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1. Introduction. Let (Q, F, P) be a probability space, and let {F(t),teT},

where T is some (possibly infinite) interval on the real line, be an increasing family

of sub-sigma-fields of F. Let X={X(t), F(t), t eT} be a martingale, and v

={v(t),teT} a stochastic process where v(t) is measurable F(t) for each /.

Stochastic integrals of the form jA v(t) dX(t), A<=T, have long been studied under

various hypotheses on v and X. Early studies considered such integrals in the case

where X was Brownian motion, while a general theory of such integrals was begun

by Doob in [4]. More recent contributions to the theory may be found, for example,

in Meyer [6] and in Courrège [3]. Common to these, and to other published

works on the topic, is the hypothesis that the martingale X be square integrable.

In the present paper, we remove the hypothesis of square integrability and develop

a theory of stochastic integrals where the martingale may be only Lp integrable,

lS/xoo. An independent study of stochastic integrals for nonsquare integrable

martingales has been made by P. A. Meyer [8] using other methods.

The approach presented here depends on the concept of a martingale transform,

discussed by Burkholder [2], and defined as follows. Let {Fn, n=0, 1,...} be. an

increasing family of sub-sigma-fields of F, /={/„, Fn, n= 1, 2,...} a martingale,

and v={vn, n= 1, 2,...} a stochastic process (called a multiplier sequence) with v„

measurable Fn_x. Let dx=fx, d2=f2—fx,_ Then g={g„, n = \, 2,...} is the

transform of / under v, provided that gn = 2 vkdk. Suppose now we are given a

continuous parameter martingale X={X(t), 0¿r<oo}, and v={v(t), 0^f<oo} a

step function defined by

v(t, a.) = 0, t < ax,

' = v(j, w),       a, è t < aj+x,

= 0, anú t,

where ax< ■ ■ ■ <an, and v(j) is measurable with respect to F(ay). Then the stochastic

integral J v(t) dX(t) may be defined in this case to be

2vU)inai+1)-X(ai)].
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This expression, of course, closely resembles the martingale transform just defined.

The basic idea of the present paper, then, is to regard the stochastic integral as,

more or less, a species of martingale transform. This point of view makes available

for us the martingale transform theory developed in [2].

In §2 we establish the existence of J" v(t) dX(t) as a limit in LP norm, 1 <p<co,

whenever the martingale X satisfies supier £|A'(f)|p<oo, and v satisfies certain

other hypotheses. In §3, an analogous result is established for Lx martingales, the

integral this time being a limit in probability, and, in general, not necessarily an

element of Lx. Extension of this theory to interval parameter sets other than [0, oo)

is routine.

§4 discusses the processes Y-{Y(t), 0^f<oo} where T(f)=Ji0 v(s)dX(s).

Under certain hypotheses on v, it is shown that if 1 <p< oo and if the martingale X

satisfies E\X(t)\p <co for each f, then the process Y is also a martingale with

E\ Y(t)\"< oo. It is worth pointing out that, although results of this nature have been

known for p = 2, they have not been established even for p > 2. In case X is an Lx

martingale, the Y process satisfies an upcrossing inequality, and, in fact,

limt^co Y(t) exists a.s. and is finite. In §5 the results of §§2, 3, and 4 are extended to

include stochastic integrals defined by more general step functions than the ones

previously introduced, and a much wider class of processes that may serve as

integrands is thereby found. lfl<p< oo, and X is an Lp martingale, a norm on the

step functions is found with the property that the step functions converge in the

sense of this norm if and only if the corresponding stochastic integrals converge in

7_p norm.

§6 considers martingales X={X(t), t e [a, b]} which have continuous paths.

Let (irm), where irm={tmk : a^tmX< ■ ■ • <tms^b} be a sequence of partitions of

[a, b] with limm^œ max, [tmj+x — tmJ]=0, and define Sm(X), the quadratic variation

of X corresponding to 7rm, by

S2(X) = [X(tmX)]2 + [X(tm2) - X(tmX)Y +■■■+ [X(tm.) - X(tm,t. x)f.

Then, if \<p<co, we show linim-.«, Sm(X) = S(X) in Lp norm, if X is an Lp

martingale, and as a limit in probability if p= 1. This generalizes part of a result

known to be true if X is Brownian motion. In fact, it is even true that there exist

positive constants A7P and Np, depending on p only, such that if 1 <p< oo, then

MpES(xy g EX(by <> NpES(xy.

A result of Fisk [5] to the effect that, if X has almost all paths continuous and of

bounded variation, then P{X(t)= Xi$$), t e [a, b]}= 1, follows from this inequality.

§7 develops a theory of quadratic variation for martingales having a.s. right

continuous paths. This theory is applied in §8 to give a martingale integral which in

some ways improves that of §§2, 3, and 5.

Throughout this paper a stochastic process X={Xit), te T} will be called Lp

bounded if sup, E\X(t)\p<co. If A'(f) is measurable F(f) for each f, the process X
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is said to be adapted to the F(t) family. It will be assumed that T, the parameter

set for the martingales discussed below, is the interval [0, oo), unless specified

otherwise.

2. Stochastic integrals for Lp, l<p<oo. We define an extended t — <o step

function v={v(t), te [0, oo)} as follows. If0^a0<ax< ■ ■ -, (where an may approach

oo), then

v(l) = "CO   forOj ^ t < aj+x

where v(j) is measurable F(a,). The integral of the step function v with respect to

the martingale ^={^(0, F(t), 0^r<oo} is

(1) Ii(/){*fe+i)-*fe)]
which will be denoted by J" v(t) dX(t). If X is Lx bounded, and supier \v(t)\ <oo,

then the expression (1) is well defined almost surely by Theorem 1 of Burkholder

[2], If X is Lp bounded for some p,i<p< oo, and if v is uniformly bounded, then it

is well defined as both an a.s. and Lp limit by [2, Theorem 9].

If z={z(t), t e T} is a real, separable process, we define the e—s norm of z by

W._. = E™ SUp \z(t, »)|«.

An important special case is z(t, w)=z(t), where the e-s norm reduces to the

supremum norm.

The space of bounded, extended t—to step functions is a vector space. We shall

be interested in the completion of this vector space under the e—s norm. In this

vein, we state without proof the following simple proposition.

Proposition 2.1. Ifv={v(t), t e [a, b]} is a uniformly bounded stochastic process

adapted to the F(t) family and having a.s. continuous paths, then v is in the e—s

completion of the t—co step functions.

All theorems in §§2 through 4 will be proved for processes v in the e—s com-

pletion of the space of t—to step functions. In §5, more general step functions will be

introduced with the purpose of extending the class of processes v which can serve

as integrands in the stochastic integrals.

Lemma 2.2. Let X={X(t), F(t), t eT} be an L4 bounded martingale. Let

vn={v„(t), t eT} be a sequence oft — to step functions converging in e — s norm. Then

the sequence of integrals j vn(t) dX(t) converges in L2 norm.

