THE K-THEORY OF A CLASS OF
HOMOGENEOUS SPACES

BY
BRUNO HARRIS(?)

1. Introduction. We calculate the groups K*(G/U) modulo torsion (K*
denoting the Grothendieck-Atiyah-Hirzebruch ring based on complex vector
bundles) for homogeneous spaces G/U satisfying the following conditions: G is a
compact, connected, simply-connected simple Lie group, U is a closed subgroup
which is totally nonhomologous to zero in G for rational coefficients, and = is an
automorphism of period 2 of G with U as fixed point set. Since G is simple, it must
be SU (n), Spin (2n), or Eg (see §3) and the simplest example of such a ““symmetric
space” G/U is S~ 1=Spin (2n)/Spin 2n—1).

We use Atiyah’s result [1] that K*(G) mod torsion is an exterior algebra
/A ([p1], . . ., [p]) where the p; are the basic irreducible representations of G.
Hodgkin’s theorem that K*(G) is actually torsion free will be used only in a few
places to sharpen the results (see Hodgkin [10], or a forthcoming paper of Araki).

For any space X let K#(X) denote K*(X) modulo torsion. G and U will be
assumed to satisfy the conditions in the first paragraph unless otherwise stated.
The first theorem describes K¥(G/U) and the homomorphisms:

* *

k#GIV) 2 k#6) L k2 (GIY)

where p: G — G/U is the natural projection, and g: G/U — G is given by g(gU)
=g7(g)~?! (7 is the automorphism of G). The second theorem uses the relation of
G/U to a certain Jordan algebra to show that K*(G/U) as a ring with operations is
generated by one element defined by means of the Jordan algebra (e.g., a half-
spin representation for S2"~1), The third theorem relates K*(G/U) to K}(Q(L/G))
where L/G is again a homogeneous space and Q denotes its loop space. The fourth
theorem applies these results to fiber bundles with G/U as fiber.
We now state these theorems:

THEOREM 1. (a) K¥(G/U) is an exterior algebra )\ (x4, ..., x,) and p*: K¥(G|U)
— K¥(G) is injective, q*: K¥(G) — K¥(G|U) is surjective.

®) K¥G@)=A el -, [pd il - - o5 ), [prealds - - o5 [p]) where 7%[p;]=
[p] for i>r, and K}(GIU)= N\ (¢*[pi); - - ., 4*Ip,) while g*[p]=0 for i>r.

© p*KF(GIU)= A ([p1]=7*[p], - - -, [er]—*[p,]) = KF(G).
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The proof of Theorem 1, with some similar results for more general homogen-
eous spaces, is given in §2. The proof is very short and does not require the classifi-
cation theory.

The next theorem gives a more precise description of K#*(G/U), including operat
tions, for the class of symmetric spaces described in the first paragraph. With each
such space we associate a central simple formally-real Jordan algebra J (see [5]
and its references) such that U is the automorphism group of J, and G is the compact
simply-connected form of the group N(J) of linear transformations of J preserving
the norm form (a kind of determinant) of J.

THEOREM 2. Let R be a complex irreducible representation of the Jordan algebra
J Qg C, which is a special representation if J is a special Jordan algebra. Then R
determines a complex irreducible representation p of G and a corresponding element
[p] of K7 (G), and

K#(GIU) = (¢*[p]. ¢*[¥°p), - - ., q*[N'p])

where q: G/U — G is the imbedding, the X' are exterior powers and r=rank of
G —rank of U.

The proof of Theorem 2, in §3, makes use of the classification. However, it is
short and illustrates the concepts involved.

If G/U is a symmetric space as before, or under more general circumstances,
then one can find Lie groups L containing G and Bott maps B: G/U — Q(L/G),
Q denoting the loop space. The composition of B and the natural map w: Q(L/G)
— G is just ¢: G/U — G and we obtain

THEOREM 3. KF}(Q(L/G))= K¥(G|U) @ Ker B*.

Finally, we make an application to fiber bundles. Let G, U be as in Theorems
1 and 2, and let p be the representation of G described in Theorem 2. Let P — PG
be a principal G-bundle and G/U — P/U — P|/G the associated G/U-bundle. Let
(p) and 7*(p)=(p o 7) be the corresponding elements of K°(P/G). We then have:

THEOREM 4. Let (p)—*(p)=0 in K°(P|G). Then K¥(P/U)— K}(G|U) is sur-
Jjective. If further K*(G|U) is torsion-free then K*(P|U)~ K*(P|G) ® K*(G|U) as
algebras.

The results stated for symmetric spaces actually hold more generally but in more
complicated form, as shown in the following sections.

