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Introduction. This paper is devoted to a study of recursive linear orderings

which have no hyperarithmetic descending sequences and hierarchies on these

orderings. In the first section we discuss a method for generalizing certain results

on recursive-well-orderings to such recursive pseudo-well-orderings. We prove

that if < s is any such ordering, then transfinite induction holds on <B for Si

formulae. This permits one to extend several other results for recursive well-

orderings to such < B. The possible order types of such relations is completely

characterized by the result that, for some a<wx, <R has order type a>x(l+r¡) + a

where 17 is the order type of the rationals in the open interval (0, 1).

In the second section we define a hierarchy on a recursive pseudo-well-ordering

to be essentially a sequence of functions associated with each element of the field of

< R and satisfying the same inductive conditions at successors and limits as the

functions of the hyperarithmetic hierarchy. We obtain various results which show

how the relation < R induces certain structures on the relations of recursive and

hyperarithmetic reducibility between functions of the hierarchy. The most impor-

tant of these is that if aa and ab are the functions associated with a and b in some

hierarchy on < R ; and if a < R b, and the segment between a and b is not well ordered,

then everything hyperarithmetic in aa is recursive ab. These facts can be applied to

obtain a number of new results of interest in the study of hyperdegrees. These

include the existence of pairs of hyperdegrees without a greatest lower bound ; the

existence, for a given hyperdegree, of an infinite descending sequence of hyper-

degrees having the given one as a greatest lower bound ; the existence of maximal

densely ordered sets of hyperdegrees ; the existence, for a given Y,{ set 5 containing

a nonhyperarithmetic function, of a subset of the hyperdegrees of 5 having the

cardinality of the continuum and consisting of mutually incomparable hyper-

degrees; the existence of a pair of hyperdegrees [a], [ß] such that 0< [ce], [ß]<0'

(the hyperdegree of Kleene's 0), with [a] n [ß] = 0 and [a] u [ß]=0'. In addition,

our methods also yield the basic results on the existence of incomparable hyper-

degree obtained in recent years via the methods of forcing and measure theory

(see for example, Feferman [4], Spector [16], and Thomason [18]).

In the text much use is made of O*, the set of notations for recursive linear

orderings with no hyperarithmetic descending sequences which was introduced in
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Feferman and Spector [5]. This is partly because it is convenient to have the

function, "predecessor of", recursive on our orderings, but also because our work

begins by solving some problems concerning O* that are implicit in Feferman [2].

The results reported in this paper were obtained while the author was a student

of Professor Solomon Feferman at Stanford University. A more complete pre-

sentation of them has been given in the author's doctoral thesis [11]. Announce-

ment of the results has also been made in [8], [9], and [10].

The author is indebted to Professor Feferman for his guidance during the re-

search and preparation of this paper as well as for providing a new and fruitful

notion (the predicate " Q(a, a)" of the second part). He is also indebted to Professor

Joseph Schoenfield of Duke University who helped guide the research during

1964-1965 when Professor Feferman was on leave. He also had some helpful

conversations with Professors Georg Kreisel and Dana Scott.

1. In this first section we derive some general properties of O*. Some, although

not all of these properties, are generalizations to O* of familiar properties of O.

Let us recall the principal facts about O* from Feferman and Spector [5].

Definition. O* = f) X(XeHAA[le XAze X^2*e Xa((Mn)({e}(n)eXa{e}(n)

-<{e}(« + l))-> 3-5c e X)]). -< is the recursively enumerable relation satisfying

the conditions: (i) Kx if x^l, (ii) z-<22, (Hi) {e}(n)<3■ 5e, (iv) a<bf\b<c^

a<c.

Fact 1. O* consists of integers n for which {u : u^n} is well-ordered with

respect to hyperarithmetic sequences and {u : u^n} only contains 1, and u of the

form 2(u)0, and 3-5(u)2 where (Vn)({(u)2}(n)<{(u)2}(n+l)).

Fact 2. 0^0*, 0*e2Z{.

Fact 3. If ne O*-O, {u : «=<«} n O is a ni path through O. Conversely, if P

is a nj path through O, then for some n e 0* — 0,{u : u^n} n 0=P.

Although one can attack problems about O* directly, it seems more natural to

exploit the similarity in the definitions of O and O* in the following way as sug-

gested by Kreisel : since the definition of O* may be obtained from that of O by

restricting the function quantifier to range over the hyperarithmetic functions, the

statement and proof of a result about O can be translated into the statement and

proof of a result about O* simply by relativizing the function quantifiers to the

class of hyperarithmetic functions provided, of course, that all axioms and prin-

ciples of proof remain valid in the class of hyperarithmetic functions. For example,

a proof using only the Z{ axiom of choice would remain valid under this trans-

lation since the SJ axiom of choice was verified to hold in the class of hyper-

arithmetic functions by Kreisel in [14].

We can also show that the stronger 2Z\ axiom of dependent choices is valid in the

class of hyperarithmetic functions. This axiom follows from: if

(V«)(3|9)(V*)/?(â(x), ß(x))
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where 7? is recursive, then

(Vi?)(3a)(V«)(Vjc)(a(l, x) = v(x) A R(ä(n, x), d(n+ 1, x))).

To verify this axiom for the class of hyperarithmetic functions we prove first the

following theorem.

Theorem 1.1. Suppose X, Ke Xl\, X¿</>, and(Vx)(xe X^ (3y)(y e X/\K(x,y)))

then

(V^)(x e JT-* (3cc)HA(a(0) = x A (Vn)(cc(n) £ X A K(a(n), a(n+ 1)))).

For the proof we need the following lemma whose proof is adapted from Kreisel

[14].

Lemma (Uniformization Theorem for \l\ Relations). If P(x,y) is Tl\ then

there exists P'(x, y), l~\\ such that

(a) P'(x,y)-+P(x,y),

(b)(Vx)((ly)P(x,y)->(3y)P'(x,y)).

Proof. Since P(x, y) is U\, there exists 7? primitive recursive such that P(x, y)

<-> (Va)(3z)R(á(z), x, y). Following Kleene [12], (V«)(3z)7?(â(z), x, y) <-> the

unsecured sequences of R(à(z), x, y) are well ordered. Let P'(x,y)<->P(x, y)

A (Vw)(Va) (a is not an isomorphism of the unsecured sequences of R(â(z), x, u)

onto a proper initial segment of those of R(d(z), x, >*)) A (W)(w < y -*■ (V/3) (ß is not

an isomorphism of the unsecured sequences of R(ä(z), x, w) into those of

R(d(z), x, y))).

