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1. Introduction. We calculate the groups K*(G/U) modulo torsion (K*

denoting the Grothendieck-Atiyah-Hirzebruch ring based on complex vector

bundles) for homogeneous spaces G/U satisfying the following conditions: G is a

compact, connected, simply-connected simple Lie group, U is a closed subgroup

which is totally nonhomologous to zero in G for rational coefficients, and t is an

automorphism of period 2 of G with U as fixed point set. Since G is simple, it must

be SU («), Spin (2«), or Ee (see §3) and the simplest example of such a "symmetric

space" G/U is Sa"_1=Spin (2«)/Spin (2«- 1).

We use Atiyah's result [1] that K*(G) mod torsion is an exterior algebra

A dpi], ■ ■ -, [pi\) where the p¡ are the basic irreducible representations of G.

Hodgkin's theorem that K*(G) is actually torsion free will be used only in a few

places to sharpen the results (see Hodgkin [10], or a forthcoming paper of Araki).

For any space X let Kf(X) denote K*(X) modulo torsion. G and U will be

assumed to satisfy the conditions in the first paragraph unless otherwise stated.

The first theorem describes K?(GIU) and the homomorphisms:

Kf*(G/U) ^-> Kf(G) ̂ U. K,*(G/U)

where p: G -y G/U is the natural projection, and q: G/U^-G is given by q(gU)

=gr(g)~x (t is the automorphism of G). The second theorem uses the relation of

G/U to a certain Jordan algebra to show that Kf(G/U) as a ring with operations is

generated by one element defined by means of the Jordan algebra (e.g., a half-

spin representation for S2n~x). The third theorem relates Kf*(G/U) to K?(Q.(L/G))

where L/G is again a homogeneous space and Q denotes its loop space. The fourth

theorem applies these results to fiber bundles with G/U as fiber.

We now state these theorems :

Theorem I. (a) Kf(G\U) is an exterior algebra f\ (xx, ...,xr) andp*: Kf-(G/U)

-> Kf(G) is injective, q*: K¡*(G)^>-K¡*(G/U) is surjective.

(b) Kf(G) = f\([Px], ■ ■ -, M, r*[Pi], ■.-, T*lPr), [Pr+i], ■ ■ -, [ft]) where r*[ft] =

[p,] for i>r, and Kf(G/U) = /\(q*[Px],.. .,q*[Pr]) while q*[Pi]=0 for i>r.

(c)p*Kf(G/U) = /\ ([px]-r*[Px],..., [pr]-r*[pr])^Kf(G).
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The proof of Theorem 1, with some similar results for more general homogen-

eous spaces, is given in §2. The proof is very short and does not require the classifi-

cation theory.

The next theorem gives a more precise description of Kf(G/U), including opera«-

tions, for the class of symmetric spaces described in the first paragraph. With each

such space we associate a central simple formally-real Jordan algebra / (see [5]

and its references) such that t/is the automorphism group of A and G is the compact

simply-connected form of the group N(J) of linear transformations of/preserving

the norm form (a kind of determinant) of J.

Theorem 2. Let R be a complex irreducible representation of the Jordan algebra

J ®r C, which is a special representation if J is a special Jordan algebra. Then R

determines a complex irreducible representation p of G and a corresponding element

[P] ofKf\G), and

K?(G/U) = (q*[P],q*[X2p], . . .,q*[X'P])

where q: G/U^G is the imbedding, the A' are exterior powers and r = rank of

G — rank of U.

The proof of Theorem 2, in §3, makes use of the classification. However, it is

short and illustrates the concepts involved.

If G/U is a symmetric space as before, or under more general circumstances,

then one can find Lie groups L containing G and Bott maps B: G/U-> 0(L/G),

Q. denoting the loop space. The composition of B and the natural map co: Q.(L/G)

-> G is just a: G/U-> G and we obtain

Theorem 3. Kf(Q.(L/G))^K}*(G/U) © Ker B*.

Finally, we make an application to fiber bundles. Let G, U be as in Theorems

1 and 2, and let p be the representation of G described in Theorem 2. Let P -* P/G

be a principal G-bundle and G/U^P/U^-P/G the associated G/U-bundle. Let

(p) and T*(p) = (p o t) be the corresponding elements of K°(P/G). We then have:

Theorem 4. Let (P)-r*(P) = 0 in K°(P/G). Then Kf(P/U)^ Kf(G/U) is sur-

jective. If further K*(G/U) is torsion-free then K*(P/U)xK*(P/G) ® K*(G/U) as

algebras.

The results stated for symmetric spaces actually hold more generally but in more

complicated form, as shown in the following sections.