2. By [1], K¥(@)=A ([p:], - - -, [p]) where py, ..., p, are the basic irreducible
representations p;: G — U(N)) and [p;] are the corresponding elements in K7 X(G).

We recall that ch: K*(G) — H*(G; Q) is injective and identifies K*(G) ® Q
with H*(G; Q). Elements x of K*(G) will be called primitive if ch x is primitive
in the Hopf algebra H*(G; Q).



1968] THE K-THEORY OF A CLASS OF HOMOGENEOUS SPACES 325

It is easy to see that the [p;] are a basis for the primitive elements PK*(G) in
K#(G) (for, one may look at K ~*(U(N)) and the element [R] corresponding to the
standard identity representation; [R] is primitive since ch [R] is the suspension
of an element in H*(By,)-

Let p: G— G/U, q: G/U— G be given by p(g)=gU, q(gU)=gr(g)~*. Thus
q°p(g)=g7(g)"'. An easy calculation (see [4]) shows that if y e H¥(G; Q) is
primitive then p*q*(y)=y—7*y. Thus

r*q*[pd = [pd—7*[p] = [p]—[7(p)]-

The action of  on the p;, defined by =(p;)=p; o 7, is easily described: the p; are in
1-1 correspondence with the vertices of the Dynkin diagram of G, and = (modulo
inner automorphisms) is determined by a permutation of these vertices which is
an automorphism of the diagram. Thus = permutes the p;, and 72 gives the identity
permutation. Hence we may relabel the p; as py, ..., p;, Tp1y. .., TPp PL. .., Po
where 7p;=p;, and 2r+5s=1 Thus K} =A"Q * A" Q@ A", A"=A (o1, . . ., pp),
A=A (1, ..., ps)). The image of p*q* is A (p1—7p1,..., p—7p,), an abelian
group direct summand of K{*(G). We note that 7*[p;]=[p;] implies q*[p;]=0: for =
operates on G/U so that gr=rq and 7q(gK)=q(gK) ' =u(g(gK)) where u(g)=g !
in G; thus g*[pi] =g**[pi] =q*u*[pi]= —q*[pi] since u*(x)= — x for any primitive x.

Thus ¢*=0 on A, ¢* A"=g*r* A\"=Img*, p*q* maps /\” isomorphically
onto a direct summand, and K¥(G/U)=1Im g* @ Ker p*. However, we assumed U
nonhomologous to zero in G (over Q) so p* is 1-1, and K}(G/U)=Im g*=g* \"
~ /\". Theorem 1 is now proved.

The argument used to prove Theorem 1 also applies in more general situations:
let U be a closed subgroup of G, with G compact, connected, simply connected,
and let p;, p1, ps, pz-- - be representations of G such that p,=p; on U. Then if
pi» pi: G — U(N;), we can define maps ¢;: G/U — U(N;) by ¢i(gU)=pi(g)pi(g)~*
and corresponding elements [g;] € K ~*(G/U), [p;] € K~(G). An example of this
occurs when p; is a representation of G, = an automorphism of G which is the
identity on U, and p;=p; o 7: then ¢,=p; o ¢ where q: G/U — G is as before.

If p: G— G/U is the projection, then p*[q,]=[p;]—[pi] € K*(G). With this
notation, we now have:

PROPOSITION 2.1. Let M be the submodule of K;*(G) generated by the elements
[p:]—[pi]. Then K¥(G|U) contains a subalgebra A isomorphic under p* to N\ (M).

Proof. Pick a basis {m;} of M, let a; € K; *(G/U), p*a,=m;. A is generated by
the a;.

PROPOSITION 2.2. Let 7 be an outer automorphism of G of prime order (modulo
inner automorphisms) which is the identity on U. Then

1. K¥G)=A\ (M) ® A\ (N) where M, Nc K7 X(G), = is the identity on N and
M=2Z[7] @ M’ is a free module over the group algebra Z[7] of .
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2. K¥G|U)=A ® B where

P AT (-2 © M)
and B is an ideal.

To prove Proposition 2.2, we pick a basic representation p; of G from each orbit
of 7 (acting on basic representations) and define an element x; ; of K~*(G/U) by
x;,;=q*[7'p;] for 1 £j< (order of 7)—1. Then p*x;,=[(r—1)7/p;]. The x; ; generate
the exterior algebra A, while B is the kernel of p* followed by projection on p*(A4).

