approaches the

boundary of Fu. Hence the function has a relative minimum in 7W. At such a

minimum point x we must have grad log 7M(x) =p, so the mapping is onto.

The next results give some useful classes of pioneering measures.

Theorem. Let C be a closed convex set with interior in R", not containing an

entire straight line, and C(t) the characteristic function of C. The measure p for

which dp = C(t) dt is pioneering.

The proof will in fact describe Fß precisely. Let D be the cone of C; i.e., D is the

largest convex cone having the property that for p e C and any de D, p + deC.

Let D* be the dual of D; i.e., D*={x e Rn\(x, r>äO for all te D}. C does not

have an entire straight line, nor does D; hence D* has a nonempty interior. We

will now prove that Fu is precisely the interior of — D*.

LetAelnt D* ; thus <«, d} > 0 for any d e D,d+0. Suppose that <«, cv/|cv|> ̂ 0

for a sequence cv of points of C approaching oo. The limit points / of the sequence

cv/\cv\ can only be nonzero points of D. But <«,/>=0 is a contradiction. We

conclude that <«, c>2: p\c\ for all ce C with \c\ ̂  R, where p and R are appropriate

positive constants. This last trivially implies the finiteness of 7H( —«).

On the other hand if « g Bd D*, then there is a de D, d^O, so that <«, d) = 0.

Let p be an interior point of C. We can find linearly independent points d=vx, v2,

..., vn and a positive number e so that the members of the set T of points of the

form p + Xxvx + X2v2 + ■ ■ ■ + Xnvn with Xx ̂ 0, and |A2|, |A3|,..., |An| g e, all belong

to C. Hence

(—1) sinh £<x, v2y     sinh e<x, vn}
Lu(x) ^      exp <x, r> dt = a -—

Jt \X, f 1>      <*, v2> <X, l>„>
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where a is a positive constant independent of x. Thus as x approaches —«through

points of — Int D*, Lu(x) -> oo as asserted.

Theorem. Let pbea satisfactory measure. Put dr¡ = 7x/7H(x). Then r¡ is a pioneering

measure and S„ = Fu, FV = SU.

(Lu(x) is permitted to take the value of oo, and l/oo is to be interpreted as 0.)

By definition, SV = FU.

Let p e Su. An estimate made earlier gives 7/i(x)äcexp (e|x|/2) exp <x, p),

which shows that Ln(p) is finite. Thus SU^FV.

Now let b e Bd Su. Pick a supporting hyperplane to Sß at b; i.e., a point y and

number « such that (y, s} S h for se 5„, and <j, b) = h. Pick a subspace F of Ä"

complementary to that spanned by y, in such a fashion that F n Fu is nonempty.

Then

L^Xy + v) =    exp <Aj> + r, r> dpt

S Lu(v) exp (AA)       for A ̂  0.

7,(0 = j exp <x, r> 2^x ¿*

= a    exp <Av + t;, r> —n—■—r dX dv
J     HW ' Lu(Xy + v)

^ a \    exp (A<j, r>-A«) dX-     exp O, O -j——
Jo Jv ^«W

Thus

dv

= a     exp O, t)
1 *., '

L»"" h-<y,0

where a is the Jacobian arising from the linear transformation of coordinates.

Recalling that Lß(v) is not identically infinity, it is clear from the above that

7,(i) -> oo as t -»■ b.

II. There is a direct though strange connection of our first theorem with the

Brunn-Minkowski Theorem [3]. Namely, let p and rj both be measures in Rn, each

of bounded support, and Su and S„ be nonempty. Using the Titchmarsh con-

volution theorem, it is easy to see that

^u®n = Sa + Sy,

where p ® r¡ is convolution, and Su + S„ is set of all sums of points of 5U with points

of S„. From our first theorem, it follows that

V(SU) = volume of Su = f    \Hu(x)\ dx.
jRn
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Also we know Lli<s„(x)=Lß(x)-Lri(x). Now for convex sets A and B, the Brunn-

Minkowski Theorem asserts V(A + B)xln^ V(A)xln+ V(B)xln. Hence we must have

[Jäb \[Hu(x) + Hv(x)\ ¿xj      ä y |//H(x)| dx\    + [J |//„(x)| c/xj    •

It does not seem easy to give a direct proof of the last inequality!

As another application of our results, we can easily give the Bergman Kernel

Function for tube domains, thus extending [5], [6]. For this purpose let D be an

arbitrary connected domain in Rn and TD the tube in Cn with D as base. By L2(TD)

we denote the space of functions holomorphic and square integrable on TD.

