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Introduction. The study of lattice-point translates of an L2 function was begun

in [2] where it was required that the set of these functions form an orthogonal set.

In this paper, the study is continued, but the orthogonality condition is dropped.

Thus, given a function K in L2 on Rk, we should like to know when its lattice-

point translates are dense in the largest subspace of L2 for which this is possible,

i.e. the subspace of L2 functions F such that the support of F, the Fourier transform

of F, is contained in the support of K. The problem is solved in Theorem 1, and

the solution involves a geometric and measure-theoretic condition on S, the support

of K. Some more or less immediate corollaries follow which clarify the situation.

It is the subgroup of lattice-points and certain linear images of it to which the title

of the paper refers in this context. In the second theorem however, we consider,

for the first and last occasion in this paper, a closure result for certain nondiscrete

subgroups to which the already established methods are applicable.

In the second section, results analogous to the preceding are established for the

case V, l<p<ao. They are, as to be expected, less precise than for the L2 case.

In the last section, the main theorem is established in the setting of locally compact,

abelian groups.

In the matter of notation, m, n,... will stand for lattice-points. Thus, m =

(mx, m2,..., mk) where each m¡ is an integer. V(S) will denote the space of V

functions F such that the support of F, written as supp F, is in the set S. The set S

is normally associated with an L2 function K such that supp K= S. As usual, xs

is the characteristic function of S. S2n will denote the hypercube of side 27r, center

at the origin, and with sides parallel to the coordinate axes. It is thus identified

with the k torus. H*(K) signifies the L2 closure of the linear span of the functions

K(x + m). H*(K) has an analogous meaning for V closure.

1. Density of translates. For the statement of our first theorem, a class of

measurable sets which will serve as supports for acceptable functions K must be

identified. We say that 5 is of special form if, for almost every x,

(1) £ xs(x + 2tt«) g 1.
n

The sum is taken over all lattice-points n. By integration of the left side of (1) over
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S2n, it is seen that |5|, the measure of S, does not exceed (277)". It also follows

from (1) that, given « a lattice-point other than the origin, for almost every x

Xs(x)xs(x + 2Tm) = 0.

In particular, S2n is a set of special form, and all such sets arise in the following way.

Let En be a class of measurable and mutually disjoint sets, each contained in S2„.

The set S = Un (An + 27r«) is then of special form.

In the theory of cardinal series [2], sets of special form played a distinctive role

in that they were only ones for which the corresponding spaces H*(K) were trans-

lation invariant. Similarly, in the present situation, these sets play a decisive role.

Theorem 1. Let S be the support of A\ Then H*(K)=L2(S) if and only if S is of

special form.

First let 5 be a set of special form. Given Fin L2(S), we may write F=FX + F2,

where Fx is in H*(K), and F2 is in the orthogonal complement. Since clearly,

supp Fx <= 5, then also supp F2 <= S. Also, for every lattice point m,

0= (F2(x)K(x + m)dx = [ F2(x)K(x)e~m-x) dx.

Here K denotes the complex conjugate of 7?. The last integral can be written as

f     \y F2(x + 27r«)/?(x+27r«)je-i(m-*) dx.

Thus, the periodic and integrable function 2n F2(x+2Trn)K(x+2Tin) has Fourier

coefficients all equal to 0, and so is itself 0. But for each x, at most one of the terms

in the sum 2n F2(x+2im)R(x+2im) is nonzero. Thus, F2(x)7?(x)=0, and

F2(x)=0 because supp F2^S.

Now assume that S is not of special form. We wish to prove that H*(K)^L2(§).

There exists a nonzero lattice point A such that xs(x)xs(x + 2nN)^0 almost every-

where. For convenience we may assume there exists a set Tx of positive measure in

S2% such that Xs(x)xs(x+2ttN) = 1 on Tx. Let T=TX u (Tx + 2nN), a subset of S.