An example for Proposition 2.1 is the Stiefel manifold SU (n+k)/SU (n): more
generally,

PROPOSITION 2.3. Let G U both be compact connected and simply-connected,
and let the map of representation rings R(G) — R(U) be surjective. Then K*(G|U)
is torsion free and is an exterior algebra generated by elements [q;] constructed from
pairs (p;, pi) of representations of G which coincide on U.

Proof. By Hodgkin’s theorem K*(G) and K*(U) are both torsion free. The
relation between R(G) and K ~!(G) is the following: if R(G) is the kernel of
the rank homomorphism then R(G)/R(G)? is isomorphic to PK ~*(G) under the
sequence of homomorphisms:

-1

R(G) —> R°(Bs) — R%(S(G)) — K~X(G)

using the standard map of the suspension S(G) into B;. The same things hold for
U. Hence if i*: R(G) — R(U) is surjective then so is K*(G) — K*(U). It follows
that K*(G/U) — K*(G) is injective and has as image the exterior algebra on
M=XKer i*: PK*(G) — PK*(U). Thus the proposition reduces to proving that
if m € M then we can find representations p, p’ of G which coincide on U such that
m=[p]—[p'].

Let m=3 n,[p,], p; being basic, and let

n= z {np; | ny > 0O}, K= Z {nip; | n; < O}

By adding to p or p’ suitably many copies of the trivial one-dimensional repre-
sentation we may assume p—u’ € R(G). Also, since i*m=0, we have i*u—i*y’
e R(U)2. Since i*R(G)=R(U), we also have i*R(G)?=R(U)? so we can find
y € R(G)? with i*(y)=i*(u—p'). Writing y =y, —y, where the y, are representations
of G and letting p=p+vy,, p'=p"+y, we have m=[p]—[p'] and i*p=i*p’, as
required.

3. We shall prove Theorem 2 by looking at the classification of the symmetric
pairs (G, U) such that G is simple, compact, and simply-connected, and U is
totally nonhomologous to zero in G with rational coefficients. We will find in each
case a central simple Jordan algebra J over R such that
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(a) the Lie algebra D of derivations of J is the Lie algebra of U and consists of
all linear transformations of the form >, [Ra;, Rb;] where Ra,(x)=xa, all xeJ,
and ay, b, are elements of J of trace 0,

(b) the Lie algebra ®, of linear transformations of J of the form R,+d, a of
trace zero in J, d € D, is a noncompact real form of the Lie algebra & of G: i.e.,
& ={iR,+d} <@, ®; C. & is also the Lie algebra of norm-preserving linear trans-
formations in J.

Any complex irreducible representation of J ®j C then determines a complex
irreducible representation of &. We shall now list these:

(i) G=SU (2n+1), U=SO (2n+1). Here J is the Jordan algebra of all real
symmetric matrices of 2n+1 rows. J ®; C is defined in the same way but with
complex matrices, and the representation is the obvious one on C2"**, The repre-
sentation p of SU (2n+1) is the standard one, and it is known that the basic
representations can be taken as p;=XMp, 1<i<2n.

(i) G=SU (2n), U=Sp (n). Here J is the Jordan algebra of all n-rowed quater-
nion hermitian matrices, J ®x C consists of all 2n-rowed symplectic-symmetric
matrices with complex coefficients. The representation of G obtained is the standard
one on C?*, and the concluding remark of case (i) again applies.

(i) G=S8pin 2n, U=Spin 2n—1. J is the Jordan algebra of the vector space
R**~' with the Euclidean inner product. The universal associative enveloping
algebra Ug(J) is the Clifford algebra Cs,_; = C(R?**~') and the complex irreducible
representation of Spin 2 is a half-spin representation.

(iv) G=Eg, U=F,. Here J is the Jordan algebra of 3-rowed Hermitian matrices
with Cayley number coefficients: its dimension over R is 27. The representation p
of G obtained is the obvious representation on J ®g C. Here the “rank” r is 2,
and we will show that p, A%p, 7*p and 7*A%p are four of the basic irreducible repre-
sentations of E,, the remaining two representations being fixed under . We look
at the Dynkin diagram of Eq, with dimensions written next to the vertices:

Ope
P1 P2 P4 Ps
0. )

0—0—0—0—90
27 351 py 351 27

p=p; corresponds to the leftmost vertex. A simple observation of Dynkin’s
([3, p. 347]) is that the highest weight vector occuring in A%p, is the highest weight
vector of the next representation, p,. Thus p, occurs in the decomposition of A2p,
into irreducible parts; however, the dimensions of p, and of A%p, coincide, so
p2=Np;.

= being a symmetry of the Dynkin diagram, it is clear that *p, = ps, 7*p, = p,,
*p3=p3, 7 ps=ps (ps is the adjoint representation).

