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Our Main Theorem, which we believe to be the first general Radon-Nikodym

theorem for the Bochner integral, is

Main Theorem. Let (X, S, p) be a o-finite positive measure space and let B be

a Banach space. Let m be a B-valued measure on S. Then m is the indefinite integral

with respect to p of a B-valued Bochner integrable function on X if and only if

(1) m is p-continuous, that is, m(E) = 0 whenever p(E) = 0, Ee S,

(2) the total variation, \m\,ofmis a finite measure,

(3) locally m somewhere has compact average range, that is, given Ee S with

0 < p.(E) < co there is an F£ E such that p.(F) > 0 and

AT(m) = {m(F')/p(F') :F'sF, p(F') > 0}

is relatively (norm) compact, or equivalently

(3') locally m somewhere has compact direction, that is, given EeS with

0 < p(E) < co there is an As E and a compact subset, K, of B not containing 0 such

that p(F) > 0 and m(F') is contained in the cone generated by Kfor all F' s F.

Hypothesis 3 is the traditional type of hypothesis which has been used in previous

Radon-Nikodym theorems for vector-valued measures. We discuss these previous

theorems below. But it is not obvious that hypothesis (3) is satisfied by every real-

valued measure, and so, if hypothesis (3) is used, the classical Radon-Nikodym

theorem is not an immediate consequence of the Main Theorem. Hypothesis (3'),

on the other hand, is clearly satisfied by every real-valued measure, or, more

generally, by every measure with values in a finite dimensional Banach space (let

Abe the entire surface of the unit ball of A). Also, hypothesis (3') can be interpreted

geometrically as follows : the role of A is to specify a solid angle in B (in fact A

can be taken to be a compact subset of the surface of the unit sphere in B, if desired),

and hypothesis (3') says that locally there are sets of positive measure on subsets of

which the directions of the values of m lie in this solid angle.

We feel that the methods used in proving the Main Theorem are at least as

interesting as the theorem itself. Our proof is entirely elementary in the sense that

we use only very basic facts about Banach spaces. In particular, we do not use
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linear functionals, much less the Hahn-Banach theorem (we do use the Kreln-

Milman theorem for norm compact subsets of a Banach space, but we give an

elementary proof of this theorem for this special case (§4)). The crux of our proof

is an analogue for vector-valued measures (Theorems 2.4 and 2.7) of the Hahn

decomposition theorem for real-valued measures. This result may be of independent

interest.

Finally, we indicate how the Main Theorem can be used to give new proofs of

several previously obtained Radon-Nikodym theorems, even for weakly integrable

functions with values in a locally convex topological vector space. This is done by

showing that if A is a subset of a locally convex space whose relative topology is

compact and has a countable base, then a norm can be defined on the linear

manifold spanned by K in such a way that on K the norm topology coincides with

the original topology (Theorem 5.2). This result may be useful in other situations

in which it is desired to apply results about Banach spaces to locally convex spaces.

We now discuss briefly the relation between the hypotheses of the Main Theorem

and the hypotheses of Radon-Nikodym theorems obtained previously. Hypotheses

(1) and (2) and the fact that the measure space must be assumed cr-finite [10, p. 131,

Exercise 8] are familiar from the real-valued case, although for vector-valued

measures hypothesis (2) is considerably stronger than just the requirement that

the measure be finite. As has been mentioned, hypothesis (3) is the traditional type

of hypothesis which has been used in previous Radon-Nikodym theorems for

vector-valued measures. The key hypothesis of the Dunford-Pettis theorem [7,

Theorem 2.1.1] is equivalent to the assumption that Ax(m) is a bounded, and so

relatively w* compact, subset of the dual of a separable Banach space. In Phillips'

theorem [13, p. 130] it is assumed that Ax(m) is a relatively weakly compact subset

of a Banach space. A similar condition is used by Rao [14]. In the theorems of

Dunford-Schwartz [8, p. 499] and Bourbaki [3, p. 46, Corollary 3] the main

hypothesis is essentially that Ax(m) is a relatively compact subset of a locally

convex space satisfying certain separability hypotheses. A similar condition has

been used by Dubins [5, p. 291], Dieudonné [4], in giving a generalization of the

Dunford-Pettis theorem, seems to have been the first to have required compactness

of AE only for certain E (although Phillips had considered a somewhat analogous

condition). Metivier [12, p. 334] has generalized the theorem of Bourbaki in much

the same way. We have not seen any analogues of hypothesis (3').

Because the hypotheses of the theorems of Dunford-Pettis, Dieudonné, Dunford-

Schwartz, and Bourbaki explicitly include separability assumptions, and because

separability is a consequence (nontrivial) of the hypotheses of Phillips' theorem

(see [9, p. 426] or [3, p. 95, Exercise 24](2)), our Main Theorem can be applied,

via Theorem 5.2 mentioned above, to give new proofs of these theorems. Of

(2) Added in proof. See also M. Metivier, Martingales à valeurs vectorielles; application à la

dérivation, Ann. Inst. Fourier (Grenoble) (to appear).
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course conversely, Phillips' theorem could be used to prove our Main Theorem,

but such a proof could hardly be called elementary in the sense which we have been

using. More recently A. and C. Ionescu Tulcea [16], [17] have shown, by quite

delicate arguments depending essentially on Zorn's Lemma, that the separability

assumptions in the theorems mentioned above are not needed. We consider it

very unlikely that our Main Theorem can be used to prove these theorems in the

absence of separability assumptions. Also our results seem to have little in common

with the Radon-Nikodym theorem of Rickart [15] in which the objects to be

integrated are no longer single-valued functions.

Our results are organized in the following way. In §1 we obtain certain properties

of measurable and integrable functions in order to show the necessity of the

hypotheses of the Main Theorem and also to motivate certain points in the proof

of sufficiency. §2 is devoted to the statement and proof of our analogue of the

Hahn decomposition theorem. In §3 the proof of the Main Theorem is given, and

hypotheses (3) and (3') are shown to be equivalent. The elementary proof of the

Kreïn-Milman theorem for norm compact sets is given in §4. We indicate in §5

how our Main Theorem can be used to prove previously obtained Radon-Nikodym

theorems, as mentioned above. Finally, in §6 we collect a few examples pertinent

to our results. In particular these examples show the independence of the hypotheses

of the Main Theorem.

In a future paper we hope to be able to use techniques analogous to those

introduced here to give a direct proof of a slight generalization of the Radon-

Nikodym theorem of Phillips(3).

1. Measurable and integrable functions. Let (X, S, p) be a a-finite measure

space [10], and let B be a Banach space. We use the following definitions. A B-

valued function, /, on X is measurable [2] if it is the pointwise limit a.e. of a

sequence of B-valued simple measurable functions, and /is (Bochner) integrable

if it is the limit a.e. of a mean Cauchy sequence of simple integrable functions [6].