Proof. Let the step functions vn have the representation

vn(t) = vn(j)   forani g t < anJ+x,

and let 8n be the integral of vn with respect to X. Then

E[6m-8n]2 = E\Z{vn(j)-vm(j)}{X(al+x)-X(a,)}]2
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where the partitions of the line corresponding to vn and to vm have been inter-

meshed and relabeled. This is equal to

42 {»»(/) - VrÂJ))2{Xiai + ù - Xia,)}2]

^ £[sup \vnU)-vmiJ)\22{Xiai + x)-Xiaj)}2^

g 7s(1'2>sup \vnU)-vJU)\*£iimlIlWai*i)^(ai)}'V

S N4vn-vml*-¿am\X(°°)\4

where the last inequality follows from Burkholder's Theorem 9 [2], with p equal to

4, and where A^oo) is equal to lim^« X(t).

Remark. While Lemma 2.2 may appear weaker in certain respects than the

known results for L2 martingales, it nevertheless has the virtue that the properties

of the step functions vn are formulated independently of the martingale. This will

be important for the following theorems.

If, in Lemma 2.2, vn -> v in e—s norm, we will denote the limit of the sequence of

integrals j vn(t) dX(t) by J" v(t) dX(t). This random variable, as a limit in L2 norm,

is defined uniquely (except for an w-set of probability zero) and is independent of

the sequence of vn chosen, since two sequences converging to v in e - s norm can be

combined to form a single sequence which converges to v, with the corresponding

sequence of step function integrals converging in L2 norm. This lemma thus allows

the definition of stochastic integral to be extended to all processes v of finite e-s

norm, which are limits in e-s norm of t-w step functions. By Proposition 2.1,

the uniformly bounded, adapted, a.s. continuous processes belong to this class

whenever the martingale is restricted to a compact interval.

Theorem 2.3. Let \<p<co. Let X={X(t), Fit), te T) be an Lp bounded

martingale, and let v = {v(t), teT) be in the e — s closure of the t — a, step functions

with \v(t, tu) | ^ 1. Then J v(t) dX(t) exists in the sense of an Lp limit. More precisely,

if vn is any sequence of t — a, step functions converging to v in e — s norm, then the

integrals j vn(t) dX(t) converge in Lp norm to a (unique) limit, denoted by J v(t) dX(t).

Remark. The condition \v(t, o>)\ ̂  1 can be weakened, as Theorem 2.4 shows;

the price paid for this is that convergence of J vn(t) dX(t) takes place in a weaker

sense.

Proof. We recall the following fact, due to Burkholder [2, proof of Theorem 9] :

there is a constant Np depending onp only, 1 <p <co, such that iff=(fx,f2,...) is a

martingale, and v=ivx, v2,...) is any multiplier sequence with supn \vn\ é 1, then

(2) E\gn\p g NpE\fn\"

where g=igx, g2,...) is the transform of/under v.

Assume first that 1 <p á 2. Since Xis Lp bounded for some/?, 1 <p< oo, it follows

that X has a last element ¿Xco), and in fact, X(t) = E{X(co)\F(t)}. For each
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integer n, let /„ be the indicator of the interval [-«, n], and set Xn(co) = X(oo)In

° X(oo), where "°" denotes composition of functions. Define, for each n, a uni-

formly bounded martingale Xn = {Xn(t), teT} by Xn(t) = E{Xn(oo)\F(t)}. Let vm

be a sequence of step functions, \vm(t, <J)\ ̂  1, converging to v in e-s norm; let

{tmk}, such that 0^rml<fm2< • • -, be the partition of [0, oo) corresponding to vm.

Let 8% be the integral of vm with respect to Xn :

(3) 61 = 2 vm(tmk)[Xn(tm¡k + x) - X\tmk)].
k

Since Xn is uniformly bounded, it follows from Lemma 2.2 that

(4) lim 81 = ¡v(t) dXn(t) = 8n
m-» oo J

in L2 norm, for each n. Here we have used the fact that the e—s norm convergence

of the vn does not depend on the particular martingale being transformed. Moreover,

since 1 <p^2, the convergence takes place in Lp norm as well. However,

(5a) lim 81 = £ vm(tmk)[X(tm¡k + x) - X(tmk)]
n-.» k

exists in the sense of Lp convergence, and in fact, the convergence is uniform in m.

For

E\8'm-8'm\p = E\2 vm(tmk)[X'(tm,k+x)-X'(tmk)]-Z vm(tmk)[X\tm,k+x)-X>(tnk)]\v

= E\2 vm(tmk)[E({X>(co)-Xi(co)}\F(tm,k+x))

-£({Z'(o))-^(co)}|F(rmk))]|p.

The expression under the summation sign is just the transform, under vm(tmk), of

the martingale Y={Yk, k= 1, 2,...}, where

Yk = E{[X'(co)-X'(œ)]\F(tmk)}.

Hence, by (2),

E^-Sll» ZNpE\Y(co)\»

(5b) è NiE^co)-X'(po)\'

è Np \ 1^(00)1",       (assuming/ > y)

which is independent of m, and approaches zero as y and / increase, since A'(oo) is

Lp integrable.

It follows that, if vn is a sequence of t—to step functions bounded by 1 and

converging in e-s norm, then the sequence of corresponding integrals with respect

to X converges in Lp norm. For if 0r is the integral of vr with respect to X, we

have

\\er-es\\p ú R-fi?|,+ ||0?-tfï||,+ ||fl?-*.|,
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where ||/||p = [£'|/|p]a'1". Pick n so large that the first and third terms on the right

are each less than e/3. This can be done since (5a), (5b) imply that lim,,.,,,,, [p]0Tl = 0r

occurs uniformly in r. With n so chosen, pick r, s so large that the second term is

less than e/3, justifying this choice with the argument following equation (4). This

establishes the theorem for the case 1 </»í¡2.

Suppose next that X is an Lp bounded martingale, 2<p<co. If, for each n, Xn

is defined as before, and if 0£ is defined by (4), then Xn is a uniformly bounded

martingale, and limn,..«» 0\\ = 0n exists as an L2 limit, and thus as a limit in probabil-

ity. lfp'>p, then it follows from (2) that E\67)l\p'£Np.E\Xn(ao)\p', whence for each

n, the sequence |0£|p is uniformly integrable. Hence, for each n, limm_œ 0^ = 9"

occurs in the sense of convergence in Lp norm. We now have statement (4) for

2<p<co; the rest of the proof now proceeds as in the case l</>^2 already

discussed.

Next we will examine conditions under which the stochastic integral with respect

to an Lp martingale, 1 <p < oo, may be asserted to exist as a limit in Lx norm, when

the condition |u(f)|gl is not assumed. To do this we will need the following

lemma.

Lemma 2.4. Let 1 <p<oo, and let f=(fx,f2,...) be an LP bounded martingale.

Let v—(vx,v2,...)bea multiplier sequence satisfying

E(v*)q+0 < oo,

where t;* = supn |i7„|, (ljp) + (l/q)=l, and 8 is some positive number. Ifg=(gx,g2,. ■.)

is the transform off under v, then there exist constants p', r, R, depending onp and 8

only, with/>' > 1, such that

(6) »g,«! â II*.»,, è Ä||t,*||;+j/n||p.

