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Introduction. The object of this paper is to describe a transfer scheme that

converges to the kernel of a game and another scheme that converges to the bar-

gaining set.

Both the bargaining set and the kernel can be described as payoff vectors in

which every objection (appropriately defined for each case) by one player against

another player has a counter-objection. If, for a given payoff vector, a player i can

sustain an objection against another player j, a reasonable negotiation step might

be for j to transfer enough of his payoff to i so that i can no longer sustain his

objection. This results in a new payoff vector subject to further negotiation. We will

show that any infinite sequence of such transfers causes the payoff vector to con-

verge to a vector in the appropriate bargaining set provided only that maximal

transfers are frequently made. Thus negotiation can approach the bargaining set

without the players solving the defining conjunctive-disjunctive system of linear

inequalities. Also, this scheme can be used as a computational technique to find one

and possibly more bargaining points. The desired convergence is established by

proving the convergence of a general transfer scheme of which the kernel and

bargaining set schemes are special cases.

For the purpose of this paper, a game is given by an ordered pair (N, v) where N

is an «-element set of players and v, the characteristic function, is a zero-one

normalized set function over the subsets of A'' (i.e. v satisfies v({i})=0 for all i in N

andv(N)=l).

Let F be the space of real «-vectors indexed by N and let A be the set of all group

and individually rational payoff vectors. Under the zero-one normalization, A is

the set of x in F such that

(1) 2 X' " 1 and x< = °       for a11 'in N-
N

For Ss N and x in F, we define

(2) e(S,x) = v(S)-IsXl,

the excess of S in x. For distinct players / andy and for all x in F, define

(3) Sij(x) = max {e(S, x) | {/} çjç N-{j}}
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the maximum excess of i over j. Intuitively, íi;(x) represents the potential payoff

units which player í can offer the members of some coalition S to act for their own

advantage against the interest of player / This quantity plays a key role in what

follows.

Transfers and AT-transfers. If x is in A, a and b are distinct players in N, and

a = 0, then y in A is said to result from x by a transfer of size a from b to a if and

only if

(4) y a = xa+a,

(5) yb = xB-a,

(6) v¡ = xt   otherwise.

We say that v is the result of a K-transfer of size a if, in addition to (4), (5), and (6),

also

(7) sab(y) ^ sba(y).

Lemma 1. If y results from x by a transfer of size a from b to a, then

(8) sab(y) = sab(x)-a,

(9) sba(y) = sba(x) + a.

Proof. For all S, {a}QS^N-{b}, equations (2), (4), and (6) give

e(S, y) = v(S) — 2 xi ~ xa — a — e(S> x) — a.
S-a

Since each excess of a over b is reduced by a, so must the maximum excess given in

(3) and thus (8) is proved. A very similar argument proves (9).    |

From Lemma 1 and (7), we see that a A-transfer from btoa may be described as

transfer which reduces the difference sab(x) — soa(x) without making it negative.

Lemma 2. If y results from x by a K-transfer a from b to a, then for all distinct i

andj,

(10) sit(y) > sao(y)       implies       stj(x) ^ %(v).

Proof. Let S be a set such that {i}ZSsN-{j} and e(S, y)=su(y). If b is in S,

then a must be in S, for otherwise we would have from (3) that

sba(y) ^ e(S, y) = stJ(y) > sab(y)

which contradicts (7). Therefore (4), (5), and (6) imply Zs(V(—x¡) = 0 since the

only possible negative term in the sum would be vö — x0= — a in which case the sum

would also contain the compensating term ya—xa=oc. Therefore 2sJ;¡>2s^¡

which implies e(S, x)^e(S, y) and we get

Sii(x) ^ e(S, x) 2: e(S, y) = Sii(y)

which is (10).
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Thus a F-transfer cannot increase the larger values of sif. An examination of this

constraint in more detail will give the bounds that ensure convergence. To this end,

we now introduce some new notation.

For each x in F and Hk^n(n-l), let Hk(x) be a A: element set of ordered

distinct pairs on N such that sy(x) ^ siT(x) for all (ij) in 77fc(x) and all (ij') not in

Hk(x). Let

(11) <pk(x) =  2 su(x)-
HjtOi)

In other words, <pk(x) is the sum of the k largest í¡,(x).

Lemma 3. 7/x and y are in A, then

(12) Wk(y)-<Pk(x)\ S k.

If y results from x by a transfer of size <x, then

(13) Wk(y)-9k(x)\ = k-a.