2. By [1], K?(G) = /\ ([pi],..., [pi]) where px,..., p, are the basic irreducible

representations p¡: G ->■ c/(A¡) and [p¡] are the corresponding elements in Kr1(G).

We recall that ch: Kf(G)^H*(G; Q) is injective and identifies K*(G) ® Q

with H*(G; Q). Elements x of Ar*(G) will be called primitive if ch x is primitive

in the Hopf algebra H*(G; Q).
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It is easy to see that the [p¡] are a basis for the primitive elements PK*(G) in

K*(G) (for, one may look at K~X(U(N)) and the element [R] corresponding to the

standard identity representation; [R] is primitive since ch [R] is the suspension

of an element in H*(BmN)).

Let p:G^G/U, q:G/U^G be given by p(g)=gU, q(gU)=gr(g)-x. Thus

q °P(g)=ST(g)~1- An easy calculation (see [4]) shows that if y e H*(G; Q) is

primitive then p*q*(y)=y — r*y. Thus

pV[ft] = [ft]-T*[ft] = [ft]-Kft)].

The action of t on the pt, defined by r(pt) = Pi° t, is easily described : the p¡ are in

1-1 correspondence with the vertices of the Dynkin diagram of G, and t (modulo

inner automorphisms) is determined by a permutation of these vertices which is

an automorphism of the diagram. Thus t permutes the p¡, and t2 gives the identity

permutation. Hence we may relabel the p¡ as px,..., pr, rpx,..., rpr, p'x..., p's

where rP¡ = P¡, and 2r+s = l. Thus K?(G) = A" ® ?* A" ® A', A" = A (pi, ■ ■ -, ft),

A' = A (ftu ■ • •» ft)- The ima8e of P*Q* is A (Pi-TPi, ■■-, Pr-rpt), an abelian

group direct summand of Kf(G). We note that r*[p¡] = [pí] implies q*[p[] = 0: for t

operates on G/ (7 so that qr = rq and rq(gK) = q(gK) ~1 = u(q(gK)) where w(g) = g ~x

inG;thus67*[pi]=?*T*[ft']=9*"*tft']= -Ç*[pl] sinceu*(x)= -xforany primitivex.

Thus c7*=0 on A', 1* A"=?*T* A" = Im?*, P*?* maps A" isomorphically

onto a direct summand, and K?(G/U) = lmq* © Ker/j*. However, we assumed U

nonhomologous to zero in G (over Q) so p* is 1-1, and Kf(G/U) = lmq*=q* A"

~ A"- Theorem 1 is now proved.

The argument used to prove Theorem 1 also applies in more general situations :

let U be a closed subgroup of G, with G compact, connected, simply connected,

and let px, p'x, p2, p'2 ■ ■ ■ be representations of G such that pt = p't on U. Then if

Pi, p't: G-* t7(7Yi), we can define maps qr.G/U^ U(Nt) by qi(gU) = Pi(g)p'i(gyx

and corresponding elements [qx]e K~X(G/U), [p¡] e K'X(G). An example of this

occurs when px is a representation of G, t an automorphism of G which is the

identity on U, and p'¡ = Pi ° t. then qi = p¡° q where q: G/U—* G is as before.

If p: G-^ G/U is the projection, then p*[qi] = [pi]-[p'i] e K*(G). With this

notation, we now have :

Proposition 2.1. Let M be the submodule of Kfx(G) generated by the elements

[ft]-[ft]- Then K*(G/U) contains a subalgebra A isomorphic under p* to A (M).

Proof. Pick a basis {m,} of M, let af e Kfx(G/U), p*a, = mj. A is generated by

the a,.

Proposition 2.2. Let t be an outer automorphism of G of prime order (modulo

inner automorphisms) which is the identity on U. Then

1. Kf(G) = A (M) <g> A (N) where M, N<^Kfx(G), r is the identity on N and

M=Z[t] 0 M' is a free module over the group algebra Z[t] of t.
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2. Kf(G/U) = A ®B where

P*:A2L+((t-1)Z(t)®M')

and B is an ideal.

To prove Proposition 2.2, we pick a basic representation p¡ of G from each orbit

of t (acting on basic representations) and define an element xu of K~l(G/U) by

xij=q*[r>pi] for l^ygforder of t)—1. Then p*xí}=[(t — l)r' pi]. The xuj generate

the exterior algebra A, while B is the kernel ofp* followed by projection on p*(A).

An example for Proposition 2.1 is the Stiefel manifold SU (« + A:)/SU («): more

generally,

Proposition 2.3. Let G^U both be compact connected and simply-connected,

and let the map of representation rings R(G) -> R(U) be surjective. Then K*(G/U)

is torsion free and is an exterior algebra generated by elements [a¡] constructed from

pairs (pi, p'i) of representations of G which coincide on U.