It is easy to see that P'(x, y) has the properties (a) and (b).

Proof of theorem. Let P(x, y) be the predicate K(x, y)Ay e X. Then P(x, y) e U\

and by hypothesis (ix)(x e X^-(3y)P(x, y)). Choose P'(x,y) as in the lemma.

Then (\/x)(xe X-+(3y)P'(x,y)) and P'(x,y)->K(x,y)hy e X. Define a as

follows :

a(0) = a,       a(x+l) = iyP'(a(x),y)

is always defined and a e U\ since

a(x) = y <-> (3í)(Seq (s) A Lh (s) = x+ 1 A (/)(/ < Lh (s)

-> (i = 0 A (i), = a V / + 0 A 7"(0)i-i, (s)M-

Hence also a e HA, so a has the required properties.

Now we can show

Theorem 1.2. (J\ axiom of dependent choices for hyperarithmetic

functions). If (Va)HA(3ß)HA(\/x)R(ä(x), ß(x)), where R is recursive, then

Cyv)HA(3«)HA(Vx)(Vn)(R(ä(n, x), à(n+l, x)) A a(l, x) = v(x)).

Proof. Let A'={2e-3,/ : y e OA{e}fl» is total}. Let K(u, v) be the predicate

(Vx)R({(u)0}^>x(x),{(v)or»h(x)).
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Using the standard techniques  of Kleene,  we see that  X,KeYl{, and  the

hypothesis of the theorem implies (Vu)(u eI-> (3f)(f e XA K(u, v)).

Let veHA. Then for some 2"-3<! in X, v = {p}H*. By Theorem 1.1, there is a

hyperarithmetic/such that /(0) = 2" ■ 3", (Vn)K(f(n),f(n+ l))Af(n) e X). Let

a(n, x) = {(f(n))o}"'f^h(x).

Then a is hyperarithmetic and satisfies the conclusion of Theorem 1.2.

Kreisel observed that several of the results which we had obtained earlier

about 0*, in particular Theorems 1.3, 1.4, and 1.5 below, could be subsumed

under the general principle discussed above by verifying that the proofs of the

corresponding results about O made use at most of the 2J axiom of dependent

choices. Three such results are as follows: first, the Tl{ completeness of O which

requires only the arithmetic comprehension axiom. Second is the uniqueness of

any isomorphism between an initial segment of {y : y^a} and an initial segment of

{y : y^b} for a,beO. The proof of this also requires only the arithmetic com-

prehension axiom. Third is the least element principle for SJ subsets of {y : y^a}

where aeO. This can be proved from the definition of O using the Sí axiom of

dependent choices as follows: suppose X={n : (3ß)(Vu)R(n, ß(u))} where R is

recursive. X<^{y : y^a}, and (Vx)(jc e X-+ (3y)(y e XAy<x). We will show

a $ O. By assumption

(Vx)(V«)((VW)/?(x, «(«)) -* (3ß)(3y)(Vu)R(y, ß(u)) A y < x),

(Va)(3ß)((R(a(0), Xya(y+l)(u))^((Vu)R(ß(0), W<J + !)(«)) A ß(0) < «(0)).

Choose a so that (Vu)R(a(0), Xya(y + l)(u)). By the SJ axiom of dependent choices,

(3v)((yri)((Vu)R(v(n, 0), Xyv(n,y+l)(u))^((Vu)R(i>(n+l, 0), Xy,(n+ l,y+ l)(u))

Av(n+l,0)< v(n, 0))) A (Vm)0(1, ") = <*("))•

Hence v(l, 0) = a(0)^a by choice of a, and (Vk)0(«+ 1, 0)<v(n, 0)). So a $ O.

It follows from our earlier remarks that these results remain valid when rel-

ativized to the class of hyperarithmetic functions. The relativization of the first is

Theorem 1.3. Suppose R(á(x),n) is recursive. Let </> be the function defined in

Kleene [12] which reduces (Va)(3x)R(ä(x), ri) to O. Then

(V*)HA(3x)R(ä(x), n) <-> 0(«) e O*.

Hence O* is H{ complete.

The last remark follows by Specter's Theorem [15] which shows that the class of

predicates of the form (Va)HA(3x)R(ä(x), ri), where R is recursive, is just the class of

SJ predicates. Theorem 1.3 was first obtained by Feferman [3]. The relativization

of the second result is

Theorem 1.4. If a, be O* then any hyperarithmetic isomorphism between an

initial segment of{y : y^a} and an initial segment of{y : y^b} is unique.



530 JOSEPH HARRISON [May

It follows immediately from this theorem that if {y : y^a} is hyperarithmetically

isomorphic to an initial segment of {y : y^b} and vice versa, then the composition

of the two maps must be the identity, and both maps are isomorphisms onto.

By Spector's Theorem, the class of sets expressible in the form

{n : (3a)HA(Vx)R(â(x), n)}

where 7? is recursive, is just the class of UJ sets. By relativizing the third result and

applying this fact we obtain

Theorem 1.5. Suppose aeO* Xe Tl{, Is{j : y^a}, X^<t>. Then X has a least

element with respect to ^.

Corollary 1.6. (i) Suppose a e O*, Xz {y : y^a}, Xel,{ and X is inductive, i.e.,

(VjXj^z->y e X) -> z e X provided z^a. Then X={y : y^a}. (ii) 0* =

fl X(X e Si A [1 e Xaz e X-+2Z e Xa ((Vn)({e}(n) e X A {e}(n) < {e}(n + 1))
-* 3.5e e X)]).

Proof, (i) is immediate from the theorem. Feferman and Spector prove

O* = fl X(Xe HA A [leX A ze X-> 2* e * A ((in)({e}(n) e X

A{e}(n)<{e}(n+l))^3-5°eX)]).

Hence O* includes the intersection given in (ii). Suppose Xel.{ has the closure

property given in square brackets and a e O*. We want to show a e X. Let

Z={y ■ y^a} n X. It follows from the bracketed condition that Z is inductive

and clearly Z e SJ if Xe~L{. Hence Z={y : j>=^a}andae X. So 0*£Z and O* is

included in the intersection given in (ii). Having proven both inclusions, we have

proven (ii).