There is no difficulty in carrying out the development of Bochner integration given

in [8] using these definitions, and in the slightly more general setting of a a-finite

rather than totally a-finite measure space.

However, since measurable functions and finite measures are carried on measur-

able sets, in order to prove the Main Theorem it is sufficient to do so for the case in

which (A, S, p) is totally a-finite. Also, there is no loss of generality in assuming

that (X, S, p) is complete. Since the exposition becomes slightly simpler if we

assume that (X, S, p.) is totally a-finite and complete, we will make this assumption

throughout, although we will state some of the more important results in the more

general setting.

(3) Added in proof. Our not entirely sucessful attempt appears in "Dentable subsets of Banach

spaces, with application to a Randon-Nikodym theorem," in Functional analysis, Thompson,

Washington, D.C., 1967.
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Many of the results in this section are known, in one form or another, but we

have not seen elementary proofs for all of them. All of our proofs are elementary,

in the sense used in the introduction.

All measurable and integrable functions in this section are assumed to have

values in B.

Proposition 1.1. Iff is a measurable function, then f is locally almost compact

valued, that is, given E e S with p(E)<co, and given e>0, there is an Fe S, F^E

such that p(E—F)<E andf(F) is a (norm) relatively compact subset of B.

Proof. Let/, be a sequence of simple measurable functions converging to/a.e.

By Egoroff's theorem [8, p. 149]/, converges to/almost uniformly on E, that is,

there is an F e S, Fs E such that p(E—F)<e and/, converges to/uniformly on F.

We show that/(F) is totally bounded. Given r>0, choose n such that \\f(x)—fn(x)\\

á r for x g F. Let bx • • • bk be the elements of the range of/,. Then it is clear that the

balls of radius r about bx- ■ ■ bk cover/(F).

Definition 1.2. Let/be a measurable function, and let E e S. Then the essential

range off restricted to E, erE (f), is defined to be the set of those be B such that

for every s>0 the measure of {xeE : \\f(x)—b\\ <e} is strictly positive.

We list some obvious properties of essential ranges.

Proposition 1.3. If fand g are measurable functions, and if E, F e S, then

(1) er£ (/) is a closed subset of B,

(2) er£ (/) is contained in the closure of the range off restricted to E.

(3) Iff=g a.e. on E, then erE (f) = erE (g).

(4) If p(E) = 0, then erE (/) is empty.

(5) If FSE, then erF (/)ser£ (/).

Corollary 1.4. Iff is a measurable function, then f is locally almost essentially

compact valued, that is, given Ee S with p(E)<oo, and given e>0, there is an

Fe S, F^ E such that p(E—F) < e and erF (/) is compact.

We remark that we have not yet shown that erE (/) is not empty if p(E) > 0.

Hence the importance of

Lemma 1.5. Let f be a measurable function and let Ee S. Ifp(E)>0, then erE (/)

meets the range off restricted to E.

Proof. (This proof, simpler than our original proof, was found simultaneously

by a number of my students.) By removing a suitable null set we can assume that

/(F) is separable. Suppose that er£ (/) n/(F) is empty. Then for each xe E there

is an ex > 0 such that

p({yeE: \\f(y)-f(x)\\<ex}) = 0.

The balls of center/(x) and radius cx cover/(£), and so, since/(£") is a separable
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metric space, there is a countable subcollection of these balls, with centers f(xn),

which still cover/(A). Then

Ac   Ü Fve7T:I/(y)-/(xn)|| < «,„}
n= 1

so thatp(E) = 0.

Corollary 1.6. If fis a measurable function, and Ee S, then

N = {xeE:f(x)i erE (/)}

is a null set.

Proof. If p(N)>0 then by Lemma 1.5 there is an x e N such that/(x) g erN (/)

— erB (/) which contradicts the definition of A.

It is not difficult to use this result to prove

Corollary 1.7. If fis measurable and E= U"=i 7?„, En e S, then

er£ (/) = closure^ JJ erB„ (f)j-

Lemma 1.8. Let fand g be measurable functions, and suppose that ||/(x)— g(x)|| Sd

a.e. on Ee S. Let b e erE (/). Then

distance(b, erE (g)) S d.

Proof. Given e > 0, let

F = {x e E : \\b-f(x)\\ < e, and ||/(x)-g(x)|| S d}.

Then p(F)>0. By Lemma  1.5 there is a yeF such that g(y) eerF (g). But

\\b—g(y)\\ <d+s. Since e is arbitrary, the proof is completed.

We will use the following notation. If D ^ B then c(D) will denote the convex hull

of D [8, p. 414], c(D) will denote the closed convex hull of D, and cone(D) will

denote the cone with vertex 0 generated by D. If/is an integrable function then the

indefinite integral off, pf, is the TFvalued measure defined by

p.,(E)=  \ fdp,       EeS.
Je

For the basic properties of indefinite integrals we refer the reader to [8, p. 114].

Proposition 1.9 (the mean-value theorem). Iff is an integrable function, and

if Ee S is such that 0 < p(E) < co, then

■ PI(E)/p(E)ec(erE(f)),

so that

AE(pf) s c(er£ (/)),

where

Ae(h) = {hr(F)/p(F) :FeS,F^E,0< p(F)},

the average range of p, on E.
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Proof. Given e > 0 we show that the distance from p,(E)/p(E) to c(erE (/)) is

less than s. Since p, is absolutely /¿-continuous [8, p. 114], we can find S>0 such

that if /¿(F)< 8 then \p¡(F)\ </¿(£>/6.

Let/, be a sequence of simple integrable functions converging to/a.e., and so

almost uniformly on E. Choose F e S, Fe E such that /„ converges uniformly to

/on F, p(E-F)<8, and l/p(F)< l//¿(F) + £/6||/||1. Then it is easily verified that

\\p,(E)/p(E)-pf(F)lp(F)\\ < e/3.

Thus it suffices to show that the distance from pf(F)/p(F) to c(erF (/)) is less than

2*¡3.
Now choose m such that \\f(x)—fm(x)\\ Se/4 for xeF. Then it is easily verified

that

\\pf(F)/p(F)-pfm(F)/p(F)\\ < e/3.

Thus it suffices to show that the distance from pfm(F)/p(F) to ¿(er^. (/)) is less than

e/3.

Let bx ■ ■ ■ bk he the elements of erF (fm), so that on F

k

fm  =   2   bi*Fi a-e-'
i = l

where the F¡ are disjoint, F= Uf=i Ft, and p(Ft)>0 for each i*. By Lemma 1.8 we

can find a¡ eerFi (/) such that ||¿»i—af|| <e/3 for each /'. Then 2*-i (hl(Fi)/p(F))ai

is in c(erF (/)) since 2f= i /¿(POM-P) = 1 • But it is easily verified that

\nfm(F)/p(F)-Z (p(Fi)/p(F))ai\ < e/3.
II t = i II

Proposition 1.10. Iff is an integrable function, and if Ee S, then

erE (/) £ IE(pf)

(the closure of AE(pf)).