Proof. Let p' = [p2(l + 8) - 8p]/[p2 + 8p - 8]. It is easily checked that if p > 1, then

p' > 1 ; and that we can assume 8 so small that/»' <p. By Theorem 9 of Burkholder

[2]

E\gn\p' Ú NP.ESn(gy è Np.E[(v*ysn(f)»']

^ Np.[E(v*yijll9'"'[Esn(fy,pjiip'">

where (l///) + (l/?")=l- Set p'' =p\p', so that q"=p"l(p"-\)=pl(p-p'), which

implies thatp'q" =p'pl(p-p')=pl(p-i) + 8. This yields

E\gn\p' ^ NPiE(v*y+°y-p')lp[Esn(fyY">

á [(Np.iMpyp,][E(v*y+ar-p,lp[E\fn\prip,

which implies the result.

The lemma obviously implies that the transform of an Lp (1 </?<oo) bounded

martingale under a multiplier sequence satisfying the given condition is uniformly

integrable.
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Theorem 2.5. Let l<p<co. Let X={X(t), t eT} be an Lp bounded martin-

gale, and let v be a process in the closure of the step functions under the norm

Eai2,,)supt \v(t, tü)|2fl, where (i/p) + (llq)=i. Then J v(t) dX(t) exists as an Lx

limit.

Proof. The proof follows the method of Theorems 2.2 and 2.3, and will therefore

only be sketched. First, with notation as in Theorem 2.2, one proves that

E[8m-8n]2 á N2pE™ sup \vn(j)-vm(j)\2,1E«»»\X(co)\2p,

which establishes the result for L2p bounded martingales (and, in particular, uni-

formly bounded ones). One then replaces statement (2) of the proof of Theorem 2.3

by statement (6) of Theorem 2.4, with &=q, and proceeds as before.

Remark. For a different method of extending the class of v which can be

integrated, the reader is referred to §5, and to §8.

Remark. The integral developed in this section (and also the integrals of §§3 and

5) will not necessarily be countably additive. For an integral that does better in this

respect, the reader is referred to §8.

3. Stochastic integrals for Lx. In this section we consider under what conditions

and in what sense stochastic integrals may be developed for martingales X which

are Lx bounded. Attempts to obtain them as Lx limits will be frustrated by the fact

that Theorem 9 of [2] does not hold in the present situation. In fact, there exist

a martingale X and a uniformly bounded sequence of / - to step functions vn which

converge to v in e-s norm, with the property that J v(t) dX(t) exists as a limit

(a.s.) but the limit is not integrable (see [2, p. 1495]). This is true even if Xis assumed

uniformly integrable. Thus, for the general Lx case, we must seek another type of

convergence instead of Lx convergence. We develop here a theory of stochastic

integrals wherein the integral is defined as a limit in probability.

Theorem 3.1. Let X={X(t), teT} be a martingale with a last element X(ao),

so that X(t) = E[X(oo)\F(t)]. Let vn be a sequence of step functions converging to

vine —s norm, and satisfying \ vn(t, to) | ^ 1. Then the sequence J vn(t ) dX(t ) converges

in probability to a (unique) limit denoted by J v(t) dX(t).

Remark. Choose ¿ satisfying 0<¿<oo. Let X be any martingale with param-

eter set [0, oo), and let vn and v satisfy the hypotheses of Theorem 3.1. Then

{X(t), t e [0, ¿)} is a martingale having a last element X(s~). If /(¿) is the indicator

of [0, ¿), then /(¿)t'n(i) is a step function which converges to I(s)v(t) in e-s norm.

The proof of Theorem 3.1 implies that j I(s)vn(t) dX(t), which will be denoted by

J0 vn(t) dX(t), converges in probability to J I(s)v(t) dX(t). This establishes for each

¿ the existence of j*0 v(t) dX(t). If 1 <p< oo, and if A' is a martingale in LP, then by

Theorem 2.3 j0 v(t) dX(t) exists as a limit in Lp norm. Although, in general,

JÔ v(t) dX(t) may not be integrable, nevertheless it is proved in §4 that if X is Lx

bounded, then lims-.a, Jô "(0 dX(t) exists, and we denote this limit by J" v(t)dX(t).
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Proof. As in Theorem 2.3, define for each n the uniformly bounded martingale

Xn={Xnit),teT} with Xn(t)=E{X(co)InoX(co)\F(t)} = E{Xn(co)\F(t)}, and

let 9^ = 2 vm(tmk)[Xn(tmtk + x)- Xnitmk)]. Since Xn is uniformly bounded, it follows

from Lemma 2.2 that

(1) lim 91 = ¡vit) dXn(t) = 0n
m-* oo J

exists as a limit in probability. Furthermore, for fixed m,

(2) Hm 91 = 2 vm(tmk)[X(tm¡k+x)-X(tmk)] = 9m

exists as a limit in probability, and the convergence is uniform in m. To see this, we

calculate

P{\9lm-9'm\ > X} = p{\Zvmitmk)[X>itm,k + x)-X'itmk)]

-^Vm(tnk)[X\tm,k + x)-X>(tmk)]\  >   A}

= P{\2 vm(tmk)[E{X>(<x>)-X>(co)\F(tm,k + x)}

-E{X'(co)-X<(co)\F(tmk)}]\ > à}.

The expression under the summation sign is just the transform under vm(tmk) of the

martingale Y={ Yk, k= 1, 2, 3,...}, where

Yk = E{X'(co)-X'(co)\F(tmk)}.

Hence, by [2, Theorem 6],

XP{\9'm-9<m\ > X} Z ME\Y(co)\

Í ME\Xl(co)~X'(co)\

^ A7 jA'(cxd)I       assuming/ >/
J{|X(cO)|>/>

For fixed A, the latter approaches zero as /, / increase, independently of m. There-

fore, if 9r is the integral of vr with respect to X, we have

P{\0r-0S\ > X} S P{\9r-9?\ > A/3}+7>{|0?-0?| > A/3}+P{|0?-05| > A/3}.

Pick n so large that the first and third terms are each less than e/3 ; this can be done

independently of r and s. After this is done, pick r and s so large that the remaining

term is less than e/3. Since A is arbitrary, 0T is Cauchy in probability, completing the

proof.

If one imposes slightly stronger conditions on the martingale X, then one can

actually obtain the existence of J v(t) dX(t) as an Lx limit. To see this, we prove the

following lemma.

Lemma 3.2. Let f=(fx,f2, ■ ■ ■) be a martingale which is Llog2L bounded;

(i.e. supn£|/„|[log+ |/n|]2<co) and let v=(vx, v2,,..) be a multiplier sequence
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satisfying supn \vn(to)\ ̂  1. If g=(gx, g2,...) is the transform of f under v, then the

sequence {gn} is uniformly integrable (and converges in Lx norm).

Proof. Referring to [9, Theorem 4.32, Vol. II, p. 118], let x(i/) = 0 for u^ 1, and

x(u) = u log u for m > 1. Then

<p(u) = u £ [(log t)lt] dt = (1/2)m log2 u.

Therefore, by the theorem just cited, if T is a quasi-linear operator,

j\Tf\ log+ \Tf\ ú KJV|[log+ \f\f + K.