Now if H*(K)=L2(S), then H*(KT)=L2(f), where Rt=xt&- This follows easily

from the fact that (A-Ar) is orthogonal to L2(f). We now construct a function

F in L2(f) which is not in H*(KT). Let F(x)=Kt(x + 2ttN) for x in Tx; let

F(x)= —Ñ.t(x—2ttN) for x in Tx + 2ttN; let F be 0 elsewhere. Certainly F is in

L2(f) and || F || 2 > 0. Let 2 cn K(x+m) be any finite sum, and designate 2 cm exp i(m, x)

by P(x). Then

\\F(x)-2cmKT(x+m)\\22 = IIF-ÁVIII

= ||/||Í + ||AV¡I+£ 7?(x)7?r(x)P(x) dx

+ f F(x)A"T(x)P(x) dx.
Jt
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Here F denotes the complex conjugate of F. To show that F is not in H*(KT),

it is sufficient to prove that the last two terms on the right are 0, i.e. then no finite

sum 2 cmKr(x + m) can approximate F arbitrarily closely. But

f F(x)KT(x)P(x) dx = f   {F(x)KT(x) + F(x + 2TrN)KT(x + 2TrN)}P(x)dx.

It is easily checked from the definition of F that the bracketed term in the second

integral is 0.

Corollary 1. H*(K) is translation invariant if and only if 5=supp K is a set

of special form.

If 5 is contained in a set of special form, H*(K)=L2(S). The latter is clearly

translation invariant.

If H*(K) is translation invariant, it contains, in particular, K(x+t) for every

translate f. Thus there exist constants cm such that

\\K(x){e'^-2cmem-x% = ¡K(x +1)-^ cmK(x + m)\\2 < a

for every e > 0. Hence on S there is a sequence P(x) of trigonometric polynomials

approaching exp i(x, t), at least in measure. If S is not a set of special form, there

exists a nonzero lattice point N such that S and S+2ttN intersect in a set T of

positive measure. But P is periodic in each variable of period 27r. If f is chosen so

that exp í(2ttN, t)jt=l, a contradiction is obtained.

Let us reexamine the integral which must be small in order that F be in H*(K).

It can be written as

f \F(x)-Ê(x)J4Cme'
Js I m

The function F/Ñ. occurring on the right need not be integrable, but it is measurable

and finite almost everywhere on S. In this form, it is clear that the trigonometric

polynomial J,m cm exp i(m, x) must be close to F/K in some weak sense: say a

sequence of trigonometric polynomials approaches F/K in measure. This is clearly

a necessary condition if S has finite measure. This being so, it is then clear that

F/K- is " periodic on S" : i.e. if x and x + 2Trm are both in S, then F/K takes the same

value at both points. The essence of Theorem 1 was that there are no such points

if S is of special form and hence no conditions for F to satisfy other than that it be

in L2(§). Under certain weaker conditions, the assumption of periodicity for

F/K—which we take to include the fact that F is in L2(§)—is sufficient to insure

that F be in H*(K).

Corollary 2. Let I„ ys(*+27t«) be in L00 where S=suppK. Then F is in

H*(K) if and only if F/K is periodic on S.

dx
■/.

Fix)    y

K(x)    4
cme" \K(x)\2dx.
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In view of the above discussion, it is sufficient to assume that F/K is periodic on

5 and to show that F is in 77*(A). Let

2xs(* + 2tt«) M < oo.

Consider, for each x in S, the lattice-point translates (with factor 2n) of x which

are also in S. There exist, at most, M of these. Among them, there exists one, say

y, such that \K(y)\ 2: \K(y + 2im)\ for all m, since no more than M values of « will

lead to nonzero values of K. If a set of measure zero is disregarded, this is so for

any x of S. It may happen that more than one such point y corresponding to a

given x satisfies this inequality. If so, the sets S2¡l + 2Tm may be indexed by the

positive integers, and the y in that translate of S2jI of least index will correspond

to x. In this way, we obtain a measurable subset T of S such that for x in T,

\K(x)\ ^ |Â(x+2t7«)| for all «, and such that for any x of S, there exists precisely

one y of T such that y — x=2tTn for some «. It is clear that F is a set of special

form.

Let Sx be the difference set, S~ T. For each x of Sx, there exist at most M values

of« such that x+27r« is in S. But for one such value, x+27r« is in T. Hence, there

exist at most M— 1 values of« such that x + 27r« is in Sx so that ||2n Xs1(-1<:+27r«)|| „

SM—l. Now we construct a subset Tx of Sx as above. The process is continued,

producing sets Tj<^Sj,j=l, 2,..., M— 1. The sets F, are of special form, Sj+X =

Sj~Tj, and FM_1 = 5'M_1. Also, if T0 is taken as T, we have

M-l

5=   U  T,
; = o

where the F/s are mutually disjoint.