Proof. Let b e erE (f). Then, given e>0, let F={x e E : ||6-/(*)ll <e}, so that

p(F)>0. Choose FxeS, FX^F, such that O^F^oo. Then c(erFl (/)) is con-

tained in the ball of radius e about b. But by Proposition 1.9, pf(Fx)/p(Fx)

e c(erFl (/)), and so \\b-p,(Fx)/p(Fx)\\ ie.

Corollary 1.11. Iff is an integrable function, and EeS, then

c(AE(pf)) = c(er£ (/)).

We remark that if erE (/) is compact, then it follows from the Kreïn-Milman

theorem that every extreme point of c(AE(pf)) is an element of er£ (/). This obser-

vation is the motivation for a key step in the proof of our decomposition theorem.
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We are now in a position to prove the necessity of the hypotheses of our Main

Theorem.

Proposition 1.12. If fis an integrable function, then pf satisfies hypotheses (1),

(2), (3) and (3') of the Main Theorem. In fact, hypothesis (3) can be strengthened to

(3a) locally m almost has compact average range, that is, given E e S with p(E) < co,

and given e>0, there is an FsTs such that p(E—F)<e and AF(m) is relatively

compact.

Proof. The fact that p, satisfies hypotheses (1) and (2) of the Main Theorem

follows from Theorem 20 on p. 114 of [8]. With respect to hypothesis (3a), if

EeS with p(E)<co, and if e>0 are given, then by Corollary 1.4 there is an

F g S, F^E, such that p(E-F)<e and erF (f) is compact. Then c(erF (/)) is also

compact (see [8, p. 416] for an elementary proof). But by Proposition 1.9 AF(pf)

Sciera (/)), and so AF(pf) is relatively compact.

Finally, we show that pf satisfies hypothesis (3'). Given EeS with 0 < p(E) < co,

choose F0£ E as above so that er^ (f) is compact and p(Fa)>0. If er^ (/)={0}

then the range of pf on F0 is {0} which is contained in the cone generated by any

single point. Otherwise, choose b e erFo (/), b^O, and let 8= ||7»||/2. Let

F={xgF0: ||/(x)-è|| < 8},

so that p(F) > 0, and let A= c(erf (/")), so that A is compact and convex, and 0 £ A.

Then pf(F')/p(F') is in A for all F'<=F, p(F')>0, and so p,(F') is in cone(A) for

allF'sF.
The proof that the hypotheses of the Main Theorem are sufficient is partly

motivated by Theorem 18 of [8, p. 297]. We will prove here the part of this theorem

which we need, but for the more general case of 7?-valued functions, and also

because the proof in [8] is incorrect (the second inequality in line 4, p. 298, is false).

Following [8, p. 297] let II denote the set of all collections, w, consisting of a

finite number of disjoint elements of S with strictly positive finite measure. Then

n is essentially a directed set when ttx ä tt is defined to mean that every element of

77 is, except for a null set, the union of elements of ttx.

For each tteII, and each measurable function,/ which is integrable on sets of

finite measure, define a function, /,, by

f„ = 2 (Pf(E)/p(E))XE
ÊSJI

where pf(E)=jEfdp. Each fn is a simple integrable function, and thus is in

7/(A, S, p, B) for lSp<oo.

Proposition 1.13. Let 1 Sp<°o. Then for eachfeLp(X, S, p, B) the net {/,}^n

converges to f in p-norm.
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Proof. Let Un be the linear operator carrying 7/ into itself defined by Ult(f)=f„.

We first show that \\Un\\p% 1. If/g7/, then

II to/)II? = I \ fdp\p(E)y-p
Ben. Je

which by Holder's inequality on each E e tt is

- ^[(J/^Hl i/(*)ip44*))1'i]W))x-1'

= J  f   ||/(x)||*a>(x)^ 11/11?,
Ben Je

where 1//?+1/a =1. Thus \\Ull\\pSl.

Now if/ is a simple function in 7/, so that/=2ik-i ¿¡Xi?, a.e., where the £¡ are

disjoint sets of strictly positive finite measure, and if we let tt = {Ex ■ ■ ■ Ek}, then it is

easily checked that UHl(f)=f a.e. for ttx^tt. Finally, if /is any element of 7/,

and if £>0 is given, let g be a simple integrable function such that ||/— g||p<e/2.

Letg=2f=i biXEf a.e. where the E¡ are disjoint sets of strictly positive finite measure,

and let n = {Ex ■ ■ • Ek}. Then

ll/-AL= lf-gh+W*Ag-f)l <° ■
for TTX > TT.

Motivated by this result, the proof of the sufficiency of the conditions of our

Main Theorem consists of showing that if for each tt g Ff we define a simple

integrable function/, by

/„ = J (m(E)/p(E))XE
Een

then the net {/„} is a mean Cauchy net. It will then follow easily that if/is a limit of

{/,}, then «7 = ^.

To show that {/„} is a Cauchy net we must show that given e > 0 there is a tt e Ft

such that if 7?! >tt then \\f„1 —fn\\x<e. If this statement is analysed, it can be seen

that, roughly speaking, each A g 77 must have the property that the vectors

m(F)/p(F) all stay close together as Avaries inside E. Our Decomposition Theorem

states that if m satisfies suitable conditions, involving hypothesis (3), then a 77 g II

whose elements have this property can be found.

2. The Decomposition Theorem. The key concept used in the Hahn decompo-

sition theorem is the concept of sets which are (purely) positive or (purely) negative

[10, p. 120] with respect to a given measure. These are defined in terms of the order

relation on the real numbers. We will replace this concept of pure set by one

defined in terms of convex cones in Banach spaces. Also, we will need to consider

sets which are pure for a given 7?-valued measure relative to a given positive
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measure, this concept being defined in terms of general convex sets in Banach

spaces.

Definition 2.1. Let (X, S, p) be a o-finite measure space, and let m be a B-

valued measure on S. If A is a closed convex cone in B (with vertex 0) then a

measurable set E is called A-pure for m if m(F) e K for all Fs E. If m is /¿-continuous

and if K is any closed convex subset of B, then a measurable set E will be called

A-pure for m relative to p, or (K, /¿)-pure, if m(F)/p(F) e K for every Fç E with

0 < p(F) < oo, that is, if AE(m) s K.

It is clear that any subset of a A-pure (resp. (K, p)-pure) set is A-pure (resp.

(A, /x)-pure). The most important property of pure sets, which depends on the fact

that A is closed and convex, is

Proposition 2.2. Any countable union of K-pure (resp. (A, p)-pure) sets is a

K-pure (resp. (A, p)-pure) set.