Proof. Because x and y are in A, we know from (1) that for any S, |2s *i - 2s y¡\

= 1. This implies that e(S, x)^e(S, y)— 1 and consequently si;(x) ä ji;(y) — 1 for all

distinct pairs i and j. Using this last inequality and the definition of 77fc, we obtain

<Pk(x) =   2 5<¿*) =   2 *<(*) =    2 C%0')-0 = 9»fcO0 -¿
«*(*:) Hk(!/) H*(y)

which is equivalent to <pk(y)—<pk(x)~k and this inequality together with the sym-

metry between x and y gives (12). In case where y results from a transfer of size a,

equations (4), (5) and (6) give |2s** — 2s v¡|^a and the same chain of reasoning

gives (13).    |

Lemma A. If y results from x by a K-transfer of size a, then there is a k such

that

(14) <Pi(y)-<Pk(x) = -«,

(15) 9k(y) - 9k(x) S 0       for all k á £

Proof. Let the F-transfer be from player b to player a. Let k be the number of

ordered pairs (ij) such that sl}(x) = sab(y). Clearly k= 1 by (8). Let k satisfy k = k,

and let

/ = min {sy(x)}.

Observe that

(16) / è sab(y)

because of the choice of k. Since 77k(x) and Hk(y) are k element sets, there is a

one-to-one correspondence between these sets such that pair (ij) corresponds to
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itself for all (ij) in HK(x) n Hk(y). Let (y) be an arbitrary element of Hk(y) and

tj)(ij) the corresponding pair in Hk(x). If (case 1) stj(y)^l, then automatically

(17) sfJ(y) ^ Sw^x)

by choice of /. If (case 2) stj(y) > I, then (16) and (10) together give ■%(*) ̂ sj;( y) > /.

This implies ((/) is in Hk(x) which implies </i(y') = (y) and ( 17) again is true. Thus ( 17)

is always true and it follows that

(18) 9>*O0-9*(*) =  2 (syOO-W*)) = 0

which is (15).

In the special case k = k, (ab) is in Hk(x) by (8) and the definition of k. If (case 1)

iJ!~1(ab)=ab then equation (8) gives

(19) s*-\m(y) S sab(x)-a.

If (case 2) i¡>-1(ab) = (a'b')¿(ab) then faa'b')¥=(a'b'), (a'b') is not in Hk(x), and

sa-b-(x)<sab(y) by definition of k. Because of (10), sa^(y)>sab(y)>sa^(x) is

impossible and so we must also have sa'v(y)¿sab(y). This inequality with (8) gives

(19). Thus in either case, (19) holds and the ip~1(ab) term of (18) has value —a.

Since the other terms have value ^0 by (17), this proves (14).

Now we are ready to apply the lemmas to bounds of sequences. Assume that

{x1} is a sequence of vectors for i^O such that each xi+1 results from x' by a K-

transfer of size a\ For each r ^ 1, let

r-l

(20) Tk = 2 max (0, ^(x*+1) - 9k(x%
o

(21) D'k - - j min (0. <P*(*i + x)-9Áx%

Ik is just the sum of the increases in the first r values of <pk and Dk is the absolute

value of the sum of the decreases.

Lemma 5. The quantities defined above satisfy the following three relationships:

(22) Húk  'S    2>ï,
láJ'<k

(23) Dk SK + k,

r-l n-(n-l)

(24) 2*'^  2 ^-
0 k=l

Proof. To save space, we represent the terms of (20) and (21) by

8¿(i) = max(0,<pfc(xi + 1)-9^¡)).

8-(i)= -min(0,<pfc(xi + 1)-^(xf)).
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If (case 1) 8fc+(0 = 0, then

(25) «(/)$*• I   *r(0

since the right-hand terms (if any) are always nonnegative.

If (case 2) S¿(0>0, then the k of Lemma 4 (with x=x\y=xi + 1) satisfies k<k

because the inequality of (15) fails. Inequality (14) is equivalent to the statement

(25a) 8r (0*«'

and this together with (13) implies

8k+(0á*8*(0S*-2   TO-
l£i<k

Thus (25) holds in either case and adding (25) from i equal 0 to r— 1 gives (22).

Since k can be no larger than n ■ (n — 1), the number of distinct ordered pairs on N,

(25a) gives
n-(n-l)

«* = ss-(o é 2 8r(0

which sums to give (24).

