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It is well known that if Fis a field of characteristic zero and K=F(ax,..., ot„) is a

finite algebraic extension of F, then K contains a primitive element, i.e. an element

a such that F(oti,..., an) = F(a). Moreover, by means of Galois theory, it is possible

to characterize those elements of the extension field which are primitive.

In the case of finite differentially algebraic extensions the theorem without

further restrictions is false. Let Q be the field of rational numbers and 8 the usual

derivation, i.e., 8q=0 for every q e Q. Let cx,.. .,cn be algebraically independent

complex numbers over Q. If (Q(,cx,..., cn>, 8) is the differentially algebraic

extension of Q where ac=0 for every c e Q(cx,..., cn>, then the underlying set of

Q(cx,..., c„> is identical with that of Q(cx,..., cn), whence it is clear that there is

no element c € Q(cx,..., cn> such that Q(cx,..., cn> = £?<c>. Kolchin [2] (also

[5, p. 52]) has shown the existence of primitive elements in the case where the

differential field F(ax,..., an> has one derivation operator and the field F has an

element/such that S/VOO). The differential fields (F(x0, ■ ■ -, xp}, D) considered

in this paper are differentially algebraic over F, but F does not contain nonconstant

elements. We prove the existence of primitive elements in the case where the

derivation operator satisfies the conditions

£>/=0   for every feF,       Dx0 = 1,

x0 • xx.xk.xDxk = 1    for 0 < k g p.

An example of such a differential field is (C<r% z, log z, log log z>, 8) where C is

the field of complex numbers, 8 = e~'D and D is the usual derivation of functions

of a complex variable, i.e., 8ez=e~zDe* = 1, 8 log z=e~zD log z=(ezz)~x,

8 log logz = e"2£)loglogz = (e2zlogz)_1.

In the sequel, for differentially algebraic extension fields which satisfy conditions

(1) not only do we establish the existence of primitive elements, but we give explicit

formulas for such elements. In §§7 and 8 we apply these formulas to the asymptotic

theory of ordinary differential equations. More precisely, in [6] W. Strodt intro-

duced the concept of the "principal monomials" and "principal solutions" for a

certain class of differential equations whose coefficients belong to a logarithmic

domain. In [8] Strodt characterized the principal monomials by the concept of
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(') In the partial case (more than one derivation operator) F must contain a set of elements

whose Jacobian does not vanish (Kolchin [2, §4]).
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stability. S. Bank [1] investigated all the logarithmic monomials at which an nth

order differential polynomial of a certain class is unstable; such logarithmic

monomials were called "critical monomials" of the differential polynomial. The

algorithm which produced the principal monomials in [6] and the critical mo-

nomials in [1] consists essentially of the repeated applications of the transformation

x = eu, y = vemu. The effectiveness of this transformation depends upon two crucial

lemmas ([6, Lemma 61] and [1, Lemma 13]), to the effect that whenever a trans-

formation x = eu, y=vemu is applied to a homogeneous, isobaric differential poly-

nomial of positive weight W, with constant coefficients, the transformed differential

polynomial always effectively involves at least one term whose weight is less than W,

unless the differential polynomial is of the form cYd~w- Y'w and m = Q. In this note

we generalize these lemmas and prove them with the aid of a result on the tran-

scendence degree of differential field extensions (Theorem 7.1 below)(2).

I am grateful to W. Strodt for his help in the preparation of this manuscript.

1. Preliminaries. This section contains some elementary results on differential

field extensions. All differential fields considered here are of characteristic zero.

The notations are the same as in [3], [4], and [5]. The differential field defined over a

field G by a derivation 8 will be denoted by (G, 8).

Lemma 1.1. Let (77, S) be a subdifferential field of (G:, 8). Suppose the subfieldC

of elements of G annihilated by 8 is contained in 77. If a e G is such that 8a e 77, then

either a is transcendental over H or a e 77.

Proof. Follows along the same lines as the proof of Lemma 3.9, Kaplansky [4].

Lemma 1.2. Let (77, 8) be a differential field and (77<a>, 8) a differential extension

field ofiH, 8) such that a is transcendental over H and Sa= 1(3). FAen there is no

element in 77<a> whose derivative is a'1.

Proof. Since Sa=l e H, the underlying sets of 77<a> and 77(a) are identical.