Proof. Let F=U¡™ i Ft where each F¿ is A-pure (resp. (A, p)-pure). Since the

difference of A-pure (resp. (A, /¿)-pure) sets is clearly A-pure (resp. (A, /¿)-pure),

it suffices to consider the case in which the F¡ are disjoint. Let FsF, with 0<p(F)

<oo in the (A, /¿)-pure case. Then F= U¡* i F (~\ E¡, this union being disjoint.

Then in the A-pure case m(F) = 2i™ i m(F n F¡) where m(F n F¡) e A for each i.

Since A is a closed convex cone, it follows that m(F) e K.

In the (A, p)-pure case we have

m(F)/p(F)= J (m(FnEi)/p(FnEi))(KFnEi)/p(F)),
i = i

(where 0 is understood for terms in which p(F n A,) = 0) and so m(F)/p(F) is

expressed as an infinite convex combination of elements of A, since

2p(FnEi)/p(F) = l.
i = i

Since A is convex and closed, it follows that m(F)/p(F) is itself in K.

The next result provides some additional motivation for the proofs of the

Decomposition Theorem and the Main Theorem.

Proposition 2.3. Let f be an integrable function, and let K be a closed convex

subset of B. Then Ee S is (A, p)-pure for p¡ if and only if erE (f)^K.

Proof. If erE (/) £ A and if Fs E with 0 < p(F) < oo, then

Pf(F)/p(F)ec(erF(f))^K.

Conversely, suppose that b e erE (/) but b $ K. Let e > 0 be smaller than the distance

from b to A, and let

F={xeE: \\f(x)-b\\ < e}.
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Then p(F)>0, and if Fx £F with 0<p(Fx)<œ, then p,(Fx)/p(Fx) is in the ball of

radius e about b, and so is not in A.

Decomposition Theorem 2.4. Let (X, S, p) be a a-finite measure space, and let

m be a B-valued measure on S which is p-continuous. Let Ee S and suppose that

AE(m) is compact. Let {Ux- • ■ Un} be a collection of open convex subsets of B which

covers AE(m). Then there is a collection, {Ex ■ ■ ■ En}, of measurable sets whose union

is E such that E{ is (Ut, p)-pure for 1 :£ f g«.

It is not evident that there are any nonnull (üit /¿)-pure sets at all, and the crux

of the proof of the theorem is the following lemma which asserts that there is at

least one. The proof of the theorem will then follow by a simple exhaustion

argument.

If K is the closed ball of radius 8 about the point b e B, it will be convenient to

speak of (b, S)-pure sets instead of A-pure sets relative to /¿. We recall that if K

is a subset of B, then a point of A is called an extreme point of A if it lies in the

interior of no line segment contained in A.

Key Lemma 2.5. Let m and E satisfy the hypotheses of Theorem 2.4, and let

S>0 be given. Then there is a b e AE(m) and an FeS, FsF, such that p(F)>0

and F is (b, 8)-pure. In fact b can be chosen to be any extreme point of c(AE).

Proof. The proof depends on the Kreïn-Milman theorem for the case of norm

compact subsets of a Banach space. An elementary proof of this theorem for this

case is given in §4. Here we will just recall the statement of the theorem.

Theorem 2.6 (Kreïn-Milman theorem for norm compact sets). If K is a norm

compact subset of B, and if Ke is the collection of extreme points of K, then c(Ke)

= c(K). Furthermore, every extreme point ofc(K) lies in Ke.

We continue with the proof of the Key Lemma. Since AE is compact, so is

c(AE) [8, p. 416]. Let b be any extreme point of c(AE). From the comment following

Corollary 1.11 it follows that if the Main Theorem could be used, that is, if it were

known that m is the indefinite integral of an integrable function / then b e erE (/),

and so {xe E : ||/(x) —¿|| <8} would be a nonnull (b, S)-pure set for m relative to

p. Thus under the hypotheses of the present lemma we might expect to be able to

find a nonnull (b, S)-pure set for this special choice of b.

Let B(b, 8) denote the ball of radius S about b, and let Q = c(AE-B(b, 8)). By

Theorem 2.6 b $ Q but b e AE. Then, since Q is closed, we can find f0ç£ with

0 < p(F0) < oo such that m(F0)/p(F0) e B(b, 8) - Q.

Suppose that F0 is not (b, S)-pure. We sweep out the part of F0 which is not

(b, S)-pure as follows. Let kx be the smallest integer ^ 2 for which there exists

Ex c F0 such that p(Ex) ̂  l/kx and m(Ex)/p(Ex) is in Q. Let FX = F0- Ex and suppose

that Fx is not (b, S)-pure. Let k2 be the smallest integer 2:2 for which there exists

E2sFx such that p(E2)ä l/k2 and m(E2)/p(E2) is in Q. Let F2 = FX-E2. Continuing
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in this way we obtain a sequence of disjoint subsets, En, of F0 and a nondecreasing

sequence of integers, kn, with the property that for each «, p(En) S: l/kn, m(En)/p(En)

is in Q, and if E'çF0-{J?=x Et and m(E')/p(E') is in Q then /*(£")< l/(kn-l).

Since F0 has finite measure, kn must converge to co.

Let E0 = \Jn=x En. Then, since the En are disjoint,

m(E0)/p(Eo) = f (m(En)/p(En))(KEn)/KEo)).
n = l

Since 2"= i p(En)/p.(E0) = 1, and m(En)/p(En) is in <2 for each «, and since g is

convex and closed, it follows that m(E0)/p(E0) is in Q.

Let F=F0-E0. Then F is (b, 8)-pure, for if F'SF, p(F')>0, and m(F')/p(F')

is in g, then F'çF0 — U?-i ^i f°r eacn w> and so p(E')< l/fe-l) for each «.

Since £n converges to co, p(F') = 0, so that no such F' exists.

Finally, we note that p(F)>0, for if p(F)=0, then w(F)=0, and so m(F0)/p(F0)

= m(E0)/p(E0), which is in Q, and this contradicts the way in which F0 was chosen.

Proof of Theorem 2.4. First suppose that p(E)<oo. For each i, iSiSn, let

a¡ = sup {p(F) : F £ E and F is (t/j, p)-pure}.

Then a¡ is finite since p(E) < co. Let Etj be a sequence of (t/¡, ^)-pure subsets of E

such that linr, ^(7%) = a¡, and let Ei = (J°°=x Eu. Then £¡ is a (£/¡, ;u)-pure set by

Proposition 2.2, and, since it is clear that p(E/) = ai, it follows that Ei is a (Ut, p)-

pure subset of maximal measure in E.