Using the method of proof of [2, Theorems 9 and 10], we have

Jkn|l0g+kn|   á  ̂ J|/n|[l0g+  |/n|]2 + ̂

which implies the lemma.

Actually slightly stronger results are possible. For example, if one takes x(h)=0

if m < ee, and \(u) = « l°g 1°S M» if « > ec, then one can obtain an analogous result

assuming only that/is L log L log log L bounded.

Theorem 3.3. Let X be an L log2 L bounded martingale, and let v be in the e — s

closure of the step functions, satisfying \v(t)\-i. Then J v(t) dX(t) exists as an Lx

limit.

Proof. If vn is a sequence of step functions converging to v in e—s norm, with

\vn(t)\ S 1, then J vn(t) dX(t) converges to J v(t) dX(t) in probability, by Theorem

3.1. Since the sequence J vn(t) dX(t) is uniformly integrable, by Theorem 3.2, the

theorem is immediate.

We close this section by giving an alternate proof of Theorem 3.1 which may be

of some interest. Here we impose the additional hypotheses that X have right

continuous paths, and that the family {F(t)} be right continuous. The proof rests

on the Krickeberg decomposition of martingales, and on the Meyer decomposition

of continuous parameter supermartingales [6]. Assuming that X is an Lx bounded

martingale with right continuous paths, we prove J v(t) dX(t) exists as a limit in

probability. Since X is Lx bounded, we can write X=X' — X", where A", X" are

each nonnegative martingales (the Krickeberg decomposition). Therefore, in

proving the theorem, it suffices to consider only nonnegative martingales, since if

this case is proved we can obtain the general case by linearity. With these assump-

tions, define Xn(t) by A'n(i) = min [X(t), «]. Then Xn = {Xn(t), t e T} is a uniformly

bounded, right continuous supermartingale and, as such, has the decomposition

Xn(t) = Mn(t) + An(t)

where M"(t) is an L2 bounded martingale, and A"(t) is an L2 bounded increasing

process (consult Meyer [7, Chapter VII]). Let vm be as in Theorem 3.1, and let
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9\\, ß{\, «£, denote respectively the integrals of vm with respect to Xn, Mn, and An.

Then 0^=^ + a„. From Theorem 2.3, limn,..«, ß{\=ßn in L2 norm; and since

An(t) is L2 bounded and increasing, limm^oo a^=an in Lx norm whenever vm ->■ v

in e—s norm, \vm\ ̂  1. Hence, 9% -► 0n in T^ norm. Also, by the definition of Xn,

0m = 0m on tne set {SUP( 1^(01 <7'}> assuming k>j. Therefore, lim*...,, 0£ = 0m in

probability, and, in fact, the convergence is uniform in m, since

P{\9m-9km\ > e} g Pfsup \X(t)\ > kjg supE\X(t)\/k.

Also,

P{|0m-0„| > e} ̂  P{|0m-0*|  > el3}+P{\6*-0*\ > e/3}+P{|0Ji-0n|  > e/3}.

One then chooses k so large that the first and third terms are each arbitrarily small;

and, with k so chosen, one then finds m and n so large that the middle term is

arbitrarily small. Thus {9m} is Cauchy in probability, which establishes the result.

4. Martingale transforms. The preceding sections establish, among other things,

the existence of JÓ v(s) dX(s) for every f, 0^f<oo, under various hypotheses on X

and v. The process Y={Y(t), 0<f <oo} with Y(t)=j0v(s) dX(s) will be called a

martingale transform ; in case the martingale A' is a discrete parameter martingale,

this definition coincides with that of [2]. In this section we examine some properties

of these processes.

Theorem 4.1. Let \<p<co. Let X={X(t),0^t<co} be a martingale with

E | X(t ) | p< oo for every t. Let t;={t>(f), O^f <oo} be a process in the e—s closure of

the step functions, with \v(t, <o)\ ̂  1. Then

(a) Y is a martingale in Lp,

(b) E\ Y(t)\p^MpE\X(t)\p, A7P depending only onp,

(c) Y is Lp bounded if X is.

Proof, (a) Let vn={vn(t ), 0 ^ f < oo} be a sequence of step functions bounded by

1 and converging to v in e—s norm. Then lim,,..«, Yn(s)= Y(s) in Lp norm, where

Y*(s)=j'0 t;n(f) dX(t). If A e F(s), and s<sx, then JA Yn(s) dP=(A Y(sx) dP. Let

n ->• oo to obtain JA Y(s) dP=$A Y(sx) dP, which implies y is a martingale. The

bound in (b) is true if v is a step function, by [2, Theorem 9], and so is true for Y

by the Lp convergence of Yn(t) to Y(t). Finally, (c) follows from (b).

In case Jf is an Lx martingale, the process Kmay not be integrable, as discussed

in the beginning of §3. However, we do have the following theorems, wherein we

assume throughout, as we may, that we are dealing with a separable modification

of the y process.

Theorem 4.2. Let X={X(t),0^t<co} be a martingale, and v={v(t),0£t<co}

a process in the e—s completion of the step functions, satisfying \v(t, <o)\ ¿ 1. 77ien

AP/sup | y(f)| > A j ^ A/sup7i|*(f)|

where M is independent of the martingale X and the process v.
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Proof. In view of the assumed separability of Y, it suffices, by well-known argu-

ments, to prove that for any finite sequence tx < t2 < ■ ■ ■ < tN, we have

(A) XPS sup  \Y(tk)\ > X\ g M sup E\X(t)\.
USfcSN J t

Let vn={vn(t), Q = t<oo} be a sequence of step functions converging to v in e-s

norm, and let Yn(t)=j0 vn(s) dX(s). Then, to prove (A) it suffices to prove

(B) API sup   \Yn(tk)\ > X\ è M sup E\X(t)\
llSkSN J t

for each n, because suplSkSN | K"^)! ~+ supiskSN I Y(tk)\ in probability, by virtue

of Theorem 3.3 and the fact that we are considering only a finite number (in fact,

N) Y(tjs. But (B) is true by [2, Theorem 6], and the theorem follows.

Theorem 4.3. If X={X(t),0gt<co} is an Lx bounded martingale, and if v

satisfies the hypotheses of Theorem 4.2, then lim,., „ Y(t) exists and is finite a.s.

Proof. If the limit exists, then it is finite a.s. by Theorem 4.2. To show that the

limit exists, let Uab be the number of upcrossings of the interval [a, b] by the process

Y={Y(t), 0 ¿ t < oo}. It will then be sufficient, in the light of well-known arguments,

to prove

(A) XP{(b-a)Uab-a + > A} S M sup E\X(t)\.

To prove (A), let tx<t2< ■ ■ ■ <tN be given, and define Uab(tx,..., tN) to be the

number of upcrossings of [a, b] by Y(tx),..., Y(tN). We will first prove

(B) \P{(b-a)Uab(ti, ■ • -, tN)-a+ > A} g M sup E\X(t)\.

To do this, consider step functions vn converging to v, and set Yn(t)=$t0 vn(s) dX(s).