This concludes the proof of Theorem 2.
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It seems likely that a proof of Theorem 2 without use of the classification could
be carried out by considering the Dynkin diagram of &, identifying the repre-
sentation p as associated with an end vertex (e.g., p; for Eg), and, finally, discussing
the exterior powers A'p and the automorphism 7 of the Dynkin diagram.

The classification used in the proof of Theorem 2 can be used to show that the
map of representation rings R(G) — R(U) is surjective: this is easy to see if U is
a classical group, whereas if G=Eg;, U=F, then one can show that the repre-
sentation ring of F, is generated by the 26 dimensional representation on J and the
adjoint representation, and both of these are in the image of R(Eg) — R(F,).
Since (Sp n), (Spin 2n—1), and F, are simply-connected groups their K* groups
are torsion free by Hodgkin’s theorem, so that by Proposition 2.3, K*(G/U) is
torsion free in cases (ii), (iii), and (iv) of the classification; similarly one can see
that K*(SU (2n+1)/SO (2n+1)) has no p-torsion for p odd, but it probably has
2-torsion.

Finally, one can show by a general argument without case considerations that
K*(G/U) in all cases has no p-torsion for p odd (using again Hodgkin’s theorem):
one starts with the result from [11] or [6] that the composite map p - g:

iv-L- 62 6o

induces an automorphism in cohomology with coefficients Z,, or, equivalently, an
automorphism on H*(G/U; Z(3)), Z(3) denoting the subring of Q generated by
1. By the spectral sequence leading from E,= H* to E,,=Gr (K* ® Z(})) one sees
that p* is 1-1 (and ¢* is onto) on K*(G/U) ® Z(}), and since K*(G) ® Z(3) is
torsion free, so is K*(G/U) ® Z(3).

4. Bott [8], [9] has described maps B: G/U — Q(L/G) if G/U and L|G are suitably
related symmetric spaces. For our purposes we will need only the more elementary
considerations of [4], which we repeat with a slight change in notation.

We will assume the following data: U< G<L are compact Lie groups, with G
and L connected. 7 is an automorphism of G, and v(¢), ¢ € R, is a one-parameter
subgroup of L satisfying:

@ (D)~ 'gu(1)=7(g), allgeg,

(i) v(® 'ue(t)=u, allueU.

Define B: G/U — Q(L/G) by B(gU)(t)=uv(t)~'gv(t)G, 0=t=<1. Now consider the
fiber bundles

J l
G— L—L|G:
from general principles we have maps
QL/G) — P(L|G) —— L|G

b

G L L/G
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where the first row is the path space fibration on L/G. We wish to show that the
composition w o B: G/U — Q(L/G) — G coincides with g. It will suffice to construct
maps Q: c¢(G/U) — L (c denotes “cone”) b: s(G/U)=c(G/U)/(G/U) — L|G with b
the adjoint of B, giving a commutative diagram: '

G/U — ¢(G/U) — s(G/U)
|,
J l
G L L/G.
The homotopy class of b determines that of ¢. Similarly we have:
G/U —— c(G/U)——> s(G/U)
(T
QL/G)—— P(L|G) —— L|G
wl l Il l
J !
G L L/G.

The homotopy class of b determines that of w o B, hence w o B is homotopic to q.
We define
0(gU, 1) = v(t) 'go(t)r(8)™*,  b(gU, t) = v(t) 'gu(t)G.

Note that

Q(gU, 0) = q(gU),

0(gU, 1) = (1)~ *go(p(1)~ g~ *u(1) = ¢,

QeU, t) = e.
Thus Q, b satisfy the requirements. We now have: ¢* = B*w*: K}G) — K} (Q(L/G))
— K¥(G/U). If G, U are as in Theorem 1, then K*(G) contains a subalgebra
mapped isomorphically by ¢*, and Theorem 3 follows.

One might ask whether there is an analogue for K* of the following result on the
cohomology of the spaces defined above:

PRrOPOSITION 4.1. Let p be an odd prime. Then H*(Q(L/G); Z,)~ H*(Q(L/U); Z,)
&® H*(G|U; Z,) as algebras.

Proof. Consider the principal fiber space

LIV —> QLIG) ~— G|U

here = is the composition of w: Q(L/G) — G and the natural map G — G/U. We
also have the map B: G/U — Q(L/G). Then = o B is just the composition ¢q: G/U
— G — G/U which induces an isomorphism in cohomology with coefficients Z, for
p odd [6, p. 489].
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In the case that G and U are associated to a Jordan algebra J as in §3, a specific
group L and a suitable one-parameter subgroup v(¢) can be described in terms of
J, as shown by Kumpel [6] using a construction due to Tits [7].