Let F=E-\Jf=x F¡. We show that p(F) = 0. Suppose that p(F)>0, and let b

be any extreme point of c(AF). Since è is in AF, b is contained in Uio for some i0,

so that we can choose S>0 such that B(b, 8) is contained in Uio. Then by the Key

Lemma 2.5 there is an F'^F such that p(F')>0 and F' is (b, S)-pure and so

(Uio, p.)-pure. Since F' is disjoint from Eio this contradicts the maximality of Eio.

Thus p(F) = 0. Then we can adjoin F to any Eh so that E={J?=X £¡, where A¡ is

(t/j, /x)-pure for 1 ̂ iSn.

Now suppose that A does not have finite measure. Then since p is a-finite,

E= {Jj°= x Fj where p(F,) < co for each/ Then by the first part of this proof we can

find sets En, ISiSn, such that £, = (Jr=i En f°r each/ and EH is (£7„ (a)-pure for

each i. Let £, = Uf=i En. Then A¡ is (í/¡, /x)-pure for each i by Proposition 2.2, and

it is clear that E= \Jfm x £¡.

While Theorem 2.4 is in the form which we need for the proof of the Main

Theorem, it has the disadvantage that the usual Hahn decomposition theorem is not

apparently a corollary. For this reason we now state the theorem in a form such

that the Hahn decomposition theorem, at least for finite measures, is a corollary.

Theorem 2.7. Let m be a B-valued measure and let EeS be such that \m\ is

totally a-finite on E. Suppose that there is a compact subset, K, of B not containing 0

such that the range of m restricted to E is contained in cone(A). Let {Ux ■ ■ ■ Un} be

a collection of open convex subsets of B which cover K. Then there is a collection
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{Ex ■ ■ ■ En} of measurable sets whose union is E such that F¡ is cone(Ui)-pure for m

for lúiUn.

Proof. Let p=\m\. As in the proof of Theorem 2.4 it suffices to consider the

case in which p(E) < oo. Also by the argument used in the proof of Theorem 2.4 let

Ex ■ ■ ■ En be subsets of E of maximal measure such that Ei is cone((7j)-pure for

ISi^n. LetF=E-\Jf=xEi.

We show that p(F) = 0. Suppose on the contrary that /¿(F) >0. Then AF is not

empty, and must contain points other than 0, since otherwise p(F)=\m\(F) = 0.

Furthermore ||«i(F')|| á \m\(F') = p(F') for any F' e S, so AF is contained in the unit

ball of B. Let l/k be the distance from A to 0. Then

AF s c(kK u {0})

so that c(AF) is compact. Since AF contains points other than 0, c(AF) must have a

nonzero extreme point, say b. Since b is in AF, b is contained in the interior of

cone((7io) for some i0, so that we can choose S>0 such that B(b, 8) is contained

in cone(t/io). Then by the Key Lemma 2.5 there is an F'^F such that p(F')>0

and F' is (b, S)-pure relative to p. It follows that F' is cone(£/io)-pure, contradicting

the maximality of EiQ.

We remark that once the Main Theorem has been proven, Theorem 2.7 can be

considerably strengthened in that the U¡ can be replaced by any countable collec-

tion of closed convex sets, {A¡}, whose union contains K. In fact, if m is the in-

definite integral of/with respect to p=\m\ on E, then it suffices, except for a

possible null set, to let Et = {x e E : f(x) e cone(A"¡)}.

Corollary 2.8 (Hahn decomposition theorem for finite measures). If m is

a finite real measure, then there exist disjoint sets Ex and E2 whose union is X such

that Ex is purely positive and E2 is purely negative for m.

Proof. Let A={1, - 1} and Ux = (0, 2), t/2 = (-2, 0). Then the only point which

remains to be checked before applying Theorem 2.7 is that \m\ is finite. But this

follows from [8, p. 97, Lemma 5]. (Of course it is important that we are defining

\m\ by [8, p. 97, Definition 4] and not in terms of a Hahn decomposition as is done

in [10].)

3. The proof of the Main Theorem. Assume first that m satisfies hypotheses

(1), (2) and (3a) (see Proposition 1.12). (At the end of this section we show that

hypotheses (3) and (3') are equivalent to (3a).) We now show that {/,}, as defined

at the end of §1, is a mean Cauchy net. Let e>0 be given. Since |«i| is a finite

measure, we can find EeS such that p(E)<oo and |«î|(A-£)<£/3. Since m is

/¿-continuous, so is \m\. Then, since \m\ is a finite measure, it is absolutely p-

continuous, [10, p. 125] so that we can find S>0 such that if/¿(F) < 8 then \m\(F)

<e/6. Choose A0 = F such that p(E0)<8 and AE.Eo is compact.

Let bx ■ ■ ■ bn be elements of B which are (e/6/¿(£))-dense in ÄE-Eo, that is, if Uf
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denotes the open ball about b¡ of radius e/6p(E), then the U¡ cover AE_Eo. Then,

applying the Decomposition Theorem 2.4, we can find disjoint sets Ex- ■ ■ En

whose union is E—E0 such that A¡ is (bt, e/6p(E))-pure for each i. By eliminating

those £ which are null sets, by eliminating the corresponding bu and by adjusting

the remaining £ by null sets, we can assume that /x(£) > 0 for each / (but the b¡

need no longer be e/6p(E)-dense). Let 770={£ : OSiSn}, or, if p(E0) = 0, let

770 = {£¡ : 1 SiSn}, so that 770 g II.

We now show that if 77>770, then \\f„—fXo\\x<e. We will assume that p(E0)>0,

for it will be clear how the proof simplifies if p(E0) = 0. If 77 > tt0, then, except for

possible null sets,

77 = {Fx ■ ■ ■ Fk} u {F„ :0SiSn,lSjSki}

where the Ft do not meet A for l Si S k, and £ = \JkL x Fv for 0 S i S «. Of course

all the elements of 77 are disjoint and have strictly positive measure. Then

ll/--/».||l= ¡\\fn(x)-U(x)\\dp(x)

= 2 \\m(Fi)\\+2\\m(Fo^lp.(FoJ)-m(Eo)/p(Eo)\\p(Fo,)

+ 2Í2 \\m(Fi])/p(Fii)-m(Ei)lp(Ei)\\p(Fij)
t -1 \i -1

S \m\(X-E)+ f ||i«(Fw)|| + ||/«(£o)ll

+ 2Í 2 ñrn(Fi])/p(Fli) -bt|| + ¡bt -m(Ei)/p(Ei)||KF«)
1»1U«1

S e/3 + e/6 + e/6 + (e/3p(E))p([JiE)  S ».

Thus the net {/,} is a mean Cauchy net, and so converges in mean to some

element, / of L1(X, S, p, B). In particular,

pf(E) =  \ fdp = lim \ f„ dp
Je n    JE

for every EeS.