For each k, k= 1, 2,..., N, Yn(tk) ->■ Y(tk) in probability. By a standard theorem

and an elementary argument, we can find a subsequence of the Yn(tk), which we also

index by n, such that Yn(tk) ->- Y(tk) a.s., for each k = l,2,...,N. Therefore, if

Ulb(tx,..., tN) denotes the number of upcrossings of [a, b] by Yn(tx),..., Yn(tN),

then Uâb(tx,..., tN)(to) -> Uab(tx,..., tN)(to) a.s. Hence, to prove (B), it suffices to

prove

(C) \P{(b-a)U2„(tx,..., tN)-a+ > A} g M sup E\X(t)\.

Since this is true by Burkholder's Theorem 7 [2], (B) is also true. The inequality

(A) then follows from (B) upon taking the set {sx, ¿2,...} to be a séparant for Y,

since in this case Uab{sx,..., s„}(to) -> Uab(to).

Theorem 4.4. Let X={X(t),Qgt<co} be a sample continuous martingale, and

let v satisfy the hypotheses of Theorem 4.2. Then the process Y is also sample

continuous.
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Proof. It suffices to prove the theorem for f restricted to [0, b], where 0 < b < oo

is arbitrary. The theorem is true if v is a step function. It is also true if X is an 7_4

martingale, and v satisfies the hypotheses of Theorem 4.2. To see this, choose a

sequence of bounded step functions vn, converging to i; in e—s norm, in such a

way that \\v-vn\\e_s^lln2. Define Yn(t) by Yn(t)=j0vn(s)dX(s). The process

Yn={Yn(t), te[0, b]} has continuous paths and the process y(f)-yn(f)

= Jo W.s) — vn(s)]dX(s) is a martingale. Therefore, by a standard martingale

theorem,

P/sup | y(f)- y(f)| > l/n\ ^ n27i| Yib)- Ynib)\2
0)      l ' J

è M4n211; -1;„ || ?_ ̂  | A-(6) |4 ^ constant/n2,

using the proof of Lemma 2.2. By Borel-Cantelli, we conclude | Yit)- Yn(t)\ g 1/n,

0 g í ̂  b, for all sufficiently large n, with probability one. Therefore, with probability

one, Y\t) converges uniformly to Yit), proving the result for L4 martingales,

since yn(f) is continuous for each n. To treat the general case, let

Tn = inf {f : \X(t)\ > n}

(or Tn=b, if there is no such f). Let Xn={Xnit), 0Útab} be a martingale, with

Xn(t) = X(Tn/\t), and set Yn(t)=jt0v(s)dXn(s). Since Xn has continuous paths,

so does Yn={Ynit), O^f Sb}, by the result just proved. Moreover, on the cu-set

{sup( \Xit)\ <n}, yn(f)= Yit), as can be seen by considering step functions and

passing to the limit. Therefore, if o>E{sup, \X(t)\<n} the trajectory Yi-,to) is

continuous (except in a null set). Since {sup( \X(t)\ <n} increases to Q as n

approaches oo, the proof is complete. The part of the proof concerning L4 mar-

tingales is modeled on a proof by Doob [4, p. 446], the change being the use of

Lemma 2.2 in (1).

5. Stochastic step functions. The completion of the space of t—w step functions

under the e—s norm provides a reasonably wide and useful class of integrands v for

the integrals f t;(f ) dXit). However, it may sometimes be important to know that an

even wider class of integrands can be obtained. To effect this generalization we will

use the notion of a stochastic step function introduced by Courrège in [3].

We will make the following assumptions which will be assumed to hold through-

out this section. We assume that the probability space (Q, F, P) is complete with

respect to the measure P, that each of the sigma fields Fit) contains all the null

sets, and that the martingales labeled X have right continuous paths. A non-

negative random variable t on fl is a stopping time relative to the family T^f) if

{r^f} £ Fit) for each f. We will denote by F(t) the sigma field

{A e F : A n {t g f} e Fit), 0 g f < oo}

The above assumptions imply the fact (convenient below) that if Z={Z(f), 0 ¿ t < oo}

is any process adapted to the T^f) family, and having a.s. right continuous paths

(in particular, if Z= X), then the random variable Zir) is F(t) measurable.
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Let 0 g Tj g t2 ^ • • •, Tn f oo, be an increasing sequence of stopping times. Then

v={v(t), 0^r<oo} is an extended stochastic step function if

v(t) = v(rn)   on [t„, t„ + 1),       n = 1, 2,...,

where v(rn) is F(rn) measurable. The stochastic integral of v with respect to the

martingale X may then be defined to be

(1) S^nM^ + l)-^)]-

If the martingale A'has a last element A'(oo), then E[X(co) | F(rn)] = X(rn), so that

in particular, supn E\X(t„)\ <oo. It follows from Burkholder's Theorem 1 applied

to the martingale {X(tx), X(t2), ...} that the expression (1) is well defined and finite

on the tü-set {supn \v(rn)\ <oo}. If 1 <p<oo, and if X is further assumed to be Lp

bounded, then {X(rx),...} is also an Lp bounded martingale, so that (1) exists as a

limit in Lp norm as well, whenever v is uniformly bounded. If each t„ is taken to be

identically constant, the stochastic step function reduces to the ordinary t-to

step function discussed in §§2 and 3.

Let v={v(t), 0^r<oo} satisfy the following conditions:

(a) v is uniformly bounded,

(2) (b) for every stopping time r, v(t) is F(t) measurable,

(c) v has right continuous paths with left limits.

Theorem 5.1. If the process v satisfies the conditions (2), then v is in the. e—s

completion of the (extended) stochastic step functions.

Proof. For v satisfying the given conditions, and for any e>0, there exists an

increasing sequence of stopping times t„, depending on e, such that t„ —>■ oo, and

(3) sup      |"(i)- "(01 < E       a-S-
s.ieHn.Xn+l)

For each m, m = 1, 2,..., consider the sequence of stopping times 0 < tJ1 < t£ < • • •,

r™ -y oo as n -->■ oo, obtained from (3) by setting e equal to 1/m. If the stochastic

step function t)m is defined*byt;m(r ) = !;(•>-£) on [t™, t™+ x), then sup( \vm(t)-v(t)\ < \jm

a.s., and so approaches zero as m->oo. Since {hm : hm=supt\vm(t) — v(t)\} is

uniformly bounded, the dominated convergence theorem applies to show that

Eh„ -*■ 0; i.e. vm^-v in e—s norm.

Next we indicate to what extent the theorems of §§2 through 4 continue to hold

when t—to step functions are replaced by the more general stochastic step functions.

Few changes will be needed. Recall that if 1 <p<co, and if X is an Lp bounded

martingale, and if {t„} is an increasing sequence of stopping times, then

{X(tx), X(t2), ...} is an Lp bounded martingale satisfying X(rn)=E{X(oo) \ F(rn)}

and supn E \ X(rn) \pgE\ X(ao) \". With this observation, the proofs of Theorems 2.3,

2.5, and 4.1 are easily seen to hold in the more general situation, there being only

notational adjustments required. If X has a last element, A'(oo), then the martingale
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{Xirx), Xir2),...} is uniformly integrable, Xirn) = E{Xioo) \ Firn)}, and

supn£|A'(Tn)| ¿Tí 1^(00)1; therefore, we see that Theorem 3.1 also continues to

hold. To extend Theorem 4.2, note that, in the light of the preceding remarks, the

proof of Theorem 4.2 establishes for each b,0<b<co, the inequality

AP/sup  |y(f)| > A\ ^ ME]Xib)\ Ú A7sup£|;if(f)|.
loSíát) J t

The right-hand side is independent of b, and {supoStSb | y(f)| > A} increases as 6

increases. Hence, letting b-^-co, one obtains the desired result. A similar argument

establishes Theorem 4.3 in the general case.