Corollary 1.7. All theorems on +0 ■ 0 in Kleene [12] continue to hold when O is

replaced by O*. (These theorems include the closure of O* under notation arithmetic

and the basic properties of these operations^)

Proof. All of these theorems are proved by induction on a predicate of the form

<f>(b) e O, or R(b) where (f> and R are hyperarithmetic. Any proof involving such

R(b) also works for O*. If we replace the predicate "<f>(b) e O" by "<p(b) e O*", we

obtain a SJ predicate and the inductive arguments remain valid. Closure of O

under +0 and -0 was first proved by Feferman in [2] using rather elaborate

arguments. They are now superseded by the foregoing.

The reverse side of the coin is that, in the case of a result about O which does

not relativize to O*, we have the corollary that it could not have been proven solely

by means of the S i axiom of dependent choices.

As an example, consider the least element principle for II\ subsets of {y : y^a}

where aeO. Its relativization to the class of hyperarithmetic functions is the least

element principle for Xl\'-HA)=Y{ subsets of {y : y^a} where a e O*. This is false
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since if a eO* — 0,{y : y=^a} n 0*-0 is a H\ subset of {y : y^a} with no least

element.

We now turn to an analysis of the order type of {y : y^a} where ae 0* — 0.

In [2] Feferman proved that, for a e O*, one could define a function P(a) having

the essential properties of ordinal exponentiation 2< and such that if a e 0* — 0,

then {y : y^.P(d)} has a subset which is densely ordered. The proof is based on the

fact that if < is any linear ordering which is not a well-ordering, 2< contains a

subset which is densely ordered.

Proceeding along somewhat different lines, we have obtained the following

more general and informative theorem.

Theorem 1.8. Suppose aeO* — 0. Let 1 +r¡ be the order type of the rationals in

[0, 1). Then there exists a unique a<cü1 such that {y : y^a} has order type

°>i " (1 + v) + «• (Here " • " and " + " denote the product and sum of order types.)

Proof. If yx, y2^a say yx~y2 iff the segment determined by =^ between yx and

y2 is well ordered. ~ is clearly an equivalence relation. Moreover, the equivalence

classes are segments since >'i~>'2, ^í^^^^ clearly implies yx~y3~y2. Let E(y)

be the equivalence class determined by y. Then

E(y) = {z : z ^ a A (V«)(((V»)(z ̂ «(/) «>>) v (Vi)(j/ < «(/) < z))

-+(3x)(«(x+l)\<a(x)))}.

So E(y) is Tl\ and has a least element by Theorem 1.5. E(a) is clearly the last

equivalence class. Let b be its first element. Then E(a) = {y : b^y^a} is recursively

enumerable and is well ordered by the recursively enumerable relation =^. Hence

E(a) has order type ce < wx.

The statement of the theorem will follow if we can show (a) each equivalence

class except the last has order type o>! ; (b) between any two equivalence classes there

is a third. The proof of (a) is exactly like the proof in [5] of the first part of Fact 3

given above.

Proof of (b). Suppose E(y0) and E(yx) are distinct equivalence classes, y0<yi,

and yx is the first element of its equivalence class. Note that if y^a then E(y) is

inductive. Hence if for all u, y0^ti^.yx, u e E(y0), then yx e E(y0) which contra-

dicts the choice of y0 and yx. Hence there exists y2, y0<y2<yx, such that y2 i E(y0).

Since yx is the first element of its equivalence class we also have y2 i E(yx). Thus

E(y2) is a distinct equivalence class between E(y0) and E(yx).

It follows from Theorem 1.8 that if a, b e O* - O, {y : y^a} is isomorphic to an

initial segment of {y : y^b} and conversely. It is natural to ask whether one of

these isomorphisms can be chosen to be hyperarithmetic. This is equivalent to

asking whether the following theorem about O relativizes to O* : a, b e O -> (3a)

(a is an isomorphism of {y : y^a} onto an initial segment of {y : y^b} or con-

versely). The answer is negative. In [13] Kreisel proves the existence of two

recursive linear orderings without hyperarithmetic descending sequences which
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are not comparable in this sense by a hyperarithmetic function. One can show that

the Markwald-Spector reduction of W to O also reduces W* to O*, and one can

use this reduction to obtain hyperarithmetically incomparable elements of 0*

Actually one can prove a mildly stronger result directly.

Theorem 1.9. Suppose aeO*-0, O^S^O*, Se Si. There exists be S such

that {y : y^a} is not hyperarithmetically isomorphic to an initial segment of

{y : y^b} and conversely.

Proof. We need two lemmas.

Lemma 1. Suppose (Vy)(3a)H¿(V;c)P(y, à(x)) where P e Yl\. Then

(3«)ha(Vj)(Vx)7>(.p, ä(y, x)).

Proof. One writes P(y, ä(x)) in the form (3v)HA(Vu)R(y, d(x), v(u)) and applies

the Si axiom of choice for hyperarithmetic functions.

Lemma 2. If y e O, then there exist z0, zxe O depending on y, such that \z0\ = \zx\

but {u : u^z0} and{u : u^zx} are not isomorphic by any function recursive in Hy.

Proof. If not, then for some y e O, if u,veO and |w| = \v\ then {z : z^w} and

{z : z^v} are isomorphic by a function recursive in Hy. Hence for u e O, n e Ow

<-> ({z : z=^«} is linearly ordered A (3a) (a is recursive in 77^ A a is an isomorphism

of {z : z=s<«} onto an initial segment of {z : z^m})). So u e O implies that Ow

is arithmetic in 77y. This contradicts the results of Spector [17].

Proof of Theorem 1.9. Suppose the theorem is false. Then (Vè) (be S^- (3a)HA

((a maps {y : y^b} isomorphically onto an initial segment of {y : y=$a}) or

(a maps {y : y=^a} isomorphically onto an initial segment of {y : y^b}))). By

standard manipulations of quantifiers using the fact S e SJ this can be put in the

form
Cib)(3<x)HA(^x)P(b, a, d(x)),

where P is n}. Hence by Lemma 1,

(3a)HACyb)(Vx)P(b, a, d(b, x)).

Reversing the quantifier manipulations, we find (3a)HA(Vb) (b e S-*- Xxa(b, x) is an

isomorphism of {y : y^a} onto an initial segment of {y : y^b} or it is an iso-

morphism of {y : y^b} onto an initial segment of {y : y^a}). Let a e HA have

this property. Then for be O^S, we must have that Xx<x(b, x) is an isomorphism

°f {y '• y^b} onto an initial segment of {y : y^a}. Let ab(x)=a(b, x). Then if

bx,b2eO, and |6i| = |¿»2|, ab^-ab2 is an isomorphism between {y : y=^bx} and

{y : y^b2} recursive in a and hence in some fixed Hy. This contradicts Lemma 2,

so the theorem is established.