We now show that m(E)=p,(E) for all EeS. Let Ee S. If p(E)=0 the result

follows from the /¿-continuity of m. If 0<^(£)<co, let 770={£}. Then it is easily

checked that

J fndp = m(E)

whenever 77 ;> 770, and so

PS(E) = lim     fndp. = m(E).
1   Je

The result when p(E) = 00 then follows from the a-finiteness of p.
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We now show that hypotheses (3) and (3') are equivalent to hypothesis (3a) in

the presence of hypotheses (1) and (2). Clearly hypothesis (3a) implies hypothesis

(3). Also, if m satisfies hypothesis (3a), then, by the part of the Main Theorem

proved so far, m=pf for some Bochner integrable/, and so m satisfies hypothesis

(3') by Proposition 1.12 (a direct proof can also be given).

Now let m satisfy hypothesis (3'). Then we show that m satisfies hypothesis (3).

Given Ee S with 0<p(E)<oo, choose F0s£ and compact AçB not containing 0

such that p(FQ)>0 and the range of m on F0 is contained in cone(A'). Choose a

constant c large enough so that the measure cp— \m\ is not purely negative on F0,

and let F be the purely positive part of a Hahn decomposition (Corollary 2.8) of

cp-\m\. Then p(F)>0, and \\m(F')/p(F')\\ <c for F' s F and p(F')>0. It follows

that if l/k is the distance from Ato 0, then m(F')/p(F') is in c(ckK u {0}) which is

compact, and so hypothesis (3) is satisfied.

It remains to show that if m satisfies hypothesis (3), then m satisfies hypothesis

(3a). First we make the easily checked observation that AEkjF^c(Ae u AF) for any

E, Fe S, so that AEuF is compact if AE and AF are. Now let m satisfy hypothesis

(3), and let E e S with p(E) < oo be given. Let

a = sup {/¿(F) : F s E and ÄF is compact}.

It suffices to show that a = p(E). Let {F¡} be a sequence of subsets of E such that

/¿(F¡) ->• a and AFt is compact. By the observation made above we can assume that

the F, are increasing. Let Ea = \J F¡, so that p(E0)=a. lfa<p(E), then p(E-E0) >0,

so that by hypothesis (3) there is an F0^E-E0 such that p(F0)>0 and AFa is

compact. Then AFl uFo is compact, and /¿(F¡ u F0) -^a+p(F0), contradicting the

definition of a.

4. The Krein-Milman theorem. We now supply our elementary proof of

Theorem 2.6. The crux of the matter is to show that there exists even one extreme

point.

Lemma 4.1. Let K be a norm compact subset ofB. Then A has at least one extreme

point.

Proof. Since A is a compact metric space, we can find a sequence, {bn}, which is

dense in A. We define subsets, A„, of K by induction. First, let K0 = K. Then, if

Kn _ x has been defined, we define An by

A„ = {xeAn_i : ||x-Z>n|| = sup {|| j/- ¿>n || : yeKn_x}}.

A simple compactness argument shows that Kn is nonempty. Also, Kn is clearly

closed and so compact, and AnsAn_j. Let A' = p|"=i A„. Then A' is not empty,

since A is compact. We show that A' contains exactly one point, and that this

point is an extreme point of A.



480 M. A. RIEFFEL [May

Suppose that A' contained two distinct points, c and c'. Since {bn} is dense in A,

there is an « such that

||c'-Än|| < ||c-èj.

Then, since c e Kn-X,

\\c'-bn\\ < sup{\\y-bn\\ :yeKn_x},

and so c' $ An, which contradicts the assumption that c' e A'.

Let e be the unique point in A', and suppose that e is not an extreme point of A,

so that

e = tcx + (l-t)c2,       0 < t < 1,

for some cx, c2 e K. Let « be the smallest integer such that either cx or c2 is not in

Kn, so that cx and c2 are both in Kn_x. Then

\\Ci-bn\\ g sup{|b-*„|| :yeKn„x},       i= 1,2,

with strict inequality holding for /'= 1 or 2. Then

||e-6„|| g t\\cx-bn\\+(l-t)\\c2-bn\\

< sup{||j-è„]| :yeKn_x},

which contradicts the fact that e e A'„. Thus e must be an extreme point of A.

Proof of Theorem 2.6. If Ae is the set of all extreme points of A, it is clear that

c(Ae)£c(A). Suppose that c(Ke)^c(K), so that K$c(Ke). Let

¿7 = sup {distance(j, c(Ke)) : y e A},

so that d>0, and let

A' = {x e A : distanced, c(Ke)) = d}.

Then A' is nonempty, compact, and disjoint from c(Ke).

Then A' has an extreme point, e, by Lemma 4.1. We show that e is also an

extreme point of A, contradicting the fact that Ke contains all the extreme points

of A. Suppose that e is not an extreme point of A, so that

e = tbx + (l-t)b2,       0 < f < 1,

for some bx, b2 e K. Since e is an extreme point of A', at least one of bx, b2 is not

in A', say bx, so that distance(/>!, c(Ke))<d. By the compactness of c(Ke) there

exist cx, c2 e c(Ke) such that

l&i-Cil = distance^, c(Ke)),       i = 1,2.

In particular \bx — cx\<d ai\A \\b2-c2\\^d. Let c = tcx + (l — t)c2. Then cec(Ke),

and

||e-c|| it\\bx-cx\\+(l-t)\\b2-c2\\ <d,

contradicting the fact that ee K'.
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The final part of Theorem 2.6 has a standard elementary proof. See for example

[8, p. 440, Lemma 5].

5. Other Radon-Nikodym theorems. In this section we indicate how our Main

Theorem can be used to give new proofs of the Radon-Nikodym theorems of

Dunford and Pettis [7], Phillips [13, p. 134], Dieudonné [4], Bourbaki [3, p. 46],

and (with separability hypotheses) Metivier [12, p. 334]. We will not actually supply

proofs of all these theorems here, but instead we will give a proof of a version of

Theorem 2 of [8, p. 499]. Using this proof as a model, the reader may supply his

own proofs of the above mentioned theorems.

We recall that if F is a locally convex topological vector space, with dual space

V*, and if (X, S, p) is a positive a-finite measure space, then a function, / from

A to F is said to be weakly measurable if </(•)> z> is measurable for all z e V*,

and/is said to be weakly integrable if </(•), z> is integrable for all zeV* (where

< , > denotes the dual pairing between V and V*).

We now state Theorem 2 of [8, p. 499] explicitly in the form of a Radon-

Nikodym theorem.

Theorem 5.1. Let (X, S, p) be a positive finite measure space, and let V be a

locally convex topological vector space. Let m be a V-valued measure on S which is

p-continuous, and suppose that Ax(m) is a compact subset of V whose relative

topology has a countable base. Then there is a weakly integrable function, / whose

range is contained in Ax, such that

(m(E), z> = f </(x), z> dp(x)
Je

for all zeV* and EeS. That is, m is the weak indefinite integral off.