Proof. By Hodgkin's theorem K*(G) and K*(U) are both torsion free. The

relation between R(G) and K'1(G) is the following: if R(G) is the kernel of

the rank homomorphism then R(G)/R(G)2 is isomorphic to PK~1(G) under the

sequence of homomorphisms :

<*     _                 _           s-1
R(G)-► K°(BG)-> K°(S(G))-► A - \G)

using the standard map of the suspension S(G) into BG. The same things hold for

U. Hence if i*: R(G) -+ R(U) is surjective then so is K*(G) -> K*(U). It follows

that K*(G/U) -> K*(G) is injective and has as image the exterior algebra on

Ai=Ker /*: PK*(G) ->PK*(U). Thus the proposition reduces to proving that

if me M then we can find representations p, p of G which coincide on U such that

m = [p]-[p'].

Let w = 2 rijlpj], Pi being basic, and let

M = 2 {"M I ni > °}»      P = 2 {"'Pi I ni < °^-

By adding to p or pf suitably many copies of the trivial one-dimensional repre-

sentation we may assume p — p'eR(G). Also, since i*m = 0, we have i*p — i:*p

eR(U)2. Since i*R(G) = R(U), we also have i*R(G)2 = R(U)2, so we can find

y £ R(G)2 with i*(y) = i*(p—p). Writing y = y2 — yx where the y, are representations

of G and letting p=p + yx, p'=p' + y2 we have m = [p] — [p'] and i*p = i*p, as

required.

3. We shall prove Theorem 2 by looking at the classification of the symmetric

pairs (G, U) such that G is simple, compact, and simply-connected, and U is

totally nonhomologous to zero in G with rational coefficients. We will find in each

case a central simple Jordan algebra J over R such that
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(a) the Lie algebra D of derivations of J is the Lie algebra of U and consists of

all linear transformations of the form 2i [R-ai, R°\] where Ra¡(x)=xa¡ all xeJ,

and a¡, bt are elements of / of trace 0,

(b) the Lie algebra @0 of linear transformations of J of the form Ra + d, a of

trace zero in /, de D, is a noncompact real form of the Lie algebra © of G: i.e.,

©={/Pa + </}<=©„ <g)B C. © is also the Lie algebra of norm-preserving linear trans-

formations in J.

Any complex irreducible representation of J ®fl C then determines a complex

irreducible representation of ©. We shall now list these:

(i) G = SU (2/1+1), £/=SO(2« + l). Here J is the Jordan algebra of all real

symmetric matrices of 2« + l rows. J ®HC is defined in the same way but with

complex matrices, and the representation is the obvious one on C2n + X. The repre-

sentation p of SU(2«+1) is the standard one, and it is known that the basic

representations can be taken as pl = Xip, 1 ̂ i¿2n.

(ii) G=SU (2«), U= Sp («). Here J is the Jordan algebra of all «-rowed quater-

nion hermitian matrices, / ®Ä C consists of all 2«-rowed symplectic-symmetric

matrices with complex coefficients. The representation of G obtained is the standard

one on C2n, and the concluding remark of case (i) again applies.

(iii) G = Spin 2«, (7= Spin 2«— 1. J is the Jordan algebra of the vector space

Ä2""1 with the Euclidean inner product. The universal associative enveloping

algebra U,.,(J) is the Clifford algebra C2n^x = C(R2n~x) and the complex irreducible

representation of Spin 2« is a half-spin representation.

(iv) G = E6, i/=F4. Here J is the Jordan algebra of 3-rowed Hermitian matrices

with Cayley number coefficients: its dimension over R is 27. The representation p

of G obtained is the obvious representation on J <S)r C. Here the "rank" r is 2,

and we will show that p, X2p, r*p and r*X2p are four of the basic irreducible repre-

sentations of E6, the remaining two representations being fixed under r. We look

at the Dynkin diagram of E6, with dimensions written next to the vertices :

Oft,

Pi P2 Pi ft.
0-0-0-0-0
27      351      p3      351      27

P = px corresponds to the leftmost vertex. A simple observation of Dynkin's

([3, p. 347]) is that the highest weight vector occuring in A2^ is the highest weight

vector of the next representation, p2. Thus p2 occurs in the decomposition of X2px

into irreducible parts; however, the dimensions of p2 and of A2^ coincide, so

p2 = X2Px.

t being a symmetry of the Dynkin diagram, it is clear that r*px = pB, T*p2 = piy

r*p3 = p3, T*pe = p6 (p6 is the adjoint representation).