Let 7(x)=jD exp <x, t) dt. By a minor extension of the argument used in [6],

which already leaned heavily on [1], it is easy to show that corresponding to every

/in L2(TD) there is a unique complex valued function ç> on Rn such that

f(z) =       exp <z, f)<p(t) dt
JR"

and moreover

\<p(t)\2 L(2t) dt < oo.f
JR"

(If 7(2r) is almost everywhere infinite, then L2(TD) consists only of the zero

function, and there is nothing to prove.)

Conversely, corresponding to every cp with the stated square integrability

property, the integral

f(z) = J exp <z, t}<p(t) dt

equals a square integrable holomorphic function in L2(TD), as the estimates of §1

readily show.

An easy computation, using Plancherel's theorem, also shows that

f    \f(z)\2 dx dy = (2*y ¡    \<p(t)\2L(2t)dt

so the correspondence is, except for scaling, an isometry of Hubert spaces, generaliz-

ing the observation made in [5].

Now put

7i(x) = JAnexp<x,í>I¿r)^

From the last theorem of §1, it follows that 7?(x) is finite for xe D + D. Let z,

weTD,z=x+iy. Then we have just seen that B(w+z) is defined. And furthermore,

with the estimates of §1 available, we find that 7i(w+z) is a square integrable
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function of y, as well as a square integrable function of x and y. Using Plancherel's

theorem :

B(w + z)f(z) dx dy = (2iry exp <u>, /> exp <2x, t}<p(t)L(2t) dt dx
Jtd JR'lxRn

= (2ir)n f exp <w, t}<p(t) dt = (27T)nf(w).

Thus we have

Theorem. B(w + z)/(27r)n is the Bergman Kernel Function for L2(TD).

A slight alteration of the arguments used to obtain the last theorem will yield

results which overlap but are not completely included in statements of Gindikin [4]

on Cauchy-Weil Kernels for tube domains. For this purpose, we must define an

appropriate operational class of holomorphic functions.

Let p be a satisfactory measure in Rn. We consider the class Cu of holomorphic

functions f(z) in TSß having the following two properties :

(i) A(x)=JÄn \f(x+iy)\2 dy exists for xeSß, and is uniformly bounded for x

in any compactum in Su.

(ii) j X(x) dp < oo.

A word of explanation about condition (ii) is needed. Condition (i) is known to

imply the existence of a function <p such that/(z)=J exp <z, t}<p(t) dt, valid for

z £ 7Su [1], So for x £ SB, Plancherel's theorem gives

A(x) = (2v)n fexp <2x, t}\<p(t)\2 dt

and this equation permits the extension of A(x) to a function on Rn, possibly taking

the value +oo. It is for the extended function A(x) that condition (ii) is to be

understood.

Let f] be the measure on Rn x Rn such that dt]=dpx-dy. The function exp (,x,y}(p(y)

is r] measurable; and condition (ii) above may be restated as

J |exp<x, f)<p(y)\2 d-q < co

or

j\<p(y)\2Lu(2y)dy<œ.

We want to reinterpret condition (ii) in terms of the function/(z) itself. To this

end, let Bv be the ball of radius v about the origin in Rn, and put

fv(z) =  F   exp <z, r>çp(0 dt.
Jb,

The functions f(z)=fv(x+iy) are continuous in RnxRn, and square summable
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with respect to the measure r¡. Furthermore the sequence/(z), v=l,2,... is

Cauchy in the space of square integrable functions with respect to the measure r¡.

This last assertion follows trivially with use of Plancherel's theorem. Hence there

is a limit function, r¡ square integrable, which we again denote by f(z), since we

may suppose it agrees with/(z) in 7Sji. Since the values of/(z) outside the support

of r] are irrelevant, it is natural to say that/(z) subject to condition (ii) has general-

ized boundary values.

Finally we define

K(x) = i   exp <x, r> j-pr- dt.
JRn Lu(Zt)

Let 5 be the support of the measure p. Using the estimates of §1, it is easy to see

that K(w+z) is well defined and continuous for weTs¡t and zeTs. Even more,

K(w + z) is 7) square summable as function of z=x+iy. Hence, repeating the

argument used for Bergman Kernel, we conclude

f(w) = ^njTsK(w + z)f(z)dr1.

If the measure p is concentrated on the boundary of 5W, then the formula above

may be viewed as a version of Cauchy's formula.
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