We have stated (and will prove) this theorem only for locally convex spaces.

The reader will have no difficulty in supplying the few extra details needed to extend

the theorem to the more general situation considered in [8].

Our proof of Theorem 5.1 (and the other Radon-Nikodym theorems mentioned

above) depends on the following theorem, which enables us to apply to locally

convex spaces the results we have obtained about Banach spaces.

Theorem 5.2. Let V be a locally convex topological vector space, and let K be a

compact subset of V. Let K' be the closed circled convex extension of K [11, p. 14],

and let Wbe the linear manifold spanned by K'. Then a norm can be defined on W such

that on A' the norm topology coincides with the original topology if and only if the

original topology on K has a countable base.

Proof. Since the topology of a compact metric space has a countable base, it is

clear that if the original topology on A coincides with a norm topology, then it has

a countable base.

To prove the converse we first note that it suffices to do so in the case in which
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Fis complete [11, p. 62], For let Ve be the completion of V. Then the relative

topology of A in Ve will still be compact and have a countable base. Let A" be the

closed circled convex extension of A in Ve, and let IF" be the linear manifold in

Ve spanned by A". Then A' £ A" and IFs IF", and the topology of A' is just the

relative topology from K". If a norm can be defined on IF" such that on A" the

norm topology coincides with the original topology, then the restriction of this

norm to IF will have the desired property that on A' the norm topology coincides

with the original topology.

Now assume that V is complete, so that A' is compact [11, p. 113]. Let C(A)

be the Banach space of all continuous scalar-valued functions on A. By Lemma 4

of [8, p. 501] C(K) is separable, since the topology of A has a countable base.

Each element of V* can be viewed as an element of C(A). Since any subset of a

separable metric space is separable, there is a sequence {z„} of elements of V*,

none of which is identically zero on A, such that for any zeV* and any e > 0

there is an « such that

| <t>, z — zny | < e   for all v e K.

Since z—zn is linear, this inequality persists for all v e A'.

Since A' is compact, each z„ is bounded on A'. For each « let

\zn\ = sup{\(v,zny\ : veK'}.

Note that the zn were chosen so that |zn| >0 for each «.

Define a function, ||    ||, on IF by

00

H = 2 2-"|zn|-1|<w,zn>|.
n=l

If w e A', then | <w, zn> | S |zn| for each n, so the sum converges. Since A' is circled

and convex, each element of W is just a scalar multiple of an element of A', so

the sum converges for each element of IF.

It is then clear that || || is a seminorm on W. We now show that it is a norm.

IfweK' and vv#0, then by the Hahn-Banach theorem there is a zeV such that

|<w, z> | ^ 1. Then « can be chosen so that zn is within 1/2 of z on A, and so on A',

so that | <w, zn> | ̂  1/2. Thus ||w|| >0. Since every element of IF is a scalar multiple

of an element in A', it follows that |w|| >0 whenever w e IF and w^O.

We now show that on A' the norm topology coincides with the original topology

from V. Suppose that wa is a net of elements of A' which converges to weK' in

the original topology, and so in the weak topology. Given e > 0 choose A large

enough so that 2„>w 2~%<e/4. Choose a0 so that if a>a0 then

lO-wv, zn>| S \zn\e/2

for ISnSN. Then, if a>a0,

\\w-wa\\ S 2 2-V2+2 2 2-" S e.
n=l n>N
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Thus on A' the norm topology is coarser than the original topology. But the

original topology is compact and the norm topology is Hausdorff, so the two

topologies must coincide.

Corollary 5.3. If K is a compact subset of a locally convex space whose relative

topology has a countable base, then the relative topology of the closed circled convex

extension of K has a countable base.

The following corollary is the particular version of Theorem 5.2 which is used to

prove the Radon-Nikodym theorems of Dunford and Pettis [7] and Dieudonné [4]

using our Main Theorem.

Corollary 5.4. Let B be a separable Banach space with dual space B*. Then a

norm, || ||0, can be defined on B* such that on bounded (and so relatively w*-

compact) subsets of B* the ||    ||0-topology coincides with the w*-topology.

Actually this corollary may be proved directly. If {bn} is a sequence of elements

dense in the unit ball of B, then

co

||è*||0 = 2 2-"| <bn, b*y |    for b* e B*
n = l

is such a norm.

The following corollary is the particular version of Theorem 5.2 which is used to

prove the Radon-Nikodym theorem of Phillips [13] using our Main Theorem (but

one must first prove the nontrivial fact that the hypotheses of Phillips' theorem

imply separability, see [9, p. 426] or [3, p. 95, Exercise 24]).

Corollary 5.5. Let B be a separable Banach space and let Kbe a weakly compact

subset ofB.IfW is the linear manifold spanned by the closed circled convex extension

K' of K, then a norm, || ||0, can be defined on Wsuch that on K' the || \\0-topology

coincides with the weak topology.

Proof. By Theorem 3 of [8, p. 434] the weak topology of A is metrizable, and

so has a countable base.

We remark that Corollaries 5.4 and 5.5 in conjunction with our proof in §4 of

the Kreïn-Milman theorem for norm compact sets yield a new proof of the Kreïn-

Milman theorem for w*-compact subsets in the dual of a separable Banach space,

and for weakly compact subsets of a separable Banach space.

Proof of Theorem 5.1. We can assume that p is totally finite.

Let IF be the linear manifold spanned by the closed circled convex extension,

A, of Ax. By Theorem 5.2 there is a norm, || ||, on W such that on A the original

topology coincides with the norm topology. Let IF0 be the completion of IF with

respect to this norm, so that IF0 is a Banach space. Since A~x is compact in IF it is

closed in W0. Then m can be viewed as a measure with values in p(X)K,~ IF0

clearly satisfying hypotheses (1) and (3) of the Main Theorem. Hypothesis (2) is
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also satisfied, for Ax(m) is bounded and so there exists a constant, A, such that

|| m(E) || ^ Np(E)   for EeS.

Then \m\(X)SNp(X), and since p is totally finite, \m\ is also.

Then, applying the Main Theorem, there is a IF0-valued Bochner integrable

function,/ such that m = p¡. Since according to Proposition 1.10 erxf^Ax(m), we

can, by Proposition 1.6, change /on a null set so that range(f)^Ax<^ V. Further-

more, by Proposition 1.13, if, as before, we define

/„ = 2 (m(E)/p(E))XE
Eeii

for TT e n, then /, converges to / in mean. Then we can extract a subsequence,

fnn =fn which converges to/a.e. as well as in mean. In particular pfn(E) converges

in norm to pf(E) = m(E) for each EeS.