Thus every g e 77<a>, g^O, can be written in the form an(F/ß) where n is an integer,

and P and Q are polynomials in a with coefficients in 77 such that F(0) / 0, ß(0) ^ 0.

The integer n is uniquely determined by g; by direct calculation 8ianiP¡Q))^a~1.

We will need the following well-known lemma:

Lemma 1.3. Let (C<a>, 8) be a differential field where C is the subfield of elements

of C<cc> annihilated by 8. If C<a> has transcendence degree p +1 over C, then

a, 8a,..., 8"a are algebraically independent over C. Moreover

C(a} = Cia,8a,...,8" + 1a).

(2) A proof of the case m^O in the setting of graduated logarithmic fields, independently

of ours, is given by Strodt [8].

(3) Such a differential field extension can always be constructed. See Corollary 1 of Theorem

39, page 124, Vol. 1 of [9].
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2. The logarithmic differential fields. In this section A' is a differential field with

derivation D. K contains a distinguished sequence x0, xx,... of elements called a

logarithmic sequence such that DxQ=i and x0'Xx.xp_xDxp=l  for p =

1, 2,.. .(*). C={c : ceK,Dc=0}. For any p^O the subdifferential field

(C(x0,xx,...,xp),D)

will be called a logarithmic differential field.

Lemma 2.1. Let Fp = C(x0,xx,...,xp) for each nonnegative integer p, and

F-X = C. Then for p = 0, 1, 2,..., xp i Fp.x.

Proof. By induction on p. Since Dx0= 1 ̂ 0, for/> = 0 we have xp=x0 £ C=FV-X.

Suppose for the nonnegative integer q, xq$Fq-x. Since (Fq-X, D) is a differential

field and Dxq = (x0-xx.x,_i)_1 eF,_i, by Lemma 1.1, xq is transcendental

over F,_!. Let 8q=x0'Xx.xq.xD, then (F,_j, 8,) is also a differential field.

Since xq is transcendental over F„-x and S,x,= l, by Lemma 1.2, there is no

element^ in (F, _!<*,>, 8,) such that 8,j=x,"1. Since 8qxq+x=xqx,xq + 1^Fq.x^xq)

= Fq. This completes the induction.

Lemma 2.2. x0, xx,. .. are algebraically independent over C.

Proof. Follows from Lemmas 1.1 and 2.1.

3. Partial order in (C(x0, xx,..., xp), D). Let K, C, and the sequence

Xq, xx,... be as in §2. We will introduce a partial order in the subfield

Fp m C(x0, xx,..., xp) of K as follows. Let

V, = W • x[x.4" : Oo, h, ...,iP)eZ"}

where Z is the ring of integers. Vp is a subgroup of the multiplicative group of Fp.

Let Jrp={cv : ce C-{0}, ve Vp}. Let M=ax^°-x^.jc?p and 7Y=èxSo.xïi'

• ■ • 'ArpP be elements of ^"p. We will write M<N if m0<no> or for some natural

number q, 0<q^p, mk = nk for k = 0, I,.. .,q-l and mq<nq. If (m0, mx,..., mp)

= (n0, «i,..., np) we write MxN. life C[x0, xx,..., xp],f^0, it can be written

in the form f=2î=iC>Mi where c¡eC-{0} and M, e Fp such that M^M, if

iV/ For some positive integer 5, 1^5^n, ¿¿A^ <csMs for /7e j. We will call csMs the

dominating monomial off. If g e Fp — {0} then g can be written g=2 CiMJ2 bjN¡

where c¡, b,eC—{0} and Mi,N,e Vp. If csAfs is the dominating monomial of

2 c¡A/j and èfNt is the dominating monomial of 2 b,N, we say g* = (csMs)(btNt) ~x

is the dominating monomial of g. If g, h e Fp — {0} we write g < h if g* < h*, and

g~h if g*=h*. We extend this definition of order to F„ by setting 0<g for every

g e Fp-{0}(5). It is clear now that if/ g,h,ke Fp,

C) The notion of logarithmic sequences was introduced by Strodt (cf. [6] and [8]).