This concludes the proof of Theorem 2.
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It seems likely that a proof of Theorem 2 without use of the classification could

be carried out by considering the Dynkin diagram of @, identifying the repre-

sentation p as associated with an end vertex (e.g., px for E6), and, finally, discussing

the exterior powers A'p and the automorphism r of the Dynkin diagram.

The classification used in the proof of Theorem 2 can be used to show that the

map of representation rings R(G) -*■ R(U) is surjective: this is easy to see if U is

a classical group, whereas if G = E6, U=Fi then one can show that the repre-

sentation ring of F4 is generated by the 26 dimensional representation on / and the

adjoint representation, and both of these are in the image of R(Ee) -> A(F4).

Since (Sp «), (Spin 2«—1), and F4 are simply-connected groups their A* groups

are torsion free by Hodgkin's theorem, so that by Proposition 2.3, K*(G/U) is

torsion free in cases (ii), (iii), and (iv) of the classification ; similarly one can see

that A*(SU (2« + l)/SO (2«+1)) has no ^-torsion for p odd, but it probably has

2-torsion.

Finally, one can show by a general argument without case considerations that

K*(G/U) in all cases has no ^-torsion for p odd (using again Hodgkin's theorem):

one starts with the result from [11] or [6] that the composite map p °q:

q      P
G/U -?-> G -^ G/U

induces an automorphism in cohomology with coefficients Zv, or, equivalently, an

automorphism on H*(G/U; Z(\)), Z(\) denoting the subring of Q generated by

$. By the spectral sequence leading from E2 = H* to E00 = Gr (A* (g> Z(\)) one sees

that p* is 1-1 (and a* is onto) on K*(G/U) ® Z(i), and since K*(G) <g> Z(\) is

torsion free, so is K*(G/U) <g> Z(\).

4. Bott [8], [9] has described maps B: G/U' -> QLL/G) if G/U and L/G are suitably

related symmetric spaces. For our purposes we will need only the more elementary

considerations of [4], which we repeat with a slight change in notation.

We will assume the following data: U^G^L are compact Lie groups, with G

and L connected, t is an automorphism of G, and v(t), t e R, is a one-parameter

subgroup of L satisfying:

(i) v(l)-igv(l) = r(g),   allgeG,

(ii) v(t) - *uv(t ) = u,   all ueU.

Define B: G/I/-> 0(L/G) by B(gU)(t) = v(ty1gv(t)G, OStSl. Now consider the

fiber bundles

G^-^L—>L/G:

from general principles we have maps

Q(L/G)-> P(L/G)-> L/G

CO II

G->L->L/G
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where the first row is the path space fibration on L/G. We wish to show that the

composition w o B: G/U -*■ Q.(L/G) -*■ G coincides with q. It will suffice to construct

maps Q: c(G/U) ->L (c denotes "cone") b: s(G/U) = c(G/U)/(G/U) -+L/G with b

the adjoint of B, giving a commutative diagram :

G/U-> c(G/U)-> s(G/U)

Q

^L
I

^L/G.

The homotopy class of b determines that of q. Similarly we have :

G/U-    -* c(G/U)-> s(G¡ U)

b\B
> '

Q(L/G) P(L/G) L/G

cu

->L
/

L/G.

The homotopy class of b determines that of cu o B, hence cu o B is homotopic to q.

We define

Note that

Q(gU, t) = v(tyxgv(t)r(g)-x,       b(gU, t) = v(tyxgv(t)G.

Q(gU,0)=q(gU),

Q(gU, 1) = v(iyxgv(l)v(iyxg-xv(l) = e,

Q(eU, t) = e.

Thus Q, b satisfy the requirements. We now have: q*=P*cu* : Kf(G) -> Kf(0.(L/G))

-*■ K?(G/U). If G, U are as in Theorem 1, then Kf(G) contains a subalgebra

mapped isomorphically by q*, and Theorem 3 follows.

One might ask whether there is an analogue for K* of the following result on the

cohomology of the spaces defined above :

Proposition 4.1. Let p be an odd prime. Then H*(Q(L/G) ; Zp) « H*(Q(L/ U) ; Zp)

0 H*(G/U; Zp) as algebras.

Proof. Consider the principal fiber space

Q.(L/U) —> Q.(L/G) ^U G/U

here -n is the composition of cu: il(L/G) -*■ G and the natural map G-+G/U. We

also have the map B: G/U-^ 0.(L/G). Then it ° B is just the composition q: G/U

-> G ->■ G/ U which induces an isomorphism in cohomology with coefficients Z„ for

p odd [6, p. 489].
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In the case that G and U are associated to a Jordan algebra J as in §3, a specific

group L and a suitable one-parameter subgroup v(t) can be described in terms of

/, as shown by Kumpel [6] using a construction due to Tits [7].