We now show that for each zeV* and each EeS

<m(E), z> =      </(x), z> dp(x).
Je

If p(E) = 0 the result is clear, so we may assume that p(E)>0. Since on c(Ax) the

norm topology coincides with the original topology, z is continuous on c(Ax), and

so is bounded on c(Ax), say by C. It follows that </(•), z> is an integrable function

bounded by C, as is </,(■), z> f°r each 7r, since range(/,)£/lx(«7). In particular,

/is weakly integrable. Furthermore, since/, converges to/a.e., it follows that

</„(x), z> -> </(x), z>       a.e. x.

Then by the Lebesgue dominated convergence theorem

f </„(*), z> c//x(x) -> f </(x), z> c//¿(x)
Je Je

for each EeS. Now, since the/„ are simple functions, it is easily verified that

J   </„(*), z> c//¿(x) = <pfn(F), z).

Then, since p!n(E) -> »?(£) in norm, since pfn(E)/p(E) e c(Ax) and since z is

continuous on cF4x), it follows that

<Pu(E), z> ^ <m(E), z>.

Thus

<m(£), z> =      </(x), z> c//¿(x)
Je

for all F e S and z e V*, concluding the proof.

6. Examples. In this section we gather together a few examples which illustrate

certain aspects of our results. In particular, they show that the hypotheses of the
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Main Theorem are independent. The first three examples are well known. In all of

the examples X= [0, 1] and p is Lebesgue measure on X.

Our first example shows that hypotheses (1) and (2) of the Main Theorem do not

imply hypothesis (3) (or 3')).

Example 6.1. Let B=L1(X, p), and define a B-valued measure, m, by m(E)=xE

for each Lebesgue measurable set £. Then m is /¿-continuous, in fact, \m\ =p. But

it is easily checked that AE(m) is not relatively norm compact for any £ of strictly

positive measure, so that m is not the indefinite integral of any Bochner integrable

function.

Our next example shows that hypotheses (1) and (3) (or (3')) do not imply

hypothesis (2).

Example 6.2 [1, Example 7, p. 377]. Let B be an infinite dimensional Hilbert

space, and let {e„}™= i be an orthonormal system in B. Define a A-valued measure,

m, by

m(E) = 2 (2n/n)p(E n(2~\ 2^^])en.
71 = 1

Then m is clearly /¿-continuous, and Au¡x¡(m) is a bounded subset of a finite di-

mensional subspace of B for any t > 0, so that m satisfies hypotheses (3) and (3').

But |w|([0, l]) = 2"=i l/« = oo, so that hypothesis (2) is not satisfied. We remark

that if Xn denotes the characteristic function of the interval (2~n, 2"n + 1], then m is

the indefinite integral of the function

/= 2 (2"/n)x»e»,
n-l

which is Birkhoff integrable [1] but not Bochner integrable, since ||/(•)!! is not

Lebesgue integrable.

Our next example shows that hypotheses (2) and (3) (or (3')) do not imply

hypothesis (1).

Example 6.3. Let B be the real numbers, and let m be the unit mass at the

point 0. Then hypothesis (2) is clearly satisfied, and AUM(m)={0} for any r>0 so

that hypotheses (3) and (3') are satisfied, but hypothesis (1) is clearly not satisfied.

Our next example serves two purposes. First, it shows that to characterize the

indefinite integrals of even bounded Bochner integrable functions the word "some-

where" in hypotheses (3) and (3') can not be omitted. Secondly it shows that the

hypotheses of Phillips' Radon-Nikodym theorem [14, p. 134, Theorem 5.5],

while sufficient, are not necessary for a measure to be the indefinite integral of a

Bochner integrable function. Specifically, Phillips' hypothesis that for any constant

A the set

KN = {m(E)/p(E) : Ee S and \\m(E)/p(E)\\ S N}

should be weakly relatively compact, is not satisfied by the following example for

ATêl.
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Example 6.4. Let B be any nonreflexive Banach space, e.g. I1, so that the unit

ball of B is not weakly compact. By Eberlein's theorem [8, p. 430] the unit ball of

B is not weakly sequentially compact, so there exists a sequence {bn} of elements of

the unit ball of B which is not weakly relatively compact. For example, in I1 let

bn be the unit mass at the integer «. Define the function/on X by

where y„ has the same meaning as in Example 6.2. Then/is a bounded Bochner

integrable function. But if m=p¡, then Ax(m), which is also the same as the set KN

for A^ 1, contains {bn}, and so is not weakly relatively compact, much less norm

relatively compact.

In our next example we construct a measure which satisfies hypotheses (1) and

(2) of the Main Theorem and whose range is relatively compact, but which is not

the indefinite integral of a Bochner integrable function on any subset of X of

strictly positive measure. In particular, this shows that in hypothesis (3') some

condition must be imposed on A, such as disjointness from 0.

Example 6.5. Let P=/°°. Let {/} be a uniformly bounded sequence of real-

valued functions on X which converges to 0 in L1(X, p) and which has the property

that if E is any subset of Athen the restrictions of the/ to E are not equicontinuous

at any nonisolated point of A. For example let the/ be the characteristic functions

of the intervals [0, 1/2], [1/2, 1], [0, 1/3], [1/3,2/3], etc. [10, p. 94, Exercise 6].

Define an /"-valued measure, m, on X by

(m(E)\ = jEfdp.

Then it is clear that m is /¿-continuous. Also \m\^cp where c is a uniform bound

for the/, so |«î| is finite. Furthermore the range of m is contained in the set

{ce/-: |o,| è ¡/ill}

which is totally bounded and so compact, since \\fi\\x converges to 0.

Finally, we indicate why m can not be the indefinite integral of any Bochner

integrable function on any set E of strictly positive measure. If m were the in-

definite integral of some Bochner integrable function, g, on Athen it is not difficult

to verify that g must equal fa.e. on E, where/is defined by (/(x))¡ =f(x). But/is

not measurable on E, for if it were, then by Lusin's theorem [10] there would be a

compact subset, C, of A of measure arbitrarily close to p(E) such that the restriction

off to C is continuous, that is, the/ are equicontinuous on C. Since C must have

nonisolated points, this contradicts the way in which the / were chosen.

It is natural to ask whether the analogue of hypothesis (3a) for direction is a

necessary condition, that is, whether the indefinite integral of a Bochner integrable

function locally almost has compact direction. Our next example shows that this

need not be the case.
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Example 6.6.   Let 77 and {en} be as in Example 6.2. For each « let g„ be the

function on X defined by

gn(x) = (-l)k   for k/2n S x < (k+l)/2n

where0gJfc<2". Let

/= 2 0/8")*»*..
n=l

Then it is not difficult to show that for any £s X with p(E) > 1/2, the range of /¿,

restricted to £ does not have compact direction.
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