(5) Fp with the partial order < is a field with asymptotic order (cf. Strodt [7]).
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(i) if/<g, then/^g;

(ii)0<l;

(hi) if f<g and A#0, then/A<gA;

(iv) if/<g and A <k, then fh<gk;

(v) if/<g and A<g, then/+A<g;

(vi) if/<g and A<g, then/<g+A;

(vii) if/~g then/-g<g and conversely;

(viii) if/~g and g~A, then/~A;

(ix) if/~g and h~k, then fh~gk;

(x) if/~g then/#0 and g#0.

Definition 3.1. Let

Ibjg.jti.itj
J   lc¿f.$.4"    v'

Define Efe Fp+X to be

Ef_2btXix°'Xt¿.xp\x

2cfXix°-41.xi'+i

Lemma 3.1. LetfgeFP, then

0) f<g implies Ef<Eg.
(ii) /~g implies Ef~Eg.

Proof. Follows from the definitions.

4. The functions Stjm).

Definition 4.1. Let m be a variable; define

Sk.kim) = m(m- l)(m-2)- • (m-k+1)   ifk > 0,

and

Sk.k-Àm) = (llJl)Sk%m)   ifj > 0,

where S(k^k(m) is the jth 'derivative of Sk,k(m).  We will make the convention that

So,o(™) = l-

It is clear that Su(m) is the elementary symmetric function of degree/ in m, m — 1,

..., m—i+l. Thus

k

(1) 2 xiSk,k-j(m) = (x+m)(x+m-l)- ■ -(x+m-k+l)
i = 0

(cf. [6, §58]). We remark that Sk,0(m) = 1 and Ski)(m)=0 ifj<0.

Lemma 4.1. Ifk^l, m = (-l)k+1-k-Sk,k(m)-(-l)k-m-2k=i (-iysk¡k.,{m).
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Proof. By (1) above 2y-o(-l);Sfc,fc_/m) = (m- l)(m-2)- ■ -(m-k).  Therefore

m 2 (-iySk,k-f(m) = m[(m-l)(m-2)- ■ (m-k)-Sk¡k(m)-(-l)kSk.0(m)]
í-i

= m[(m-\)- ■ (m-k)-m(m-\)- ■ -(m-k+l) + (-l)k+1]

= m[(m-l)- ■ (m-k+ l)(m-k-m) + (-1)"*1]

= -kSk,k(m) + (-iy+1m.

5. The elements (x0^xx.xk)m of (C(x0, xx,.. .,xp), D).   Here and in the

next section m is a nonzero integer.

Definition 5.1. Let E0 = E where E is as in Definition 3.1, and for the positive

integer p, Ep = [(m —p +1 ) + x0 D]EP _ x.

Lemma 5.1. Let V=V(x0, xx,..., xk) e C(x0, xx,..., xp), k<p. Then x0DEV

=EDV.

Proof.

XoDEV(x0,xx,...,xk) = XqDV(xx, x2, ..., xk + x)

fl ÔEV   _}_dEV 1 dEV 1

\_Xo 0XX     XoXx OX2 XoXx ■ • • xk oxk + x J

dEV    1 dEV 1 dEV

dxx    xx dx2 xx-x2.xk8xk + x

= EDV.

Let Tk=(x0-xx.xk)m where m is a nonzero integer, then:

Corollary.

EpTk = (m-p+l +x0D)(m-p+2+x0D)- --(m-l +x0D)(m+x0D)ETk

= 2 Sp¿m)ED*-lTk.
i = 0

Proof. By straightforward calculation and Lemma 5.1.

Lemma 5.2(6). DpTu = Sp¡p(m)x'S~p and for positive integers p and k, DpTk
_v«-ir t
— X0       £.plk-X.

Proof. By induction on p. D°Tk = Tk=x?E0Tk_ x by the definitions of Tk and E0.

Suppose 7)I'-1F)£ = Xo1-!, + 1£p_1rk.1. Then

D"Tk = x%-'[(m-p+l)+XoD]Ep-xTk-x = x^-pEpTk.x

by the definition of EpTk.x.

(6) This is a special case of [8, Lemma 66(c)].
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Lemma 5.3. For any pair of integers (p,q) such that 0^p<q, D"Tk< D"Tk if

D"Tk¿0.

Proof. If D"Tk=Q, then DqTk<DpTk. Suppose DqTk^0. By Lemma 5.2,

DpTk = x%-pEpTk-x   and   D*Tk = jcff ■ "EqTk . x.