Since the argument of Theorem 4.4 holds in the general case, it remains only to

verify that Theorem 3.3 holds. If the martingale X satisfies

sur>E\Xit)\[log+\Xit)\]2,

then the nonnegative submartingale

Yit) = |*(f)|log+ |J(f)| log log+|A-(f)|

is uniformly integrable. Therefore, from Doob's optional sampling theorem, it

follows that if t is a stopping time (finite or infinite), then £y(T)^7iT(oo). Apply-

ing the remark after Lemma 3.2, the extended theorem is obtained.

Thus we conclude that the theorems of §§2 through 4 can be extended virtually

without change to the case where t—a, step functions are replaced by extended

stochastic step functions.

The condition (2a) can be weakened considerably. Let v satisfy (2b), (2c), and

let 0<c. Define vc by rc(f, a>) = vit, a,) if |u(f, <o)|<c, and rc(f, cu) = c otherwise.

Then vc satisfies all of the assumptions (2), and so the integral j vcit) dXit) exists.

Letting c -> oo, one sees that, on the set {supt |i;(f, a>)\ <oo}, J" vit) dXQ) exists and

is finite. If ß = {sup( \v(t, a>)\ <oo}, then it is seen that, in fact, J" vit) dXit) exists as a

limit in probability of a sequence of step function integrals.

The equivalent norm property. We conclude this section by constructing a norm np

on the (stochastic) step functions with the property that a sequence of step functions

converges in the norm n'p if and only if the corresponding step function integrals

converge in Lp norm. Here we assume 1 <p < oo.

Let v={vit), t £ T) be a stochastic step function with supt |u(f)| <oo. There may

be many increasing sequences of stopping times {t„} such that v can be represented

in the form

vit, w) = d(t„, a,)   on [t„, Tn+1).

(For example, consider any refinement of an existing sequence of stopping times.)

We define a norm of v with respect to the Lp bounded martingale A" by

(4) n'Piv) = sup {E\2 "K)2[*(tb+1)- A-(r„)]2|p/2}1/p



1968] MARTINGALE INTEGRALS 159

where here the supremum is taken over all increasing sequences of stopping times

with respect to which v has a representation. A manipulation of Burkholder's

Theorem 9 yields the following relationship whenever v is a bounded stochastic

step function :

MpE\2v(rn)2[X(rn + x)-X(rn)]2^12

(5)
g E   \Jv(t)dX(t) ' g NpE\2v(rn)2[X(rn + x)-X(rn)]2

|P/2

The middle term does not depend on the particular representation chosen for v.

Hence, (4) yields

(6) M'^v) í\\ ¡v(t)dX(t)¡   ¿Níúív).
Il J Up

The inequality (6) implies that the mapping v -> J v(t) dX(t) from the vector space

of bounded step functions into a subset of Lp satisfies an equivalent norm property :

that is, convergence in the space of step functions occurs if and only if there is

convergence of the corresponding stochastic integrals in Lp norm. In case/?=2,

the mapping t;-> J v(t)dX(t) is actually an isometry. It follows from (6) and

Theorem 2.3 that all bounded processes in the e - s completion of the space of step

functions belong to the completion of the step functions under the norm n'P. The

n'p completion of the step functions will, by virtue of (6), yield the largest possible

class of integrands for which the stochastic integral will exist as an Lp limit (pro-

vided, of course, the integral is originally defined in the way we have adopted).

Since the inequality of [2, Theorem 9], is known to fail for Lx martingales, a

somewhat different theory must be developed for this case (see §8).

In the form given here, the norm n'p is difficult to use and it is not readily apparent

what processes belong to the completion of the step functions under this norm.

In §8, a more satisfying formulation is given for martingales X which are right

continuous. The reformulation depends on the theory of quadratic variation

developed in the next two sections.

6. Quadratic variation.' Let X={X(t), F(t), t e [a, b]} be a martingale, and

7T={wm, m = 1, 2,...} a sequence of partitions of [a, b] satisfying:

(A) for each m, nm is given by a <, tmX < tm2 < ■ ■ ■ < tmkn g b,

(B) max [tm>k+x - tmk] -* 0   ás m ->■ oo.
»

Define Sm(X), the quadratic variation of X corresponding to nm, by

(C) [Sm(X)f = [X(tmX)]2 + [X(tm2) - X(tmx)]2 +■■■+ [X(tmkJ - X(tn¡km.x)]2.

In this section, we first study the behavior of Sm(X) as m -»■ oo, when X is an a.s.

sample continuous martingale. After this, we develop a theory of quadratic

variation for arbitrary right continuous martingales.
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Certain cases have already been studied. For example, if it is further supposed

that 7Tm + ! is a refinement of 7rm (which we do not assume in this section), and if we

suppose X to be Brownian motion on [a, b], then limm-.,x, SmiX) exists in the

sense of a.s. convergence. If f=(Jx,f2,...) is a (discrete) martingale, and Si(f)

=/i2+(/2-/i)2+ • • ■ +(/m-/m-i)2 then limm^0O Sm(f) exists in the sense of a.s.

convergence if/is Lx bounded (Austin [1]), and in the sense of Lp convergence if/

is Lp bounded, 1 <p < oo (Burkholder [2]).

Lemma 6.1. Let X={X(t), t e [a, b]} be a uniformly bounded martingale with a.s.

continuous paths. Let {nm} be a sequence of partitions satisfying (A) and (B). Then,

lim2x(tmk)[X(tm,k + x)-X(tmk)]
m-* oo ■"*

exists as an Lp limit, 1 <p< oo. The limit is denoted by J" X(t) dX(t).

Proof. Let Xm(t) denote the step function corresponding to the partition

7Tm: Xm(t) = X(tmk) on [tmk, tm,k+x). For each w (except for a set of probability

zero) X(t, a>) is a continuous function of f, and, since the interval is compact,

uniformly continuous. Therefore, sup( |A"n(0_^m(OI -*■ 0 as m, n -> oo, for the

particular a, chosen. Hence, sup( \Xn(t)-Xm(t)\ ->0 a.s., and since this is uni-

formly bounded, £sup, |À'n(i)-À'm(f)|4->0, by the dominated convergence

theorem. Thus, Xm(t) is Cauchy in e—s norm, so the integral J X(t) dX(t) exists

as an Lp limit, 1 <p<co, by Theorem 2.3.

Theorem 6.2. Let X={X(t), t e [a, b]} be a martingale with a.s. continuous

paths. Then

(a) If 1 <p< oo and if E\X(b)\p<co, then Sm(X) -+ S(X) in Lp norm.