Corollary 1.10. The following statement is not provable solely by means of

the Si axiom of dependent choices: a, be O —i- (3a) (a is an isomorphism of{y : y^a}

onto an initial segment of {y : y=^b} or vice versa).



1968] RECURSIVE PSEUDO-WELL-ORDERINGS 533

We conclude this section with an interesting open question about O*. Given

Px, P2, l~l\ paths through O, does there exist a total hyperarithmetic function/

which maps Px isomorphically on P2 ? Let ax and a2 e O* — O be chosen so that

{y : y^ax} n 0=PX, {y : y^a2} n 0=P2. If / has the required property and

S={y : y=^axAf is an isomorphism of {z : z^y} onto {z : z=^/(j)}}, then S is

hyperarithmetic and S^PX. S^PX since Px is not hyperarithmetic. Hence there

exists y^ax, y i O such that {z : z^y} and {z : z^f(y)} are isomorphic by /

Conversely, if there exist bx, b2 e 0* — 0, bx^ax, b2^a2 such that {z : z^bx} and

{z : z^b2} are hyperarithmetically isomorphic, so are Px and P2.

Hence, there exist II { paths through O which are not hyperarithmetically

isomorphic iff there exist a,beO* — 0 such that for all a0^a, b0^b, a0, b0eO* — O,

{z : z^c70} and {z : z=^b0} are not hyperarithmetically isomorphic. This last

condition is prima facie stronger than saying that {z : z^a} is not hyperarithmeti-

cally isomorphic to an initial segment of {z : z^b} and conversely(2).

2. In this section we investigate hierarchies on elements of O*. By a hierarchy

for a e O* we mean a function of two variables a(y, z) which satisfies the following

arithmetic condition:

O60(Vz)0> K a^a(y, z)=l) A(y = 2<">o A y ^ a -+ (a(y, z) = 0

<-> (3w)Tl(ä((y)0, w), z, z, w) A (y = 3-5(î/)2 a y =< a^a(y, z)

= «({(»¿((2)0), (z)l))).

We abbreviate this condition "//(a, a)". If H (a, a), let aa = Aza(>>, z). Then the

sequence {a¡,}¡,.<a has the property that if j = 2(v)°=^ö, then av = (a(!/)o)'. If J = 3 • 5<v)2

=^tf, then

«3.5«" 2OO   =  «{(VteKOOolOOl-

Conversely, given a sequence {aj}^,, with these properties, define a by a(y, z) = av(z)

if y^a, a(y, z)= 1 otherwise. Then H(a, a).

Hierarchies with ax = 1 were first implicitly used in Gandy's proof of Specter's

Theorem in [7]. This can be expressed in terms of H roughly as follows: let

aeO* — 0 be fixed. Then n e O <-> (3a)HA(3ß)HAH(a, ri) A ax = 1 a ß is an isomor-

phism of {y : y^n} onto an initial segment of ({y : y^a}) A A(ri), where A(ri) is

arithmetic. No other applications of such hierarchies seem to have been known.

We began a systematic study of hierarchies on a e O* with work that was announced

in [8] and [9]. During that period Feferman realized that hierarchies with <xi = 1

satisfying a certain predicate Q(a, a) involving a strong additional inductive

condition could be used to prove the independence of the EJ axiom of choice from

the hyperarithmetic comprehension axiom. This result was announced in [1]. We

were then able to use the predicate Q to strengthen certain of our earlier results

(notably Theorems 2.6, 2.8, and 2.9 below) and to obtain a new result about

(2) The author has learned recently that R. M. Solovay has proven the existence of 11} paths

through O which are not hyperarithmetically isomorphic.
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hyperarithmetic reducibility (Theorem 2.11 below). We modify the definition of

Q(a, a) given in [1] slightly by now allowing ax to be arbitrary, i.e., we take

Q(a, a)<-► 77(a, a) A (V/S) (jS is hyperarithmetic in aAß^{y : y^a} then ß has a

least element). The basic existence theorem for this predicate is now given by the

following theorem. As we shall see later, essentially new considerations beyond the

axiomatic ones discussed in section one are needed here.

Theorem 2.1. Suppose aeO* — 0, a>l=G>x- Then there exists b^a, beO* — 0

and a such that Q(a, b)Aax = v.

Proof. Let Sa<v={b : b^aA(3a)(Q(a, b)Aax = v)}. Sa,veSi'v and Sa_v^O

n {y : y^.a}=P which is a UJ path through O. P e fl\, therefore, P e IIiiV. Since

<i)x>a>x, but cl>1 = ojvx, it follows that P£I,X,V. Hence there exists beSav—P, i.e.,

there exists be 0* — 0, b^a and a such that Q(a, b)Aax = v.

We now present three theorems relating the complexity of the functions {aj,}v<;a

in a hierarchy to the ordering of {y : y^a}. The third, and most important depends

essentially on Theorem 1.8.

Theorem 2.2. There exists a partial recursive function f such that if ae O* and

H(a, a), bx^b2^a, then f(bx, b2) is a Gödel number of abi to be recursive in ab2.

Proof. bx=^b2 implies that there exist sequence numbers j and m with the follow-

ing properties:

(a) bx = 00o < 00i < (s)2-< 0)Lh(S) -1 = b2 ;

(b) For each /<Lh(j)-l, (j)j + 1=2(s)< or (s)i + x = 3-5as)'^\ and {(s)i + x,2}(mi + x)

=(*)<•

We can express these properties of bx, b2, s, m by S(bx, b2, s, m) where 5 is recur-

sively enumerable. Hence there exist g, h partial recursive such that bx=^b2

-> S(bx, b2, g(bx, b2), h(bx, b2)). This last remark follows by the usual uniformiza-

tion argument for recursively enumerable sets. Now suppose bx^b2, s=g(bx, b2),

m = h(bx, b2). Let a(s)l=aj. It is sufficient to show how to find recursively a Gödel

number of a¡ in a, + 1. If (j)i + 1 = 2(s)< then a¡={£:}a'+i where A: is a uniform Gödel

number of A in A'. If (s)i + x={(s)i + x¡2}((m)i + x), then al(rt) = ai + 1(2mi+i -3") so

aj={j(wj + 1)}a'+i where j is a recursive function such that_/(w) is a uniform Gödel

number of {n : 2m-3neA} in A. In either case we can recursively determine a

Gödel number of a¡ in ai + 1. This proves the theorem.