To prove (23), observe that

Sk(i)-K(0 = 9k(xi)-<Pk(xi + 1)

which sums to give

Dk-Fk = ?k(x0)-?k(xT)

and the right-hand side of the equation is less than k by (12) and inequality (23)

follows.    |

Theorem 1. Given a set of players N, there exists a constant ß(n) such that for all

zero-one normalized characteristic functions vonNand all K-transfer sequences {x'} on

(N, v) with sizes a\

(26) 2^ = ß
1=0

for all integers r.

Proof. Equation (22) says that 7[ = 0. Therefore, by (23), D\^l. Assuming that

there are bounds for 7J and D) for j<l, (22) gives a bound for 7,r and then (23)

gives a bound for D\. Therefore,- by induction, all the Ik and Dk have bounds. The

derivation of these bounds has been independent of N, v, and {x'}, except for Lemma

3 where the normalization was used (it was assumed that A is given by (1)). There-

fore, by (24), 2 «¡ has a bound which depends only on n.

Demand functions. Given a game (N, v), let D={dij} be a set of functions

indexed over all ordered distinct player pairs such that each rfy maps A into the

nonnegative real numbers. A transfer of size a from j to i whereby y results from x is
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called a D-bounded transfer if and only if a ¿ d^x). A member </¡; of D is called a

demand function if and only if

(27) du(x) ¿ Xj  for all x in A.

Observe that any a such that x¡<a is automatically disqualified as a transfer

amount from j to i since equation (5) would require the obtained vector to be

outside of A. On the other hand, a ^ x¡ ensures that such a transfer is possible. Thus

the term "demand function" is applied to those d^ which guarantee there be a

resulting vector in A; and all <fi; in D may be truncated by (27) into demand

functions without changing the set of 7)-bounded transfers. For unnormalized

games, (27) must be replaced by dtj(x) èxt — v(i).

For a given game and a given set of demand functions D, let

JiD = {x in A | dij(x) = 0 for all dif in D}

be called the bargaining set with respect to D.

J(D is just the set of x for which no player has a nonzero demand against another

player and it will be shown that under suitable choices of D, JiD can be made into

the bargaining set Jt\ or the kernel.

If v results from x by a 7>bounded transfer of size a, we say that it is a D-

bounded transfer of maximal size if there is no z in A and ß > a such that z results

from x by a ¿»-bounded transfer of size ß. When D is a set of demand functions, a

maximal size transfer is achieved by choosing (y) to maximize dtj(x) and then

transferring dit(x) from j to i. We can now state some conditions under which a

series of transfers will converge to JtD.

Theorem 2. Let D={di}} be a set of lower semicontinuous demand functions on

game (N, v) such that all D-bounded transfers are K-transfers. If {x'} for /äO is a

sequence of points in A such that each x'+ ' results from x' by a D-bounded transfer of

size a* and if an infinite subset of the a' are maximal, then the sequence has a single

limit point x and x is in JiD.

Proof. There is a real number R such that J.T a' = R because the partial sums

are monotone increasing and bounded by the ß of Theorem 1. This implies that the

sequence {x'} has a single limit point x because A is compact and because a sequence

approaching two points would require 2 <*' = °o in order to oscillate between dis-

joint neighborhoods of those points. Suppose that for some a and b, daD(x)>0.

Choose a 8 such that 0 < 8 < dab(x). Because dab is continuous, there is an e > 0 such

that

(28) 2 \xi~xÁ = £ impies dab(x) g S.

Let r be such that 2" a;<min (e, 8). It follows that for i^r,

2 \x*j—Jfy| < e   and   a' < 8.
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These inequalities imply by (28) that ai<dab(xi) and so none of the a* for i>r are

maximal. This contradicts the assumption that an infinite subset of the a' are

maximal and the theorem is proved.

It should be noted that the maximality condition of the theorem can be replaced

by any condition which states roughly that arbitrarily small transfers are not

always made when much larger ones are possible. Also, convergence is assured even

if the transfers are F-transfers instead of merely being F»-bounded. Thus, even if

negotiators' transfers crudely approximate the amounts suggested by the du,

convergence is ensured if they stick to F-transfers and will approach JiD if they do

not always neglect the larger demands.

Applications to the kernel. The kernel Jf" of a game (N, v) is the set of points x

in A such that for all distinct i and j in N,

(29) Sij(x) ^ Sji(x) or x{ = 0.

Set Jf is sometimes ([2] and [3]) called the kernel with respect to coalition struc-

ture N. Other coalition structures are discussed later. The kernel is related to the

previous concepts by the following result:

Theorem 3. For each ordered pair of distinct players i andj, let

kij(x) = min ((íí3(x)-jíí(x))/2, x¡)   ifs{j(x) = sn(x)

= 0 otherwise.