Let F belong to L2(S) such that F/K is periodic on S. We temporarily consider

the restrictions of both F and K to the set T. By Theorem 1, there exists a trigono-

metric polynomial P such that

¡M-m\'im''b: < e.

With the same polynomial P, we have

|F(x)Lmi'** \K(x)\2dx<e,      /= 1,2,..., M-l.

That this is so follows from these facts. For each x of Tt, there exists a point

x + 2nn of T. The functional values of F/K-P are the same for the two points

because of the periodicity of F/K. Moreover, |Â(x+27r«)| ï; |Â(x)| by the con-

struction of T. Adding the results gives

/.
|F(x)-F(x)A(x)|2a*x < e.

s
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We now consider the effect on /î of a similarity transformation in Rk. For

a>0, define Ka(x) = K(ax). Then Ka(x) = K(x/a)jak. If S(a) is the support of Ka

and S the support of K, then yS(œ) = Xs(x/a)- Define

>i>a(x) = ^Xsw(x + 2Trn)
n

which is the function occurring in (1) with a=l. The space L2(S(a)) consists of the

functions Fa where Fa(x) = F(ax) and Fis in L2(S). An immediate consequence of

Theorem 1 is the following.

Corollary 3. Let S=support K. The closure of the linear span of the functions

{K(x + am)} is L2(S) if and only if \\i/itt\\ M á 1.

A natural question which arises in this connection is concerned with the existence

of an a> 0 corresponding to a set S such that || <¡>a || „ á 1. In other words, even though

S is not of special form, it might be so with respect to some a. However, it is easy

to show the existence of an S of arbitrarily small measure such that ||^„|| „ > 1 for

every a>0. We do this now in dimension one. A consequence of Corollary 3 is

the following. There exist sets S of R1 of arbitrarily small measure such that if

support Ê=S, then for no discrete subgroup G of Rl is {K(x+g), g in G} dense in

L2(S). It is, in fact, sufficient to show the existence of such a set S of finite measure

since then, for every a > 0, the set aS has the same property. The condition to be

attained can be restated in more convenient form. For any a>0, we want

2n xs(x + 2irari)> 1 on a set of positive measure. In this form, it is clear that we

need consider only large values of a since halving a only adds to the set of lattice

points. Let S be a union of intervals Ev where E0 = (0,d), 2Tr<a<3TT, and

Fv = (27r(v+1), 27r(v+l + ev)), v=l,2,..., ev is chosen so that 0<ev<l and

2£v<°o- Let j^a<j+l for a large integer j. Since 27r(7~+l)-27ra^27r<a, we

may let

2tt(J+1) — 2tt(x < X < min(a;2Tr(j+l) — 2Tra + ej).

Since 0<x<a, then xs(*)=F It ¡s als° clear that x + 2-n-a is in E¡ so that

Xi'(x + 27ra)=l.

Every discrete subgroup of Ru has j generators where jí¿k. If j—k, then there

exists an invertible linear transformation carrying the generators into unit orthog-

onal vectors. This leads to theorems of the type of Theorem 1.

Although our primary interest is discrete subgroups of Rk, the techniques used

above can be applied in other situations. We end this section with a sample of such.

Let x' and m' denote an arbitrary point and a lattice point respectively of Rs,

j^k. Thus (x1, x"'1) denotes a point of R". Let 5 denote a measurable subset of Rk

such that

(2) Jjxs(xi + 2Tmi,xk-')^l
ni
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for almost every x = (x', x~i+k). For example, if j= 1 and k = 2, S might be

included in a vertical strip. Let Hf(K) denote the L2 closure of the functions

K(x' + m', xk~' + rk~i) where mk~' ranges over the lattice points of Rk~' and rk~*

ranges over the points of Rk'j. S, as usual, denotes the support of K.

Theorem 2. Let 1 Sj<k. Then H*(K) = L2(S) if and only if (2) is satisfied.