In the following we write 'á*' for 'is recursive in', ' = «' for 'has the same

recursive degree as', '<B' for 'has lower recursive degree than'. Similarly, we use

'Sh for 'hyperarithmetic in', ' = „' for 'has the same hyperdegree as', and

'<h for 'has lower hyperdegree than'.

Corollary 2.3. If a e O* and H (a, a), then a = Raa.

Proof. Obviously <xaSR a- Let/be partial recursive and satisfy the conclusion of

Theorem 2.2. Then a(y, z)=l if yfé.a. a(y, z) = {f(y, a)}a"(z) if y^a. Hence a is
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recursive in {y : y^a} u aa = B aa since every recursively enumerable set is recursive

in aa if 2=^c7, while if a=l, {y : y^a} is recursive.

Theorem 2.4. If a e O*, H(a, a), p, q^a, {y : p^y^q} has order type t<ojx

say r=\n\a where n e Oap. Then H%*=R aQ.

Proof. This is proved by induction on t as in the uniqueness proof of Spector

[17]. We omit the details.

Theorem 2.5. Suppose aeO*-0, H(a,a), p, q=^a, and {y : p^y^q} is not

well ordered. Then everything hyperarithmetic in ap is recursive in aq.

Proof. We use a lemma due to Enderton and Putnam. We outline the proof, as it

has not appeared.

Lemma Suppose 3 ■ 5e e O, (in) (Hle)M is recursive in S). Then i/3.5« is recursive

in S'".

Proof. Let an be the unique hierarchy for {e}(ri) with a" = 1. Note that a?e)(n) is

the characteristic function of Hle)M and that an = R a?e)(n) by Corollary 2.3. Hence,

for each n, H{eHn) ̂RSiffan-¿R S.

If, for all n, //«,><„) á» S, then

n e H3.5> <-> (n)x e HleKin)o)

<->(Va)(H(a,{e}((n)0) Aax = 1 -> a({e}(n)0), (n)x) = 0)

<-» (3a)(H(a, {e}((n0) A ax - 1 A a({e}(n)0), (n)x) = 0)

<-* (V«)(a SSSA //(a, {e}((n)0)) A ax = 1 -> *({e}((n)0), (n)x) = 0)

~ (3a)(a ZR S A H(a, {e}((ri)0) A ax = 1 A a({e}(n)0), (n)x) = 0).

By writing (Vct)(ce¿B 5 a H(a, {e}((ri)0)) etc.) as (Ve) ({e}s is total etc.), one obtains

one four-quantifier form of i/3.5« relative to S. The other is obtained similarly from

the expression (3a)(a^RSAH(a,{e}((n)0), etc.). Hence H3^^RSm by Post's

Theorem.

Proof of theorem. Let ap = v. Suppose neO\ We prove by induction on |«|

that Hn is recursive in ac for all c such that p^c^q and {y : p^y^q} is not well

ordered. For n= 1 this is true by Theorem 2.2 since Hl = v. Suppose it is true for n.

We will show that it is true for m = 2n. Given c such that/j^c^^ and {y : p^y^c}

is not well ordered, we must show that //„ is recursive in ac.

If {y : p^y^c} is not well ordered, then it has order type wx-(l+r¡) + a' where

a'<cü!. Choose d<c such that {y : p^y^d} and {y : d^y^c} are not well

ordered. Then by the hypothesis for n, HI is recursive in ad. Hence H„ = (Hn)' is

recursive in (aa)' = o:2a. Since 2d<c, a2d is recursive in ac. Using the transitivity of

recursiveness we obtain that HI is recursive in cec.

Now suppose n = 3-5e eO\ Let f(i) = {e}v(i) and suppose that for each /, HJm is

recursive in ac for each c such that p=^c=^q and {y : p^y^c} is not well ordered.
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Given c such that p^c^q and {y : p^y^c} is not well ordered, we must show

that 773 5« is recursive in ac.

Pick d such that d<c and {y : p^y^d} is not well ordered and {y : d^y^c}

is not well ordered. Then for each i, 77/(0 is recursive in ad; so by the relativization

of Enderton's lemma to v, H3.5' is recursive in (ad)'" = ag where d<g-<c, \g\ = |a*+4|.

Since g<c, it follows that 773.5e is recursive in ac.

By induction on \n\ it follows that for any c, p^c^q with {y : p^y^q} not

well ordered, 77„ is recursive in ac for all n e 0\ Hence everything hyperarithmetic

in a,, is recursive in ac, which proves the theorem.

Note that Theorem 2.5 is also a consequence of Theorems 2.2 and 2.4 if oí\ = a>x-

For the case where wx > œx we need the proof given.

A particular consequence of Theorem 2.5 is that if aeO* — 0 and H (a, a)

Aa1 = l, then every hyperarithmetic set is recursive in a, and so a is not hyper-

arithmetic. Hence the statement '(Va)(a e O)^ (3a)(77(a, a) A ax = l))' cannot be

proved solely by the SJ axiom of dependent choices, for it does not relativize to O*.

This explains the earlier remark about the difference between this section and

section one.

We now consider a completeness property of functions in a hierarchy. Suppose

a e 0* — 0 and 77(a, a). Say that a has a gap if there exists a function ß with the

following properties: (a) for allj^a, aySH ß or ßSit «y', (b) f°r aU y^a, ß^H ay;

(c) ß$„ax, aa^Hß.

Note that if ß has these properties with respect to a, then either (1)

{y : y < a a ß S„ ay) = A

is nonempty and has no least element, or (2) A is nonempty and has a least element

3 ■ 5e which is the first element of its equivalence class. If (2) is the case we have that

for each », a{eKn)SHß, ßSHa3.s', but cc3^^Hß.

Now we show

Theorem 2.6. If aeO*-0, Q(a, a) and (\ly)(y^a^ ßSH «„ or ay SH ß), then

either ax ¡:H ß, or aa Sh ß, or ß = H ay for some y^a. Hence a has no gaps.

Proof. It is sufficient to show that (1) —> —¡Q(a, a), and (2) -*■ —¡Q(a, a).

Suppose (1) holds. We claim A ={y : y^aAßSü «J- Clearly

A 2 {y : y ^ a A ß SR ay}.