Let K={kij). Then

(i) the ktj are demand functions;

(ii) transfers are K-bounded if and only if they are K-transfers;

(iii) JÏK is the kernel;

(iv) set K satisfies Theorem 2.

Proof. By definition, kia satisfies (27) and (i) is proven.

If y results from x by a transfer of size a > 0, (7) is equivalent to

(30) a = (sab(x)-sba(x))l2

because of (8) and (9) and so (30) is necessary and sufficient that y results from a

F-transfer. As discussed before, (27) is necessary and sufficient that there be any

transfer of size a from b to a. Thus (27) and (30) combine into the condition

« ¿ kab(x) which is necessary and sufficient that there be a F-transfer of size a from

b to a and (ii) is proven.

The condition kjt(x)=0 and condition (30) are both equivalent to the condition

that at least one of the three following hold:

Sij(x) > Sji(x),

Sij(x) = Sji(x)   [i.e. (Sji(x)-Sij(x))l2 = 0],

x¡ = 0.
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Part (iii) follows. The demand fonctions k^ are obviously continuous and because

of (iii), Theorem 2 is satisfied and (iv) is proven.

Part (ii) of the theorem explains the notation of previous sections: "A-transfers"

are now seen to be the same thing as " A-bounded transfers." Part (iii) says that K

is a set of demand functions which determine the kernel. It follows that any JtD

satisfying Theorem 2 must contain the kernel.

A method finding a point in Cf can now be stated due to part (iv) and Theorem 2.

Given a point x in A, compute the various kKj(x) and pick an (ab) such that kab(i:)

is greater than or equal to any other kif(x). Transfer amount kab(x) from b to a.

The result is a new vector y in A. By repeating this process on y and the succeeding

resulting vectors, a sequence of vectors is obtained which converges to the kernel.

This scheme was first postulated by M. Maschler at the 1965 Jerusalem Conference

on Game Theory where the convergence was given as an open problem. There are,

however, some undesirable properties of this method regarding the speed of con-

vergence and knowing when one is close to cf. These are best brought out by a

couple of examples.

Example 1. For e>0, consider the game defined over N={1, 2, 3,4, 5} by the

characteristic function v where :

v(S)= 1 if S has 4 or 5 elements;

y(124) = v(l 34) = i<234) = e(125) = »(235) = 1 ;

p(135)-l-«;
v(S)=0 otherwise.

The kernel of this game (and also the bargaining set) is the single point (1/3, 1/3,

1/3, 0, 0). The maximal A-demand at point x=(0, 0, 0, 1/2, 1/2) is e, the value of

k2i(x). Thus one cannot tell from « and the maximal demand how close one is to Cf.

Furthermore, the smaller the value of e, the larger the number of transfers required

to go from a- to a point close to Cf, and so the number of A-transfers required to get

within A of cf cannot be bounded by a function of n, A, and the maximal transfer.

When £=0, point x is in both the kernel and the bargaining set. Thus the situ-

ation may be understood in terms of the discontinuity of the kernel and bargain-

ing set as a function of v. Points near x for small e>0 are far from the kernel,

but they have small demands because they are near the kernel of a nearby game.

Example 2. Consider the six-person weighted majority game [16; 2,4,4,

5, 6, 7]. The kernel of this game consists of two points, pi = (0, 0, 0, 0, 1/2, 1/2) and

/>2 = (0, 1/5, 1/5, 1/5, 1/5, 1/5). (This kernel was discovered by A. Kopelowitz at the

Hebrew University using a computer.) For e^ 1/6, let

x(e) = (e, e, e, e, 1/2 — 2e, 1/2 — 2e).

The maximal A-demand for x(e) is e, yet the transfer sequences beginning at x(e)

for e>0 always converge to point/?2 instead ofpi (=x(0)). (This is because all the

SiÂPi) are 1/2 whereas some si; are 1/2 and some are less at x(e). Lemma 4 then

prevents convergence to pi.) The number of transfers required to get from x(e) to
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the limit pointp2 can be made arbitrarily large by taking e small enough. Thus even

for a fixed game, one cannot, as a function of the maximal demand, bound the

number of transfers required to get within A of the limit.

In spite of the worst case possibilities just discussed, this method programmed on

a GE-265 time-shared computer has proved to be quite useful in finding kernel

points and convergence has generally been very satisfactory. If necessary, algebraic

verification that a point x with very small maximal demand is near r/T can usually

be obtained using the profiles of Maschler and Peleg [3]. Those coalitions which

determine the values of the ii;(x) indicate which profile one should try to solve.