Since EpTk-x and EqTk-x are elements of C(xx, x2,..., x^) and m—q<m—p, it

follows from the definition of < that D"Tk < DpTk.

Notation. For fe C(x0, xx,..., xk), by d,f we will mean the formal partial

derivative off with respect to x,.

Lemma 5.4. For any pair of integers (p, q) such that Oèp<q, dnDaTk<dnDpTk

if 8nDpTk # 0 and 0 ¿ n ̂  k.

Proof. Similar to the proof of Lemma 5.3.

6. The differential field (C<FP>, D).   In this section we will show that the

transcendence degree of (C(TP}, D) is p+i over C.

Notation. In the sequel the minor of dpDlTp-x in the Jacobian determinant

d(Tp_x,DTp-x,...,DpTp_x)

d(x0, xx,..., xp)

will be denoted by AK.

Lemma 6.1. Suppose the Jacobian determinant

Jp  1 m d(TP-i,DTp-x,...,Dp-xTp-x) # 0j

o(Xo, xx,..., xp_x)

then Ai<Jp.xfor i=0, 1, 2,.. -,p— 1.

Proof. Write DiTp.x=x1S~iEiTp.2, by Lemma 5.2, and write Jp.x and A¡ in the

determinant form. By direct calculation

(3) Jp.x ~ áx?t"-(,-1)/SI-1.Jc{i-4a.xfcf   with de C-{0},

and either At=0 or

(4) Ai ~ cxp0lm - (p -1)/2] -1 - (p - ¡). jjjijg.^i

where A:1; &2, • • -, kp.x,jx,j2,.. .,j„.x are integers. Ai<Jp-x for /=0, 1,.. -,p — 1

by comparing the right sides of (3) and (4).

Corollary. IfJp.x^0, 2ï=imE0Ai~mE0Jp-x.

Proof. Follows from Lemma 6.1 and the identity AP=JP-X.

Lemma 6.2. IfJp.^0, then

A=2 i-iy&T^Ai < TP_XJP.X.
¡ = o
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Proof. By the properties (iii) and (iv) of §3, and Lemmas 5.3 and 6.1,

i-iyUrT,.^ < TP.XJP.X   foii = 0,...,p-l

and

(-iyD'Tp-x-Ap = (-iyD*Tp„x-Jp_x < TP.XJP.X

by Lemma 5.3 and the property (iv) of §3. Therefore by (v) of §3, A<Tp-xJp_i.

Corollary. EoA<E0Tp.x-EoJp-x.

Proof. By Lemma 3.1.

Lemma 6.3. Let Bp = 2f=i mE0Ai and B=2f=i (— l)*'^5i,i(»«)^ where B¡ is the

minor of dQEiTp-x in the Jacobian determinant

8(E0TP-X, EXTP.X,..., EPTP-X)

o(x0, Xx,..., xp)

thenBp=B.

Proof. Bp and B may be viewed as the expansions of two (p+l)x(p+l)

determinants by the minors of the first columns. These first columns are respectively

(0, -m, +m,...,(- lymj and (0, -Sx,x(m), -2S2,2(m),..., -pSp,p(myf. We

introduce the (p + l)x(p+ 1) determinants C0, Cx,..., Cp recursively as follows.

Define C0 = B and define Ck + X as the determinant obtained from Ck by adding

— Sk + Xtk + 2-f(m) times the/'th row of Ck,j= 1,2,..., k+l, to the (A: + 2)th row of

Ck. Obviously B=C0 = CX= ■ ■ ■ =CP. Evidently C0 has the form of Bp in the first

row, and the form of B in the remaining rows. Suppose now that for some k in

{0, 1,.. .,p- 1}, Ck has the form of Bp in the first k+l rows and the form of B

in the remaining rows. By the above construction Ck + x has the form of Bp in the

first k+2 rows. In fact, the (k + 2)th row of Ck+X is

({-(*+ ')^*uhW-™| (-iy£*+i,*+i-i(»*)}-, 8xEoDk + 1Tp.x,...,

dpE0Dk + 1Tp_xy

Hence the first entry in this row is

(-iy*1{(-iy*2-(k+l)Sk + x,k + x(m)-(-iy*1m2i-Wk + uk + i-i(m)\

= (— iy+1m   by Lemma 4.1.