Suppose ye A. Since A has no least element, by Theorem 1.8 we can choose

y' <y, y' e A,so that {u : y'^u^y} is not well ordered. Since / e A, it follows that

ßSH <v. By Theorem 2.5 and the choice of y', everything is hyperarithmetic in ay.

and hence ß is recursive in ay. This shows A^{y : y=^aAßSR <*y} and so

A = {y : y ^a A ß SR<Xy} = {y : y<a A {e}a SR ccy},

where e is some Gödel number of ß in a. This shows that A is arithmetic, a fortiori
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hyperarithmetic in c¡. Since A has no least element and A^{y : y^a} we have

-^Q(a,a).

Suppose (2) holds. Note that if H(a,a), b^a and we let ab(x, y) = a(x, y) for

xs^b, a"(x, y) = l for x%4b, then H(a", b) and ab ¿H a. If a" is the only hierarchy for

b with aï = ax and a" SH a we would have

(a3.B.(«) = 0^>(3u)(v ¿h^a H(v, {e}((n)o) A ., = «! A KW((«)o>, 0»)i) = 0))

<-» ((Vv)(v SH ß A H(v, {e}(n)0)) A^-«,-* K{«K(«)o), (»)i) = 0)).

Since a! SH «{eKD =jí A the above equivalences show that a3.6« e Xl\m and that

«3.5» e Si<Ä), respectively, i.e. a3^^Hß which contradicts (2). Hence there exist

c, S such that v¿H a, 8^Ha for some b^a, H(v, b), H(8, b), and vx = ox=ax, but

v^S. Let Dv.d = {y : y^b Avy^Sy}. Dv,6 has no least element since v and S are

hierarchies with the same initial function, and the least element of /)ViS could not

be a successor or a limit. Z)v>„<={_y : y^a} and Dv,ôtsHa- This shows —i<2(a, a).

So (2) -> —, ô(a, a), and the proof of the theorem is complete.

Corollary 2.7. If Q(a,a), Q(ß, a), ax=ßx, b^a, and ab^ßb, then ab-$Hß,

Proof. We have seen that a" (respectively ß") is the only hierarchy for b which is

hyperarithmetic in a (respectively ß). Since ab = Ra", ßb = R ß", and ab =£ßb -» ab + ßb,

it follows that j8„^H a, a„^.H ß. We will use this corollary in the proof of Theorem

2.11.

Corollary 2.8. IfQ(a, a) then (i) ifb<a, b $ E(a) then ab is a greatest lower bound

in hyperdegree for the hyperdegrees of the functions of the set {ay : b^y^a and

{u : b^u^y} is not well ordered}; (ii) i/3-5e=^cî and 3-5e is the first element of its

equivalence class, then a3¡><¡ is a minimal upper bound in hyperdegree for the hyper-

degrees of the functions in the set {a{eKn) : n e cu}; (iii) suppose that As{y : y^a}

has no least element, that y e AAy^z^a-* ze A and that B = {y : y^a} — A has

no greatest equivalence class (one might say in this case that the sets A and B define

an irrational cut in {y : y^a}), then the hyperdegrees of the functions in the set

{ay : y e A} have no greatest lower bound, and the hyperdegrees of the functions in the

set {ay : y e B} have no least upper bound.

Proof, (i) Suppose that ifè^j and {u : b^u^y} is not well ordered then ß^H <*„.

The first assertion will follow if we can show that ßfiHab. If B = {y : y^aAß^H ay},

then B^{y : b^y^aA{u : b^u^y} is not well ordered}. If equality holds then

B has no least element and by the argument of the theorem, BfíHa. Hence

—iQ(a, a). Therefore the inclusion is strict and so there must exist c^a such that

ßeü ac and either c^b or {« : b^u^c} is well ordered. In either case it follows

that ßeHab- 00 This result is the contrapositive of the implication ' (2) -> —, Q(a, a) '.

(iii) If v is a greatest lower bound in hyperdegree for the hyperdegrees of the

functions of the set {ay : y e A} or a least upper bound in hyperdegree for the
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hyperdegrees of the functions of the set {ay : y £ A}, then A={y : y^aAßS» ay)

which the proof of the theorem shows is impossible.

The following extracts a hierarchy free statement from this result. We here

abbreviate 'hyperdegree' by 'h-deg'.

Corollary 2.9. Suppose ojx = ojx and all hyperarithmetic sets are recursive in a.

Then there exists a densely ordered set of h-degs C all less than the h-deg of a and

such that the h-deg of the hyperarithmetic sets is in C, and any h-deg less than some

h-deg in C and comparable to each member of C is equal to some member of C.

Proof. Let Sa = {b : b=$aA(lß)(Q(ß, b)Aßx = 1 Aß is recursive in a)}. Since

all hyperarithmetic sets are recursive in a, it follows that Sa=>{b : b^a} n O. By

the argument of Theorem 2.1, there exists be 0* — 0 n Sa. The corollary follows

immediately from this and Corollary 2.8.

Corollary 2.10. Suppose a has minimal hyperdegree. Then if yeO not all

hyperarithmetic sets are recursive in Hy.

Proof. If a has minimal hyperdegree then certainly wf = wx. Hence Corollary

2.10 follows from Corollary 2.9 applied to H¡.

The hypothesis in the preceding is known to be nonvacuous according to a

result of Gandy and Sacks (informally circulated notes).

So far we have concentrated attention on properties of individual solutions of

Q(a, a) for a e O* — O. We now study pairs of solutions a, ß of such. Let (a u ß)(x)
_ 2«(jc) . y(.x)

Theorem 2.11. (i) Suppose aeO*-0 and (3a)(g(a, a) A ax = 1). Then

(3a)(3j9)(0(a, a) A   Q(ß, a)Aax=ßx =  lAa^ßA wax»B = cox).

(ii) Suppose Q(a,a)A Q(ß,ä)Aax=ßx = l, a^ßAwluß = ojx. Let

Da,B = {y ■ y < a a ay ^ ßy}.

Then for no function v do we have (1) >?=^aA.y ̂  Dae-> aySH v, and (2) vSh a, and

(3) vSh ß- Hence a and ß have no greatest lower bound in hyperdegree.

Proof, (i) If (3 ! a)(Q(a, a)Aax = 1) then this a is hyperarithmetic. So if a e O* — O

and (3a)(ß(a, a)Aa1 = l) then (3a)(3ß)(Q(a, d)A Q(ß, d)Aax=ßx = l Aa^jS). By

Gandy's Basis Result [6] we can choose a and ß so that a u ß < H O and hence

wfJß = o>x. (ii) Suppose v has the property that vSH a, and if y^a and y $ Da¡8,

then ay^H v. We will show that for some zeDaS, olzShv- This shows v^Hß

since, by Corollary 2.7, a^%H ß if z e Da ß.