5. We shall now apply the preceding to fiber bundles.

As always, G will be compact, connected and simply-connected, U a closed
connected subgroup. We will say that K¥(G/U) is generated by representations if
there are pairs (p;, p;) of representations of G that coincide on U, such that the
corresponding elements [g;] € K~*(G/U) (constructed as in §2) together with
elements of K°%(G/U) associated with representations of U, together generate the
algebra K¥(G/U).

If E— E/G is a principal G-bundle we denote by « the usual homomorphism
R(G) — K°(E/G).

PROPOSITION 5.1. Let E— E|/G be a principal G-bundle over a compact base
space and let

i
G|U —> EJU - E/G

be the associated G|U-bundle. Suppose that K}(G|U) is generated by representations
and that for each of the generators [q,] defined by (p;, p;) we have «(p;)—o(p;)=0 in
K°(E|G). Then i*: K}¥(E/U)— K}(G/U) is surjective. If further K*(G|U) is
torsion-free then K*(E|U)~ K*(E|/G) ® K*(G/U) as left K*(E|G)-module.

Proof. Clearly, it suffices to show that i* is surjective, and since the generators of
K}(G/U) obtained from representations of U are in the image of i*, we only have
to prove the same thing for the [g,] € K7 1(G/U). We follow the ideas of [2, p. 121].
Let B be the mapping cylinder of =: E/U — E/G, and B,=E/U<B. Call the
inclusion B; < B again =. Similarly, let C be the mapping cylinder of m,: G/U —> pt.
(projection into a single point), and C;=G/U<C. Call the inclusion C,<C
again m,:

¢, = GIU""5 ¢ = CGJU)
il lag
m™
is a commutative diagram, giving rise to:

- - j* )
Ro(Cy) «— ROC) L= KO(C, C;) «—— K-(Cy)

R
ROB) —— ROB) < Ko(B, By) < KB,

Let p, o’ be representations of G that coincide on U. Let «(p), «(p’) be the associated
vector bundles over B (using the homotopy equivalence of B with P(G)). The
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restrictions to B, = E/U of these bundles are isomorphic, and by the clutching con-
struction define an element «(p, p') of K°(B, B,) which satisfies

J*elp, p') = [e(p)] ~ [ep")] € K°(B).

We will shortly make this clutching function more explicit.
If furthermore the right-hand side of this last equation vanishes, then

ofp, p’) = 8¢ for some &€ K~Y(B,).
Restricting to C and C,=G/U, i*¢ € K~(G/U) satisfies
Si*¢ = i*8¢ = i*a(p, p') € K°(c(G/U), G/U).

It remains to show that i*«(p, p’) is determined by the clutching function g on
G|U, where q(gU)=p(g)p'(g)~!: if we know this, then under the isomorphism
8: K~YG/U)— K°%c(G/U), G/U), [q] is sent into i*«(p, p’) so i*¢=[q]. Let
p1=p, po=p’ be the representations of G on a vector space V.

Consider now

G/U—— PJU
ﬂol lﬂ'
pt. —l—>P/G.

The vector bundles «(p;) over P/G can be written as P x, V — P/G. Lifting to
P[U by =*, n*(a(p;)) has as total space the set

{(p.U, p2 %,, v) | .G = psG;pceP,veV}

A specific isomorphism ¢, of P x; V with this vector bundle:

Pxy V- )
is given by

Y
(p xu v) —> (pU, p x,, v)
with inverse:
-1

¢
(p1 xv pA(8)V) DA (p.U, p1g Xp, ).
We fix p, in P and identify i: G/U — P/U with the map gU — p,gU. w§i*«(p,)
=i*n*a(p,) has the total space
{(8:U, g2 %, 0)} = (G/U)x V

since G x,, V=V, (g X,, V)=p,(g)v, and #; * restricted to this space

-1
i*n*a(p) —— G Xy V
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is given by
47 .
(8U, v) —> (g xu ps(8)~'v)
and.

(8U, pA(8)v) ﬁ’-— (g xy0).

The clutching isomorphism #*a(p,) — m*a(p;) over P/U is ¢,¢p5 . The restriction
of this to G/U is then

(G/U) x V£>G Xy V——¢—1>(G/U)>< V,

(gU, v) = (g xu pa(8) ') = (gU, p1(g)r=(8) ~v) = (gU, q(gU)v).

This concludes the proof of the proposition, and Theorem 4 is an immediate
consequence.
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