Let (2) be satisfied, and let F be any function of L2(S). Then F=FX + F2 where

Fx is in H*(K) and F2 is orthogonal to it. Since the supports of F and of Fx are in

S, the same is true of F2. The orthogonality condition can be expressed as

f F2(x)7?(x) exp{-/(m>, *0-/(/•*-', xk~>)} dx = 0.

Now let

G*(x\ xk~j) = 2 7?2(xí + 2tt«j, xk-i)K(x1 + 2Trni, xk~j).
n<

This is periodic in x' and integrable over S2x (in dimension j) for almost every

xk'i. The orthogonality condition becomes

i       exp {-i(rk - ', xk - 0} dxk " ' |      G*(x>, xk ~ ') exp {- i(m>, x')} dx' = 0

for every (mi, rk~'). The inner integral is integrable over Rk'1 and hence is 0 for

every lattice point m' and almost every xk~'. Thus G*(xj, xk~') = 0. But at most one

term in the sum defining G* is nonzero, and so

F2(xi,xk'i)K(xi,xk~i) = 0.

Since the support of F2 is in S, F2 = 0.

To prove the converse, we need only mimic the proof of the corresponding part

of Theorem 1 or, alternatively, make use of that periodicity of F/K which is

implicit in the given condition.

2. The case V, 1 <p<co. In this section, we extend the ideas of Theorem 1 to

V spaces with p different from 1 and co. We shall require a hypothesis that is

implicit in the L2 case: that the characteristic function xs of the support of K

be a multiplier of class A7£ (cf. [5] for notation) and that it lead to a projection

onto the space L"(§). The latter is meant to imply that L"(S) is an invariant sub-

space for the operator. Thus, if F belongs to L"(S), then "multiplication" of the

Fourier transform of F by xs is the identity operator. In the cases we consider, this

operator will be realized as convolution with an ordinary function Fs so that if

Fis in Lp(§), then F* FS = F. It is to be noted that if 1 <pS2, then the assumption

that xs is in Ml is sufficient to insure that a projection is obtained (cf. [7]). The

two hypotheses can be combined by stating that xs gives a bounded, linear pro-

jection onto LV(S).
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Theorem 3. Let xs define a bounded, linear projection of V onto Lp(§). Let S

denote the support of K.

(i) Let 2 ^p < oo, and let K be in L2(S). If S is compact and of special form, then

H*(K)=LP(S).

(ii) Let l<p^2, and let H*(K)=LP(§). Then S is of special form.

For the proof of (i), it is enough to show that L2^) is dense in LP(S). For, if

this is the case, then H*(K)=L2(§). Let F be in L"(§) and G in L2(S) such that

[|F-Gjjp<e. Let P be a linear combination of the functions K(x + m) such that

\\G-P\\2<e. Then

\\F-P\\P â ||F~G||P+||G-P||P.

But, since 5 is compact, ||G-P||P^C||G-P||2 [3].

To show that L2(S) is dense in LP(S), we let F be in LP(S). Let </> be a smooth

function such that \\F— </>\\p is small. Application of the multiplier xs to both

functions, Fand </>, is realized by convolution with Fs, the function whose Fourier

transform is xs- Fs is, of course, in L2, but it is also in Lq, l/p+l/q= 1. This can be

seen as follows. By duality, xs belongs to MQ. A large hypercube T will contain S.

The function FT, whose Fourier transform is xt, belongs to Lq (cf. [3]). Since

XtXs = Xs, we have that Fs itself is in Lq. The same argument shows that Fs is in all

U spaces, q^r^p. By hypothesis, Fs * F=Fso that

l|P-(/W)L = \\Fs*(F-t)¡p ¿ C\\F-<f>\\p.

The function Fs * 4> is in L2(§) if </> is only in L2.

Implicit in the hypothesis of part (ii) is the fact that K is in LP(S). If, under the

given conditions, S is not of special form, then there exists a set T of positive

measure and a nonzero lattice-point m such that

Tx = Fu (F+2ttw) <= s.