The remaining entries of this row have the asserted form by the Corollary of Lemma

5.1.

Corollary. Suppose Jp_x=^0, then J~m£07p_1.

Proof. Follows from the Corollary of Lemma 6.1 and Lemma 6.3.
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Lemma 6.4. IfJp.x^0, then

J   — C(*P> DT?' . . ., D Tp) (p + i)(m-p/21 -1   r- T       ,p j
Jp  - JT-      - —T-mX0 •io-'p-l-C-O-'p-l-

oyx0, xx, . .., xp)

Proof. Write the Jacobian J„ in the determinant form, then

JP = Xop + 1)lm-pl2n-x-{mB+C}

where B and C are (p +1) x (p + 1) determinants whose expansions in the minors 'of

the first columns are respectively 2ï= o ( -1 )'F Tp-xBi and 2f= o ( -1)'+ x • ' • F¡Tp _ jJSj.

We assert that

(5) E = E0%(-l)tDlT,-1Ai.
i = 0

This can be verified by applying to B the same row operations as were applied to B

in Lemma 6.3. Each column of B, except the first, is thereby transformed into the

corresponding column of a determinant E0A whose expansion in the minors of the

first column is the right side of (5). The verification that the first column of B is

transformed into the first column of E0A is done inductively as in Lemma 6.3 and

turns upon the identity

fc+i

Fk +1 Fp _ ! — 2_ Sk + x¡k + 2-j(m)EoD'    Tp-X = E0D     Tp-X
i = l

which follows from the Corollary of Lemma 5.1. As for C, € can be written

(6) C = (E0TP.X)B+ 2 (- 0i+1 •/• 2 SiJinyW'Ti-ÙB»
i=0 i=0

It can be shown by the same reduction as employed in Lemma 6.3 that the second

term in the right side of (6) is <E0Tp-xEoJp-x. It now follows from the Corollary

of Lemma 6.3 that C~mE0Tp_ XE0JP_ x. Thus, by the Corollary of Lemma 6.2,

mB+C~mEQTp-xEoJp-x. This establishes the lemma.

Corollary. IfJp_x^0, then Jp#0.

Theorem 6.1. The differential field (C<FP>, D) is of transcendence degree p + \

over C.

Proof. Since (C(Tpy, D) as a field is contained in the field C(xQ, xx,..., xp), the

transcendence degree of CÇTP)> over C is at mosty?+ 1. It is enough, therefore, to

show that TP, DTP,..., DPTP are algebraically independent over C By induction

on p and the Corollary of Lemma 6.4, it is enough to show that the Jacobian

70#0. This by direct calculation is mxô'1^-

Theorem 6.2. (i) (C(x0, xx,. ..,xp), D)=(C(x0-xx.xp>, D),

(ii) (C(x0, xx,.. .,xp), D) = (C(xp\ D).
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Proof of (i).   By Theorem 6.1, (C(x0 -xx.xp), D) is of transcendence degree

p+l over C. Thus (C(x0, xx,.. .,xp), D) is an algebraic extension of

(C<.x0'Xx.xp}, D).

By Lemma 1.1, it is enough to show Dx0, Dxx,..., Dx„ are in

(C(x0,xx, ...,xp},D).

Dx0= 1 ; therefore x0 e (C(xQ-xx.xP>, D). Suppose

xQ, xx,..., xk.x e (C{x0'Xx.*p>, D).

Since Dxk = (x0-xx.x*-i)~\ then xk e (C(x0'Xx.xp>, D).

Proof of (ii).   Since Dxp = (x0'Xx.xp-x)~x, x0-xx.xp_x e(C(xp}, D).

Thus x0 • xx.xpe (C<x„>, D). Therefore

(C<x0-xx.xp), D) c (C<xp), D) ç (C(x0, xx,..., xp), D).

7. Imbedding  of  (C(xQ,xx,...,xp),D)  in  a  graduated  logarithmic  field(7).

Let K, C, D and the logarithmic sequence x0, xx,... be as in §2. Recall that A' is a

differential field with derivative D, C is the subfield of constants: C={c : ce K

such that Dc=0}, and x0, xx,... is a logarithmic sequence in K. Suppose further

that K contains a multiplicative subgroup U' such that for every fe V" and every

integer r> 1 there is a unique geU' such that g7=f; we will denote g by fllr.