(b) If E\X(b)\ <co, then Sm(X) -+ S(X) in probability.

(c) If 1 <p < oo, there are positive constants Mp and Np, depending on p only,

such that

MpES(Xy S E\X(b)\p g NPES(X)P.

Proof. We remark first that if (a) is true, then (c) is immediate, since the in-

equality of (c) holds for discrete martingales, by [2, Theorem 9], and so holds in

the limit by the convergence in L„ of Sm(X) to S(X).

We can and will assume for the remainder of the proof that for each partition 7rm

we have fml = a, tmkm = b, since the general case follows readily from this one. Define

the stopping time Tn by Tm = inf {f : a^t^b, | X(t ) \ > n) ; Tn=b, if this set is empty.

Define the uniformly bounded martingale Xn={Xn(t), t e[a,b]} by Xn(t)

= Ar(iA7n). By a short calculation (see the remark attributed to Doob in [2,

p. 1497]), one obtains

S2(X») = [X\b)]2-2j^X\tmk)[X\tm,k + x)-X\tmk)].
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As m -»■ oo, the summation on the right converges in Lp norm, by Lemma 6.1.

Therefore, limm-.œ Sm(Xn) = S(Xn) in Lv norm. By the definition of Tn

Sm(X") = S(Xk) = Sm(X)

on the set {Tk = oo} = {sup, | A^(/)| ̂ ä:}, assuming kgn. Hence, Sm(Xn) converges

to Sm(X) in probability, uniformly in m, since

P{\Sm(X)-Sm(X<)\ > 8} g /»{sup \X(t)\ >j) g j\X(b)\IJ.

Writing

P{\Sm(X)-Sn(X)\  >e}i P{\Sm(X)-Sm(X')\  > el3}+P{\Sm(X')-Sn(X')\ > e/3}

+ P{\Sn(X')-Sn(X)\  > e/3},

one now sees that Sm(X) converges in probability to a random variable S(X),

proving (b).

To prove the statement (a) concerning Lp convergence, 1 <p < oo, it will suffice

to prove that

E\Sm(Xn)-Sm(X)\p->0   as«-* oo

uniformly in m, since we have already shown that limn-.,*, Sm(Xn) = S(Xn) in Lp

norm. We have

E\Sm(X«)-Sm(X)\p Û E\S2(X»)-S2(X)\P>2.

Let Aj = Xn(tmJ+x)-Xn(tm!) and /i; = A-(ím.í+1)- X(tmi). Then, continuing as

before,

E\Sm(X«)-Sn(X)\p g E\2(A2k-B2)\"2

gKpE\2Ak(Ak-Bk)\p'2

+ KpE\2Bk(Ak-Bk)\pl2

where Kp is a positive constant depending on p only. The first term on the right

does not exceed

K,e2 \Ak\ \Ak-Bk\p'2 g KpE\[2Al]1,2[2(Ak-Bk)2YY

èKpE[2Air[2(Ak-Bk)2Y'i

¿ KpEi<2[Z AIY'2EX'2\2 (Ak-Bk)2Y<2

Ú KpEl,2Sm(X»)pEll2Sm(Xn-Xy

Ú (KPIMp)Ell2\X(b)\pExl2\Xn(b)-X(b)\p,

using [2, Theorem 9]. Since the last expression approaches zero, uniformly in m,

and since a similar result holds for the second term on the right, the proof is

complete.

Theorem 6.3. Let X={X(t), t e [a, b]} be a martingale with almost all paths

continuous and of bounded variation. Then P{X(0) = X(t), t e [a, b]} = 1.
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This theorem has been obtained by D. Fisk [5], using a different proof.

Proof. We may assume that AX0)=0, for, if not, we just consider the martingale

X(t) — A'(O). We prove the theorem first for the case in which Ä'is a square integrable

martingale.

We suppose that if A={tu : X(t)&0, te [a, b]}, then P(A)>0, and derive a

contradiction. Since, for each w, X(t, a>) is a continuous function of t, it follows

that if cu s A, then j*0 \X(t, co)| dt>0; so that JA ¡\ \X(t, w)\ dt dP>0. Applying

Fubini, we have 0</o JA | Af(i, tt>) | dP dt, implying that for at least one t = t0,

$A\X(t0,(o)\ dP>0. Hence £|AXf0, a>)| >0, and since X is a submartingale,

0<E\X(to)\¿E\X(b)\. By Theorem 6.2(c), 0<E\X(b)\p^NpES(X)p, which

implies that S(X) is strictly positive on a set of positive probability. If nm is a

sequence of partitions satisfying (A) and (B) of this section, then Sm(X) -> S(X)

in Lp norm, so that there is a subsequence of this sequence of partitions (which we

label as before) such that S%(X) -* S2(X) a.s. Hence, for all sufficiently large m,

ZlX(tm,k + x)-X(tmk)]2Z8>0

on a set of positive probability. Therefore,

8/[max \X(tm,k + x)-X(tmk)\\ g £ I *('«.*+ i)-*('«*)!

on a set of positive probability. By the continuity of paths maxk | X(tm¡k+X) — AXfmfc)|

->■ 0 as m ->- oo implying that for <u in a set of positive probability, the paths are not

of bounded variation. This proves the theorem for Lp bounded martingales.

To prove the general case, define the stopping time Tn by

Tn = inf{f :0 útúb, \X(t)\ > n},

Tn=b if the given set is empty. Let Xn(t) be the martingale X(t aJ„). Then Xn

is a square integrable martingale, ^"(0)=0. By the result just proved, the path

Xn(-, to) is constant, and equal to zero for almost all a,. The paths Xn(-, w) are

the same as X(-, o,) when a, e{w : sup( \X(t)\ <n} = i2n. Since Q„t fl, almost all

of the paths of X must also be constant.

7. Quadratic variation in right continuous martingales. The purpose of this

section is to present some results on quadratic variation for martingales whose

paths are not necessarily a.s. continuous. Let X={X(t), t e [0, b]} be a martingale

having a.s. right continuous paths. For integers m = 1, 2,..., let em>0, em -> 0 as

m -> oo. Since A1 is a process with right continuous paths having left limits, there

exists for each m an increasing sequence of stopping times rmX ̂ rm2 ̂  rm3 ̂  • ■ •,

satisfying

(a) rml=0, TmB f b as n -> oo, for each m,

(b) supMe[wtn.n + l) \X(t)-X(s)\úem.

If desired, it may also be assumed that supfc |Tm>fc+1 - rmk| ->- 0 as m increases, and
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even that {rm + ux, rm + x¡2, rm + li3,...} is a refinement of {rml, rm2,...}. However,

we do not make these assumptions. Define S(X, rm) by

(1) S\X, rm) = [X(rmX)]2+[X(rm2)-X(rml)]2+ ■ ■ •

S(X, rm), the nonnegative square root is finite a.s. for each m by Austin's theorem

[1], and Doob's optional sampling theorem.

Theorem 7.1. Let X={X(t), t e [a, b]} be a martingale with right continuous

paths, and {rmk : m= 1, 2,..., k = 1, 2,...} a family of stopping times satisfying

(a) and (b) for some sequence {em : em >0, em -> 0}. 77ie«

(i) limm-,„o S(X, rm) = S(X) exists as a limit in probability.