We may take Tx to be compact and then construct a smooth function </>—say c£

has compact support and </> is in V—such that <p/K is not periodic on Tx. In fact,

if it is periodic, it may be changed slightly to lose this periodicity. Now the function

</> with Fourier transform Xs4> 1S m £,"(§), but <¡>/K is not periodic on 5. By virtue

of the Hausdorff-Young theorem and arguments analogous to those of §1, it is

clear that the periodicity on 5 of $/K is a necessary condition for 4> to be in H*(K).

This contradiction with the hypothesis that H*(K)=LP(S) shows that S is of

special form. We remark that, in this case, since S is of special form, then it has

finite measure. Hence, K, being in V, is also in L2; and by Theorem 1, H*(K)

=L2(§), (cf. [3]).

Examples of the situation described in Theorem 3 (ii) are provided by certain

cardinal series (cf. [2]). We shall consider only the simplest situation : the support

of K is S2!l, and  |-f?| = l  here. This implies that the functions J^(x+m) are
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orthogonal. A smoothness condition is required: K is in M%. Then A is in Lp(S2n),

since the characteristic function of S2K has a Fourier transform in V.

Theorem 4. Let \K\ equal the characteristic function of S2n, and let K be in Mp,

l<pS2. Then H*(K)=Lp(S2n).

By duality, K is in M\ with l/p+ l/a= 1. For the same reason as above A is in

L". Let F be in LP(S) with S=S2jl, and let G be the function whose Fourier trans-

form is FK. Thus, G is in V(S). Under these circumstances,

2 \G(m)\" < co
m

(cf. [6]). For the same reason 2m I K(x+m)\q is uniformly bounded. Thus the series

2m G(—m)K(x + m) converges pointwise by Holder's inequality. All the functions

considered are in L2 (cf. [3]), and the series converges in the L2 norm to a constant

multiple of F, which is thus also the pointwise limit. The V convergence will

follow if we can show that

\\F\\'SCZ\G(m)\p.
m

But this is the same as asking that ||F||^C||G||g (cf. [6]). The latter inequality

follows from the fact that 1/Â is in Mpv, i.e. l/K=K on S2x.

3. Group-theoretic background. The notation and basic notions for general

groups will be taken from [8]. In particular, " + " will denote the group operation

in all cases. Let G be a locally compact abelian group which is also Hausdorff.

Let 77 be a discrete (so closed) subgroup of G such that G/77 is compact. Let T

be the dual group of G. We wish this to be cx-compact; and it will be so if G is first

countable (cf. [4, p. 397]). Let A be the annihilator group of 77. A is a closed sub-

group of T and the dual group of G/77. Since G/77 is compact, then A is discrete.

Together with the fact that T is a-compact, this implies that A is countable. Also,

77 is the annihilator group of A, and so T/A is the dual group of 77. Our assump-

tions are perhaps stronger than they have to be, but they will lead quite directly

to the result we want.

Let ma be the Haar measure of G with the other Haar measures of the above

groups designated accordingly. Iff is a function of L\T), then

jj(y+X)dmA(X)

exists finitely for almost every y of T [1]. Since it is invariant under changes of y

by elements of A, it may be considered as a function on T/A. The formula

(3) f f(y) dmr(y) = f     dmriA(u>) f f(o> + X) amA(A)
Jr JriA Ja

is valid after adjustments in the constants of the Haar measures involved and will

be essential in our proof.
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As a generalization of (1), the notion of a set of special form is introduced. We

say that S, a measurable subset of T, is of special form with respect to A if

(4) I   Xs(y + A) dmA(X) ̂  1        for almost every y of F.

In this condition, it is important that ordinary discrete measure be used on A,

i.e. each point has measure 1. It is also to be noted that y may be interpreted as a

point of r/A, i.e. the condition is invariant under changes of y by elements of T.

It happens that, in this case, to say that the exceptional set is of measure 0 in T

is equivalent to saying that the corresponding set of r/A is of measure 0 with

respect to Haar measure in F/A. Since this fact will be used elsewhere, we include

a proof.

Let 77 denote the natural homomorphism from V to r/A. Let Q denote a measur-

able subset of T. Then tt(Q) is a measurable subset of r/A.

Lemma. Let tt~1(tt(Q))=Q. Then Q is of measure 0 in Y if and only if Tr(Q) is

of measure 0 in F/A.