Furthermore, suppose U' contains the set {x0, Xx, •. }• Let Up be the subgroup of

U' generated by the elements of the form xf e U', where m is rational and Og i^p.

Let G„ be the differential subfield of K generated by Up over C. We observe that

(C(x0, xx,..., xp), D) is a differential subfield of (Gp, D). Moreover, (G„, D) is an

algebraic extension of (C(x0, xx,..., xp), D). Since the transcendence degree of

(C(^0) xx,..., xp), D) over C is p+l by Lemma 2.2, the transcendence degree of

(Gp, D) is p+l over C. Let (G, U, D) = limp^a> (Gp, Up, D). It is clear that (G, D) is

a differential field.

We will introduce for the differential field (G„, D) a partial order <, whose

restriction to the differential subfield (C(x0, xx,..., xp), D) coincides with the

partial order < defined on (C(x0, xx,..., xp), D) in §3, and which is such that the

quadruple (Gp, <, Up, C) is a graduated field as defined in [7]. Define the order

relation  <  in Up as follows. Let {M, N}<=UP, then M=x%<>-xxi.xpv and

N=xÔ0'Xxi.x^p where the exponents are rational numbers. Set M<N if

m0<n0, or if for some natural number q, Q<q-=p,mk=nk for k=0, 1, ...if— 1 and

m„<nq. Let J(=C*-UP where C* = C—{0}. Define the order relation in Jt as

follows. If {g*, A*} <= J( then g* = cM and A* = dN for some M and A^ in Up such that

c, de C*. Set g*<A* if M<N and g*xh* if M=N. It is clear that the order

O The graduated differential field (X, D) (see Lemma 7.3) is a graduated logarithmic

field if U contains a logarithmic sequence (see also [8, p. 14]).
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relation < in J( is compatible with the order relation < in Uv. We now define an

order relation < in Gp-{0}. Suppose first that/e 6>-{0} and/=2f=i CjiVi with

c¡ e C* and N¡ e Up (with i^j => NrfN,), then for some r, CiNi^crNT for /= 1,

2,..., n, with strict inequality if i^r. The representation^ 2f=i c¡A/¡ is unique. In

fact for an arbitrary nonzero yj+1-tuple (r0, rx,..., rp) of rational numbers,

xi", xrx\..., xi" are algebraically independent over C. In this case we write

f~crNr, and we say crNr is the dominating monomial off. If now/is any element

of Gp-{0}, then f=JtciMiIJi djNj. Let g* and h* be the dominating monomials of

the numerator and the denominator respectively. We write g* ■ h* ~x ~/ and call

£*/z*_1 the dominating monomial off. Let (c, u) be the unique element of Cx Up

such that g* ■ h* ~x = cu. Then u is called the gauge off and is denoted by ]/[(8). If

fx and/j belong to Gp-{0},we sayfx<f2if and only if ]fx[<]f2[. Iff* andf* are

the dominating monomials of fx and f2 respectively and fx* =/2*, then we write

/i ~fi- It is clear that this order relation in Gp — {0} is compatible with the order

relation in Jt. We extend this definition of order by setting 0</ for every

fe Gp-{0}, and ]0[ = 0. Thus fx~f2 if and only if f*=f2, and hence if and only if

fx —f2 <f2. It is now clear that the partial order < defined here restricted to the

subfield C(x0, xx,..., xp) of Gp coincides with the partial order < defined in §3.

We observe that this partial order can be extended to the differential field (G, D).

Lemma 7.1. If Me Up-{i} andee UP, such that e<i, then MDe<DM.

Proof. If M=Xn'Xn\x.xpp-»  with w#0,  then by routine calculations

m(x0-xx.xn)~1~M-1DM. On the other hand e = xbm-x^+x.xp"-m with

b<0. Then De~b(x0• jca.xm)~1e<M'1 DM by lexicographic comparison

of exponents. Thus M De < DM.

Lemma 7.2. If{M, N}<= Up, N¿ 1, such that M<N, then DM< DN.

Proof. M<N implies M=Ne for some eeUp with e<i. Hence DM=eDN

+ NDe. Now eDN <DNsincee<l and NDe < DN by Lemma 7.1. Thus DM< DN.