(ii) Ifi<p<oo, and E\X(t)\p<oo, then limm_mS(X, Tm) = S(X) exists as an

Lp- limit, p' <p.

(iii) Under the hypotheses of (ii), there are positive constants Mp and Np, depending

on p only, such that

m;es(x)p g E\x(b)\p á n;es(x)p.

The limit S(X) is independent of the collections {rmk} and {cm} as long as they

satisfy (a) and (b).

Remark. If X is an a.s. sample continuous martingale, then the S(X) obtained

by considering stochastic partitions satisfying (a) and (b), and the S(X) obtained

by considering the ordinary partitions satisfying (A) and (B) (at the beginning of

§6) will be equal a.s. Therefore, the concept of (stochastic) quadratic variation

developed here can be considered a generalization of the concept introduced

in §6.

Proof. As before, we have

S2(X, rm) = [X(b)]2-22n-mk)[X(rm,k + x)-X(Tmk)l

However,

(2) lim 2 X(rmk)[X(rm¡k + x)-X(rmk)] =   \X(t) dX(t)

exists as a limit in probability. For, define Xe by Xc(t) = X(t), if \X(t, w)\ gc, and

Xc(t) = c otherwise. Then Xe satisfies the conditions of (2), §5, and so Xc(rmk)

-*• Xc(t) ine—s norm as m ->■ oo, by Theorem 5.1. Hence, by the extended version

of Theorem 2.3 or 3.1,

(3) 2 XC^mk)[X(rm,k + x)-X(rmk)] -> jx%t) dX(t).

Moreover,

P{\S2(X,rm)-S2(X,rn)\  >y}

g P{\2 X%rmk)[X(rm,k + x)-X(rmk)]-2X(Tmk)[X(rmtk + x)-X(rmk)]\ > yß}

+ P{\2 XC(rmk)[X(rmtk + x)-X(rmk)]-2 X%rnk)[X(rntk + x)-X(rnk)]\ > yß}

+ P{\2 XC(rnk)[X(rn,k + x)-X(rnk)]-2 X(rnk)[X(rn,k + x)- X(rnk)]\ > yß}.
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From the definition of Xe,

P{\2X%rmk)[X(rmtk + x)-X(rmk)]-2X(rnk)[X(Tn,k + x)-X(rnk)]\ > y/3}

g P{sup 1*0)1 >c]i (l/c)p£|A-(f)|p.

Choose c such that the first and third terms on the right are each less than e/3;

and then choose m, n so that the middle term is less than e/3. This establishes

equation (2) and hence (i). Note that if A' is a uniformly integrable martingale on

[0, oo), then we can obtain S(X, rm) -+ S(X) for the interval [0, oo) instead of

[0, b].

If it is supposed that 1 <p<co, then, since MPES(X, Tm)p^£|A\è)|p, it follows

that S(X, rm) -> S(X) in Lp- norm, whenever/?' satisfies 1 <p'<p, and for such/»',

[2, Theorem 9] yields

Mp.ES(Xy <: £|AX6)|P' ^ Np.ES(X)p'.

By a straightforward argument using monotone and dominated convergence, one

obtains, letting /?' f p,

M"pES(Xy Ú E\X(b)\p ^ N"PES(X)P

where Mp, Np are positive constants depending only on p.

8. Integrals for right continuous martingales. The stochastic integral constructed

in §§2, 3, and 5, using the e - s norm, is perhaps limited in certain respects. It was

convenient to consider such an integral in order to obtain the quadratic variation

theory of §7. Now that this theory has been developed we are in a position to rede-

fine the integral in a more satisfactory manner. In the following we shall use the

phrase "right continuous martingale" as an abbreviation for "martingale with a.s.

right continuous paths."

If A'={A'(f), 0^f<oo} is a right continuous martingale, the theory of §7 implies

that for each f, Ogf <oo, we may obtain

52(A-)( = A"2(f)-2 f X(s) dX(s),

which we will denote by S2(t). The process S2={S2(t), 0^f<oo} thus obtained is

an increasing process with a.s. right continuous paths. A process v={v(t), 0 ̂  t < oo}

is a left continuous step function if there is an increasing sequence of real numbers

0 ^ ax < ■ ■ ■ < an < oo, such that

v(t) = 0, f é ax,

(1) = v(J),      a, < t £ aj+x,

= 0, an< t,

where v(j) is measurable with respect to F(a¡). The integral of v with respect to the

martingale X is then defined by equation (1) of §2. The reason for adopting left
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continuous step functions in the present section will appear shortly; right con-

tinuous step functions were, of course, particularly convenient in proving Theorem

7.1.

If v is a left continuous step function (or, for that matter, any process integrable

dS2), and if A" is a right continuous martingale in Lp for some/» satisfying 1 <p< oo,

then we define the norm np by

(2) ",(") = ¿I ¡v2(t)dS2(t)\PI

where, for each to, J v2(t) dS2(t) is the Lebesgue-Stieltjes integral. If v is given by

(1), then it follows from the right continuity of S2(i) and the left continuity of v

that, for each to,

(3) \v2(t) dS\t) = 2 v2U)[S2(ai+x)-S2(a¡)].

Using Theorem 7.1 and formula (3) above, together with such considerations as

appeared in the last part of §5 (especially the fact that J v(t) dX(t) does not depend

on the step function representation of v), one obtains for bounded step functions v:

(4) Mpnp(v)<,E\\v(t)dX(t) Ú Npnp(v)

where Mp and Np are positive constants depending on p only. Note that if we had

not considered left continuous step functions, then (3) would not hold as stated,

and thus (4) would not follow. The inequality (4) implies that a sequence of step

functions converges in the norm np if and only if there is convergence in Lp norm

of the corresponding step function integrals. Thus the definition of the stochastic

integral is extended to the completion of the space of bounded left continuous step

functions under the norm np. It is easy to see that an analogue of Theorem 4.1 holds

in the present case.

In the case X is only a right continuous martingale in Lx, the preceding theory

must be modified. One obtains S2(t) as before; and if it is known that S(t) exists

as an Lx limit for each t, one defines the norm of a bounded left continuous step

function v by

I C ll2

(5) nx(v) = E][jv2(t)dS2(t)     ■

Using Theorem 8 of [2], one may then obtain

(6) A/> j| (v(t) dX(t)   > a| S Mnx(v),

where M is a positive constant not depending on v, X, or A. Thus, if v„ is a sequence

of step functions converging in the norm nx, then J vn(t) dX(t) converges in

probability. (As a partial converse [2, Theorem 8], also implies that if vn is a sequence
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of step functions such that J vn(t) dX(t) converges in Lx norm, then J v2(t) dS2(t)

converges in probability.) A simple hypothesis guaranteeing that S(t) exists as an

Lx limit for each / is that X be L log2 L bounded, as may be verified using an

argument similar to those of Lemma 3.2 and [2, Theorem 10]. It is easily verified

that Theorems 4.2 and 4.3 continue to hold whenever v satisfies |v| ^ 1 and belongs

to the nx completion of the space of left continuous step functions.
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