Let cu be a point of r/A. We shall also write A + cu to denote a coset in r/A

as well as a subset of F In this case w denotes any representative point in the coset.

Now let Q(oj) = Q n (A + w), and assign to this set its "transplanted" measure

(cf. [1]), i.e. Q(oj)-co is a subset of A and, as such, mA(Q(oS) - of) exists and is, in

fact, the number of points of Q(o>). We have [1]

mr(Q) = mA(Q(w)-io)dmriA(oj)
Jr/A

and

WA(Ô(co)-Co)  =   2   X0(°»-»(An)
A„ In A

where, as usual, y denotes a characteristic function. Combining these equalities

gives

™r(Q) = 2 Xote)-m(A„)c/wr/a)(cu).
A„ in A Jr/A

Now we wish to assert that

(5) Xq«o)-u,(K) = XjkoM.

In fact, if (5) holds, then it follows from the preceding formula that

mr(Q) = J «haWÖ))
Anin A

so that the lemma is then proved. To establish (5) we argue as follows. To say that

A„ belongs to Q(w)-w is equivalent to saying that m is in (ß-An) n (A + cu-An).

But A-An = A, and Q-Xn = Q for every element An of A. The latter fact follows

since tt~1(tt(Q))=Q. Thus An belongs to Q(w)-w if and only if a> belongs to
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Q(oj). But the latter is equivalent to saying that w belongs to Q, i.e. each repre-

sentative of the coset does. For such co, and no others, the corresponding element of

r/A belongs to tt(Q). This proves (5) and the lemma.

Let A be in L2(G) and supp K=S. H*(K) denotes the closure of the linear span

of the functions K(x + h), « in 77; and L2(S) has its previous meaning. In the

following theorem, which is a general form of Theorem 1, it is understood that

all the assumptions made in the first paragraph of this section are to hold.

Theorem 5. H*(K) = L2(S) if and only if S is of special form with respect to A.

Let 5 be a set of special form with respect to A, i.e. (4) is satisfied. Let F be in

L2(S). Then F=FX + F2 where Fx is in H*(K) and F2 is orthogonal to it. As before,

supp Fj^S, y'=l, 2. By use of Parseval's theorem, the orthogonality condition

can be written as

0 = J" F2(x)K(x + h) dmG(x) = j F2(y)7?(y)(«, y) dmr(y),       « in 77.

Since F2(y)K(y)(h, y)c, where the subscript c denotes complex conjugate, is in

L\T), we have by (3) that

0 = f     dmriA (co) f F2(y + X)K(y + X)(h, y + A)c a>nA(A)
Jr/A Ja

where, as before, the inner integral may be considered as a function of co in r/A

rather than as a function of y in F. Thus

0= f     (h, w)c dmriA(oj) f F2(y+A)7?(y+A)amA(A).
JriA Ja

The last equality follows from the fact that A is the annihilator of 77, i.e.

(«, y+X) = (h, y). The function JA F2(y + A)Â(y+A) dmA(X) is in L\V/A). Since H

is the dual group of T/A, it follows from the uniqueness theorem that it is the zero

function, i.e. it is 0 for almost every co of T/A. But, by the lemma, this is equivalent

to saying that it is 0 for almost every y of T. Hence, using the series form of this

last integral, which is legitimate since A is countable, and the fact that supp K=S

we obtain

2 F2(y+An)Ä(y+An)YS(y+An) = 0
\n in A

for almost every y. It is clear from (4) that at most one term in this sum is nonzero.

Hence, F2(y)7?(y)=0 for almost every y. Finally, since supp F2<^S, F2 is itself 0

almost everywhere.

Now let 77*(A)=L2(5). If (4) is not satisfied, there exists, in view of the count-

ability of A, a fixed A in A such that

Xs(y) + Xs(v + X) = 2
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for y in a subset of S of positive measure. F may be constructed as in the proof of

Theorem 1 such that F is in L2(S) but such that F/K is not periodic on S in the

above sense. Hence, F is not in H*(K), and this contradiction shows that (4) is

satisfied.

The most important example of this last theorem seems to be our original case,

that in which G = Rk. However, it does have some nontrivial things to say if G is

taken to be either the torus or the set of lattice points in Rk.
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