Lemma 7.3. Let Gp, G, D, C, Up, U, < and the logarithmic sequence {x0,xx,...}

be as defined above, then

(i) the ordered pairs (Gp, < ), (G, < ) are fields with asymptotic order (for the

definition of asymptotic order (see [7, p. 231])).

(ii) the  ordered quadruples   Xp = (Gp, <, Up, C)   and  X= (G, <, U, C)   are

graduated fields (see [7, p. 231]).

(iii) (Xp, D) is a graduated differential field. This means DC={0} and D is stable

at Up-{\}(s). (See also [8, Definition 20].)

(iv) (X, D) is a graduated logarithmic field.

(8) See Definition 17 of [7].

(9) D is stable at Uv-{\) if M<N implies DM< DN whenever M s Gv and Ne U,-{\}

(see also [8, Definition 18]).
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Proof, (i) and (ii) follow from the order relation defined in Gp. To show (iii) it is

enough to show D is stable on Up — {1}(9). This follows from Lemma 7.2. (iv) is

obvious.

Lemma 7.4. Let y e (C(x0, xx,..., xp), D). Let m be a nonzero rational number.

Then (C< j>, D) and (C< jm>, D) have the same transcendence degree over C.

Proof. Suppose m = a\b with a and b integers, ¿>>0. Then (C<j>, D) is an

algebraic extension of (C(ya), D). Hence the transcendence degree of (C(ya), D)

is same as the transcendence degree of (C(y), D). Similarly (C(yal*), D) is an

algebraic extension of (C<ja>, D). Thus (C</">, D), (C<ja>, D) and (C<j>>, D)

have the same transcendence degree over C.

Theorem 7.1. Let m be a nonzero rational number, then

(i) the transcendence degree of (C((x0- xx.*P)m>, D) is p+l over C.

(ii) the transcendence degree o/(C<xp>, D) is p+l over C.

(iii) let   Vp = (x0'Xx.xp)m,  then   Vp, DVP,..., DPVP are algebraically  in-

dependent over C.

(iv) x?, Dxp,..., D"xp are algebraically independent over C.

(v) Vp and xp satisfy no algebraic differential equation of order less than p+l.

Proof, (i) and (ii) follow from Theorems 6.1 and 6.2 and Lemma 7.4 above,

(iii) and (iv) follow from (i) and (ii). (v) follows from (iii) and (iv).

8. Applications.

Definition 8.1(10). Let P be the algebraic differential operator defined by

(I) P(y) = 2 <VHW.(W>,   OieC.

We say P is homogeneous of degree difiQ + ix-\-V ip = d, and is isobaric of weight

W if ix + 2i2+ ■ ■ ■ +pip= Wfor every monomial effectively present in the right side

of formula (I).

Lemma 8.1. Let P be the algebraic differential operator given by formula (I)

above. Let d and W be positive integers. Let P be homogeneous of degree d and

isobaric of weight W. Let m be a rational number and q = dm—W. Then under

the substitution y = xô-z, the expression Xô"-P(y) is transformed into

Q(z) = 2 bfZ¡o(x0Dz)h.((xoDyzyv

where bf e C.

Proof. By formula 66(c) of [8], or induction on k

(II) Dk[x%z] = x£ - * • 2 Sk,i(m)(x0Dy "¡ • z
i = 0

(10) See §§2-4 of [8].
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for any positive integer k. Substitution of y=x^z in P(y) with the aid of formula

(II) establishes the Lemma.

Definition 8.2. The operator Q of Lemma 8.1 will be called the m-image of the

operator P given by the formula (I).

Theorem 8.1 (Strodt). Under the hypotheses of Lemma 8.1, if m is nonzero

(rational), then Q effectively involves terms of weight less than W.

Note. This theorem was proven by W. Strodt in the general context of a

graduated logarithmic field (cf. [8, §69]). The proof in [8] depends upon the

analytic proof of a special case of this theorem [6, §61]. We eliminate here this

dependence upon the analytic proof.

Proof of Theorem 8.1.   P( Y) = 2 a¡ Y'°(D Y)^.(Dp Y)'> and

Q(Y) - 2 aiY'o.(x0DY+Sxx(m)Y)h.([x0D]pY+ ¿ sW^lx^Y^YJ

= P( Y, x0D Y,..., [x0D)p Y) + H( Y, x0D Y,..., [x0D]p Y)

where

P( Y, x0DY,..., [x0D]p Y) = 2at Y'o(x0D Y)h.([x0D]p K>.