Application to the bargaining set.    We let symbols such as xs for Se N represent

real vectors indexed over subscripts from set S.

An objection to a vector xN in F by player i over player j is a vector ys such that:

(31) ieSandjiS;

(32) yk ^ xk      for all k in S;

(33) y¡ > x¡;

(34) 2y> = <s^
s

A counter-objection to an objection ys to xN by f over j is a vector zT such that:

(35) jeTandi$T;

(36) zk = xk      for all k in T;

(37) zfc ä yk      for all k in S n T;

(38) 2z*^ v^y
T

The bargaining set JÏ for game (A7, v) is the set of all x in A such that each

objection to x has a counter-objection. Set JV is often called ([1], [4], and [5]) the

bargaining set Jf? with respect to coalition structure N. Other coalition structures

are considered in the next section.

Given distinct players a and b in N, let Jtab be the set of all x in A such that every

objection by player a over player b has a counter-objection.

Lemma 6. Set J(ab is closed.

Proof. Suppose that x is a limit of {xr} in J¿ab. The compactness of A insures that

x is in A. Suppose that ys is an objection to x by a over b. Let y's be given by

y\ = Vi + (ya - x0)/n      for i in S-{a},

y'a = xa + (ya-xa)ln.

Equation (33) says that (ya-xa) is positive and it follows that 2s>"í<2s)'¡ and y's

satisfies (34). Thus y's is obviously an objection by a over b to each xr for r greater
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than some ß. Vector y's must have a counter-objection zTTr for each of these xr and

an infinite subset of the zrTr have the same TT = T. This subset has a limit zT which

is a counter-objection to y's regarded as an objection to x. Since yt'>yj for i in

S—a,zT is also a counter-objection to y¿- and x must be in Jiab.    |

Lemma 7. Gùœ« distinct a and b in N and an x in A, there is a minimal a = 0 such

that there is a point y in Ji' ab which results from x by a transfer of size a from b to a.

Proof. The y given by a = xb is obviously in J(aa since it is in A and vector

z(i>)=0 is a counter-objection to any objection to y by a over b. Since Jfao is closed,

there must be a minimal a.    |

The last two lemmas are also proved in [4]. We can now state the main result

of this section.

Theorem 4. For distinct a and b in N and x in A, let mab(x) be the a of Lemma 1.

Let M={mij}. Then

(i) the mti are demand functions;

(ii) J¿M is the bargaining set;

(iii) set M satisfies Theorem 2.

Proof. Statements (i) and (ii) are obvious from Lemma 7. If sn(x) > s^x), it is

well known that any objection y to x by i over j has a counter-objection. (The

larger or equal excess of j over i insures that any increases (yk—xk) for k in S can

be matched and a counter-objection sustained [2].) Thus M-bounded transfers are

all A-transfers. To prove the lower semicontinuity of my, let xk be a sequence of

points that converge to x, let ak=mij(xh:), and let yk be the points in Jt{j such that

yk results from xk by a transfer of size <xk from / to i. If a is any limit point of the ak,

the corresponding subsequence of the yk obviously converges to the point y which

results from x by a transfer of size a from j to i. This point is in Ji^ because Ji%j is

compact, hence mv(x) ^ a and «% must be lower semicontinuous. |

The mi} are actually continuous. We now know from Theorem 2 that any

sequence of maximal Af-bounded transfers converges to the bargaining set. This

convergence has the undesirable properties mentioned in Example 1 since the

bargaining set and the kernel are the same for that example.

Other coalition structures. The previous results can be applied to other coalition

structures in a rather straightforward manner. Given a coalition structure (i.e.

partition) 38={BX,..., J5m}, we replace set A by

A' = ¡x | xt ^ 0 for i in N and 2 xi = v(P) for B in ®\-

Equations (12) and (13) require a scalar change if v(B)> 1, the same as they would

under change of normalization, but they remain sufficient to prove Theorem 1. The

demand functions have to be defined with respect to 38 and require the additional

condition dij(x)=0 whenever i and j are not in the same B of 38. This condition
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together with (27) insures that there is always a ¿»-bounded transfer for all a _ dab(x),

and Theorem 2 holds. Appropriate versions of Theorems 3 and 4 follow.

These results give still another proof that the kernel and/or the bargaining set are

always nonempty for each coalition structure. Previous proofs appear in [2], [3],

[4], and [5].
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