To prove that such a z exists it is sufficient to show that there exists v SH v such

that if y^a and y $ DaJ3 then ay£sv'. For if v has this property and for no

ze Dae is (XzSrv'Shv, then Daiß = {y : y^aAaySRv'} and hence D„ißSHa, and

—, Q(a, a), since Dae has no least element. Hence if such a v' exists, then there exists

a z with the desired property.
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To prove the existence of v' we proceed as follows. Since (VyXy^aAy $ Da.ß

-*■ «¡/ =H v),

(1) (yy)(y <aAy£ Da.g -> (3e)(3M)(w eO'A {e}ä = ay)),    8 = tf».

Ar.« ^HaKJ ß, and v^HaU|3;sowe can write (1) in the form

(2) (Vy)(3e)(3u)P(y, e,u,aU ß),

where the expression P(y, e,u,au ß) is Tll-auß. Hence

(3) (3Q(Í ÚH « u ß a (Vy)P(y, i(y)0, i(y)x, « u ß)),

,..   &m =h « u j8 A (Vv)(j < a a y £ /)«,„ -► £O0o eO'A {Ç(^)i}* = «,)),

W S = flg^

We claim that for some u' e 0\ if y^a and y $ Da ßthen \í(y)0\ á|«'|. Otherwise

0'íH(iUj3 which contradicts the fact that wfui=<%. For Ov is trivially ni-aufi

since v^H aU ß. If the range of £ is unbounded in Ov then we would also have

O'eSI1""'1, for then

(5)   fle0vH({z:z^o'»} is linearly ordered by ^0' A (3y)(3f)(y =^ a

A y i Da.g a fis an isomorphism of {z : z =^0v «} into {z : z =^0V £(>0o}))-

So for some»' e 0\ ifj^aandj <£ /)a-/, then |£(j0o| Ú \u'\. Hence by the property

(4) of I, if y^a and y $ DaJ, ay^R H^ so we can take v' = H^. This completes the

proof.

Our next theorem is related to the classical result that any uncountable analytic

set of real numbers contains a perfect subset. For a given SJ set 5 of number-

theoretic functions containing a nonhyperarithmetic function, we obtain the

existence of a subset T of S which has the cardinality of the continuum and such

that any two distinct members of T are hyperarithmetically incomparable. Let

a nHß = {v : viHaAv^Hß}.  Let ar\Rß = {v : v^RaAv<,Rß}.

Theorem 2.12. Let R be recursive. Suppose (3ß){3v)(\l x)(R(ß(x), i>(x))Aß$ HA).

Then there exists Dc{ß : (3v)Qtx)R(ß(x), i>(x)) A ß $ HA), such that D = 2*o, and

a,ße D, a£ß^anHßcHA. If a<£ HA, there exists ß e D, such that ß<HOa

A a C\H ß^HA.

Proof. First we prove a slightly weaker result. Then we strengthen it to the

conclusion of Theorem 2.12. The proof makes no use of hierarchies.

Theorem 2.12'. Let R be recursive. Suppose (3ß)Cix)R(ß(x)\ ^(3ß)HA(Vx)R(ß(x)).

Then there exists a set  C<={ß : (^x)R(ß(x))} such  that C=2*>, and a, ß e C,

a^ß^anRß^HA.

Proof. Let TR = {s : (3ß)(ß=>s A(yx)R(ß(x)))}. Note that for any function ß,

(Vx)R(ß(x))^>(Vx)(ß(x)eTR). We will construct a subset T'R of TR such that

C = {ß : Qfx)(ß(x) e T'R)} satisfies the conclusion of Theorem 2.12'. We will define
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TR-={s : (3«)(3r)0 e Tn As<=/)}. The sets Tn will have the following properties:

(i)T0={l}.(n)fn = 2n;teTn implies there exist tx, t2eTn + x, tx^t2, tx=>t, t2=>t;

Tn c TR. (iii) If s, t e Tn, s# t, and n^m then

(Va)(V/3)(a => SAß => tA(Vx)R(ß(x))

A Cix)R(a(x)) A {(m)0Y = {(m)xy^{(m)oYeHA.

Suppose we have constructed the sets Tn with these properties and defined C as

above. Clearly C=2*° by (ii), and CçijS : (Vx)R(ß(x))}. Suppose a, ß e C and

a^ß. Let m be an arbitrary integer. Let « = max (m + l, pk(a(k)^=ß(k))). Then by

(ii) and choice of«, there exist s, t e Tn, such that s^t and d(lh(s))=s, ß(lh(t)) = t.

Hence by (iii), {(m)o}a = {(m)xy -> {(m)oy e HA. Since m was arbitrary we must

have a nRß^HA.

The sets Tn are defined inductively. For each t e Tn we choose tx,t2e TR such that

fi3*» *a3*> and tX7ét2. This is always possible since 7? has no hyperarithmetic

solutions. Call the resulting set T'n. We now need the following lemma.

Lemma. Given a triple of integers <s, t, my where s, t eTR and m is arbitrary, we

can find a triple <s', t', m) such that s ̂ s' eTB,t<=-t'e TR, and

(Va)(V/3)(a => s' A ß => r' A (Vx)(7?(â(x)) A *(j8(x)))

A {(m)o}a = {(m)xY -* {(m)oT e HA).

Assume the lemma holds. Fix some list of the triples <s, t, my with s,teT'n and

mSn+l, and apply the lemma to the first triple in the list <w, v, k} to obtain a

new triple <ju', if, k; satisfying the underlined property with respect to (u, v, k}.

Then replace all occurrences of u and v in triples in the list by «' and v' respectively.

Now apply the lemma to the second triple in the modified list and make the

corresponding replacements. If we repeat this process until we have come to the

end of the list, the set of sequences obtained will form a set Tn + x with the required

properties (ii) and (iii).

Proof of Lemma.

Case 1. (\/a)(Vv)(a^sAv^sA(Vx)(R(á(x))AR(v(x))){(n)o}a, {(«)0}v are total

->{(«)0}a = {(n)0}v). Then if a=>sA(Vx)R(d(x))A{(n)oy is total, then {(n)oy is

hyperarithmetic since

{(n)o}a(x) = y^CyvYy 3 s A Qtx)R(P(x)) A {(n)0y is total -> {(n)0y(x) = y).

Let s'=py(y e TRAy=>s), t'=pz(ze TRAz=>t).

Case 2.