It is clear that all the terms of H( Y, x0D Y,..., [x0D]p Y) have coefficients in C and

are of weight less than W. Suppose H(Y, x0DY,..., [x0D]pY)=0, then

(HI) Q( Y) = P( Y, x0DY,..., [x0D]p Y).

If ye C(x0, xx,..., xk), k<p, then

(IV) P(Ey, x0DEy,..., [x0D]pEy) = P(Ey, EDy,..., EDpy)

= EP(y)   by Lemma 5.1,

where Fy(*o> xx,.. -,xk)=y(xx,x2,..., xk + x),   (Definition   3.1).    Since    W>0,

F(1)=0 hence

0(1) = Xo-dm*wP(x%) = F(l, x0Dl,..., [x0D]pl)   by (III)

= 0.

Thus F(xo,)=0. Now suppose that for &>0, P((x0-xx.xk.x)m) = 0. Then

xô dm+wP((x0 -xx.xkT) = Q((xx -x2.xkT)

= P((xx-x2.xk)m, x0D(xx-x2.xk)m,...,

[x0Dp](xx-x2.xkr)   by (III)

= EP((x0-xx.xk.j)"1)   by (IV)

= 0.

It thus follows by induction that P((x0 -xx.xp)m)=0. This contradicts Theorem

7.1(v) and completes the proof.
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Theorem 8.2 (S. Bank). Under the hypothesis of Lemma 8.1 if m=0 and

P(Y)^cYd-w-(DY)w, c e C-{0}, then Q effectively involves terms of weight less

than W.

Note. In the case where C is the field of complex numbers and x0=x, xx

= log x,..., xp = log xp.x, this theorem has been proven by S. Bank[l, Lemma 13].

Proof of Theorem 8.2. As in the proof of the previous theorem

fi( Y) = P( Y, x0DY,..., [x0DY Y) + H( Y, x0DY,..., [x0D]> Y).

If we suppose P(Y) = cYd~w (DY)W + T(Y) where T(Y)¿0 and has its co-

efficients in C and is homogeneous of degree d, isobaric of weight W and is of order

£2, then Q(Y)=cYd-w-(x0DY)w+R(Y, x0DY,..., [x0DfY) where 7? is the

0-image of T( Y) (see Definition 8.2). If the conclusion of the theorem is assumed

false, then 77(F, x0DY,..., [xoD]pY)=0. Thus

(V) T( Y, x0DY,..., [x0D]> Y) = R(Y, x0DY,..., [x0D]' Y).

Since every term of T(Y) is of order =2, T(xo)=0. Now suppose that for k>0,

T(xk-x)=0. Then

xST(xk) = R(xk, x0Dxk,..., [x0D]"xk)

= T(xk, x0Dxk,..., [xoDYxk)   by (V)

= ET(xk_x)   by (IV)
= 0.

It follows by induction that T(xp)=0. This contradicts Theorem 7.1(v) and

establishes the theorem.

References

1. S. Bank, On the instability theory of differential polynomials, Ann. Mat. Pura Appl. (4)

74(1966), 83-112.

2. E. R. Kolchin, Extensions of differential fields. I, Ann. of Math. (2) 43 (1942), 724-729.

3. -, Differential algebra (to appear).

4. I. Kaplansky, An introduction to differential algebra, Hermann, Paris, 1957.

5. J. F. Ritt, Differential algebra, Amer. Math. Soc. Colloq. Publ., Vol. 33, Amer. Math.

Soc., Providence, R. I., 1950; reprint, Dover, New York, 1966.

6. W. Strodt, Contributions to the asymptotic theory of ordinary differential equations in the

complex domain, Mem. Amer. Math. Soc. No. 13 (1954).

7. -, On the algebraic closure of certain partially ordered fields, Trans. Amer. Math.

Soc. 105 (1962), 229-250.

8.-, Graduated logarithmic fields and stability, Univ. Wisconsin MRC Tech. Summary

Rep. No. 489, 1964.

9. O. Zariski and P. Samuel, Commutative algebra, Vol. 1, Van Nostrand, Princeton, N. J.,

1958.

University of Illinois,

Urbana, Illinois