5. We shall now apply the preceding to fiber bundles.

As always, G will be compact, connected and simply-connected, U a closed

connected subgroup. We will say that Kf(G/U) is generated by representations if

there are pairs (p¡, p',) of representations of G that coincide on U, such that the

corresponding elements [q,] e K~1(G/U) (constructed as in §2) together with

elements of K°(G/U) associated with representations of U, together generate the

algebra Kf(G/U).

If E -*■ E/G is a principal G-bundle we denote by a the usual homomorphism

R(G) -+ K°(E/G).

Proposition 5.1. Let E^-E/G be a principal G-bundle over a compact base

space and let

G/U-^E/U^E/G

be the associated G/U-bundle. Suppose that Kf(G/U) is generated by representations

and that for each of the generators [q,] defined by (p¡, p'j) we have a(pj) — a(p'j) = 0 in

K°(E/G). Then i*: Kf(E/U)^ Kf(G/U) is surjective. If further K*(G/U) is

torsion-free then K*(E/U)xK*(E/G) ® K*(G/U) as left K*(E/G)-module.

Proof. Clearly, it suffices to show that i* is surjective, and since the generators of

Kf(G/U) obtained from representations of U are in the image of i*, we only have

to prove the same thing for the [a;] e Kf1(G/U). We follow the ideas of [2, p. 121].

Let B be the mapping cylinder of -n: E/U^E/G, and BX=E/U<=B. Call the

inclusion BX<^B again -n. Similarly, let C be the mapping cylinder of it0: G/U-^ pt.

(projection into a single point), and CX = G/U<^C. Call the inclusion CX^C

again n0 :

Cx = G/U

i\

-> C = C(G/U)

C(i)

Bx = P/U->B

is a commutative diagram, giving rise to :

K°(CX) «-

r
K°(BX) <-

K°(C)
J" o

K°(C,CX)<-K-l(Cx)

;* i*

K°(B) <r^— K°(B, Bx) <-K~\BX).

Let p, p be representations of G that coincide on U. Let a(p), a(p') be the associated

vector bundles over B (using the homotopy equivalence of B with P(G)). The
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restrictions to BX = E/U of these bundles are isomorphic, and by the clutching con-

struction define an element a(p, p) of K°(B, Bx) which satisfies

j*a(p,p') = [a(p)]-[*(p')]eK°(B).

We will shortly make this clutching function more explicit.

If furthermore the right-hand side of this last equation vanishes, then

a(p,p') = 8Ç   for some   £eK-x(Bx).

Restricting to C and CX = G/U, t*| eR-x(G/U) satisfies

8i*$ = i*8Ç = i*a(P, p') e K°(c(G/U), G/U).

It remains to show that i*a(p, p) is determined by the clutching function q on

G/U, where q(gU) = p(g)p'(g)'x: if we know this, then under the isomorphism

8:K-x(G/U)^K0(c(G/U), G/U),  [q] is sent into  i*«(ft p') so i*i=[q]. Let

Pi = P, P2 = p he the representations of G on a vector space V.

Consider now

G/U-^P/U

TO U

T í Y

pt.-> P/G.

The vector bundles a(p,) over P/G can be written as P xPj V-^P/G. Lifting to

P/U by 77*, Tr*(a(pj)) has as total space the set

{(pxU,p2xP/v) \pxG =p2G;pkeP,ve V}.

A specific isomorphism <f>¡ of P xu V with this vector bundle :

is given by

<Pi
(pxuV)-->(pU,pxPjv)

with inverse :

(Pi Xu Pj(g)v) <-(PiU,pxg xPj v).

We fix p0 in P and identify i: G/U-+P/U with the map gU^pQgU. TT^i*a(pj)

= i*TT*a(pj) has the total space

{(giU,g2XPjv)} = (G/U)xV

since G xPj V= V, (g xP) v) = p¡(g)v, and (pfx restricted to this space

i*7T*a(Pl)->Gxv V
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is given by

(gu, v) —► (gx„ p^gy'v)

and

(gU, Pi(g)v) <-(gxu v).

The clutching isomorphism 7r*a(p2) -> 7r*ce(jo1) over P/Í7 is fafa^1. The restriction

of this to G/i/isthen

(G/U)x F—^G x„ F—U (G/U)xV,

(gU, v)->(gxu p2(g)-H) -» (g£/, p¿g)p¿g)-H) = (gU, q(gU)v).

This concludes the proof of the proposition, and Theorem 4 is an immediate

consequence.
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