(3M)(3a)(3jS)(a =>s A ß^s A (Vx)(R(d(x)) A R(ß(x)) a {(n)oy(u) * {(n)0}B(u))).

Choose u with this property. If for all t"=>t, t" eTR, {(«)}'"(«) is undefined, then

define s' and t' as in Case 1. Otherwise choose p,qeTR so that s^p, s<=q, and

{(n)o}p(a)ji{(n)oy(u). Let f = py(y=>t Ay eTRA{(n)x}y(u) is defined). Let s'=p if
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{(«)0}p(m)/{(«)i}!'(w); otherwise let s'=q. In either Cases 1 or 2, s' and /' satisfy the

conclusion of the lemma.

This completes the proof of Theorem 2.12'.

We now complete the proof of Theorem 2.12. Write

a$HA^ (3v)Cix)N(i>(x), á(x)) ;       H(a, a) <-> (3v)(Vx)H(â(x), v(x), a)

whence H and N are recursive.

FixaeO*-0. Let

B = {y : y ^ a A (3a)(3ß)(3v)(38)yMx)(\lu)(^v)H(a(x), ß(x), y)

A N(á(l, u), v(u)) A R(d(l, v), 8(v))}.

B e H{, and B=>0 r\{y : y^a} which is a 11} path through O and so a proper 11}

set. Hence there exists b e B n 0* — 0.

Let

F = {/: (Vx)(H(f(x)0J(x)x, b) A N(f(l, x)0,f(x)2) A R(f(l, x)0,f(x)3))}.

By Theorem 2.12' we can choose C<=F, C=2"o, with the property that/ geC,

f¿g^fnRg^HA. Let D = {h : (3f)(fe CAh = Xxf(l, x)0)}. Clearly

D S {h : (3f)Cix)R(h(x),f(x)) A h £ HA}.

We will show that D = 2«ot and that h,je D, h+j^h nHj<=HA.

First note that if / g e C, f^g, then Xxf(l, x)0i=Xxg(l, x)0. For if Ax/(1, x)0

= Xxg(l, x)0 then Xxf(l, x)0 áfl g and hence Xxf(l, x)0 e HA since figeC and f^g.

But/e C implies Xxf(l, x)0 <£ HA, so we must have Xxf(l, x)0^Xxg(l, x)0. Thus

C=D=2«°.

Suppose h,j e D, hj=j. Choose figeC such that Xxf(l, x)0 = h, Xxg(l, x)Q=j.

Since Xxf(x)0 and Xxg(x)0 are hierarchies on b e 0* — 0 with initial functions

Xxf(l, x)0 and Xxg(l, x)0 respectively, it follows that everything hyperarithmetic in

Xxf(l, x)0 is recursive in/ and everything hyperarithmetic in Xxg(l, x)0 is recursive

in g. Since figeC and fj=g (else h=j), it follows that fnRgÇ:HA. Hence

Xxf(l, x)0 nH Xxg(l, x)0zHA, i.e., hr\Hj^HA as desired. Thus D satisfies the

first part of the conclusion of the theorem.

Proof of second part. Suppose v $ HA. Let TR- be defined as in the proof of

Theorem 2.12'. Let f0=l. Given tn_xeTR\ we let tn=py(y e TR.Ay=>tn-x A (3«)

({(ri)0}y(u)^{(n)xY(u))) if such a y exists, otherwise tn = py(ye TR. a y =>tn-x).

Under the first alternative, {(«)0}5^{(«)i}v if ß^tn. Under the second, if ß=>tn,

and ß is a path through TR- then, by the argument of Case 1 of the Lemma of

Theorem 2.12', {(ri)0}s is hyperarithmetic if it is total, or {(«)i}v is not total.

Define 8 by the conditions 8~(lh(tn)) = tn for each n. 8 is arithmetic in TR. u v,

and S is a path through TK. Moreover, for each n, {(ri)0}6={(«)i}v -*■ {("W e HA.

Hence S r\RvçHA.

Let v = 0a, and apply this construction to the set F defined in the proof of the
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first part of the theorem. One obtains feC-F such that fr\R Oa^HA and

fSH TR u O". We will show that Xxf(l, x)0 satisfies the second part of the conclusion

of Theorem 2.12.

Since everything hyperarithmetic in Xxf(l, x)0 (resp. a) is recursive in/(resp. Oa),

and fnB0"c HA, it follows that Xxf(l, x)0 r\HaçHA. Since fe C, it follows

that Xxf(l, x)0 e D. It is not hard to show TR. can be defined recursively in O.

Using this fact we obtain Xxf(l,x)0<HfSHTR\JOa = HOKJOa = HOa. This

completes the proof(3).

Corollary 2.13. If [a] is any hyperdegree which contains some function a in

which all hyperarithmetic sets are recursive, and, in addition, 0 < [a] < 0', then we can

find a hyperdegree [ß] with 0<[ß]< 0' and [a] n [ß]=0, [a] u [ß]=0'.

Proof. Choose aeO*-0 such that (3ß)riv)(Vx)(H(ß(x), v(x), a) Aß(l, x)0 = l).

By Theorem 2.12 we can choose a ß with this property, and, in addition, a nH ß

£77,4, ß<HOa = H O (since a<H O). Since aeO*-0 and ß is a hierarchy for a

with initial function identically one, all hyperarithmetic sets are recursive in ß.

Hence HAÇa nB/3sa nHßzHA, i.e., anBß=HA. But then it follows that

OSj,oUi9 since by Spector's Theorem [15] we have for suitably chosen recursive

S: neO<^rû8)HA(ix)S(n,^(x))^(3m)(3k)({m}a,{ky) are total and {m}a={k}ß

A (Vx)S(n, {m}a(x)). This shows O is arithmetic in a u ß. Since a, /? < H 0, we must

have 0 = H aU ß. Hence the hyperdegree of the function ß has the properties

required by the theorem.

This corollary answers a question of Sacks and Thomason.

We conclude with two disparate remarks. First, all results in this paper relativize

to pseudo-a-well-orderings, where a is an arbitrary function. In particular, by

relativization we obtain for each hyperdegree a the existence of a densely ordered

set of hyperdegrees whose first element is a and which has the maximality property

of Corollary 2.9 so that a is the greatest lower bound of the hyperdegrees of this set.

Second, the main open question on hierarchies is whether Cia)(a e O*

->■ (3a)H(a, a)). By our remark following Theorem 2.5 this result cannot be proved

solely by means of the Si axiom of dependent choices even for O. Hence, a solution

to this question would probably require an interesting new method(4).
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