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0. Introduction and notation. Almost everywhere direct products were first

introduced by Chang and Morel [1], and were discussed (and named) by Feferman

and Vaught [2]. These products are reduced direct products (see [3]) in which the

filter to be factored out is the filter of cofinite subsets of the index set. Alternatively,

it can be obtained from the direct product by identifying any two members which

differ at only a finite number of places, and defining the relations to hold if they

do so "almost everywhere" among the factors.

Theorem 1.3 below was obtained independently by Bjarni Jónsson and the au-

thor. In one form it states that, assuming the continuum hypothesis, a countable

almost everywhere direct product of models of the same countable similarity type

and each of cardinality ^ Xi is saturated. A detailed proof of this theorem will

appear in [15] and so we give only some indication of the method. The continuum

hypothesis is used only to show that the cardinality of the product is áXj.

One almost everywhere direct power is of particular interest. Named Q, it is

defined as follows: let E* denote the integers and D the filter of cofinite subsets of

cu; then Q=E*a/D. Q was defined by Nerode in [9], where he obtained results

connecting Q and the theory of isols. Other such results are obtained in §§1 and 3

below.

If [x] is in Q, we say [x] is indecomposable if, for every arithmetic formula <f>(v)

of one free variable, either [i|<£0c()] or [i\~</>(xi)] is finite. An indecomposable

subring of Q is a subring consisting entirely of indecomposable elements. The main

results of this paper (aside from Theorem 1.3) are that every maximal indecompos-

able subring of Q is a nonstandard model of arithmetic (Corollary 2.9) and that

every nonstandard model of arithmetic of power ^ Si is embeddable in Q as an

indecomposable subring (Theorem 2.11).

A ring A is said to be diophantine correct (cf. Nerode [10]) if every finite con-

junction of formulas of the form x+y=z, x-y=z or x# v which has a solution in A

has a solution in the integers. If we restrict the condition to conjunctions involving

at most one formula of the form jc# y, A is said to be weakly diophantine correct.

In Proposition 3.3 below it is shown that the subrings of Q of power ^ ^ are
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exactly the weakly diophantine correct rings of power $Ki. In Proposition 3.11

the same result is obtained for indecomposable subrings of Q and diophantine

correct rings.

Many of the results of this paper were announced in [11] and [12].

Frequently in what follows we shall be assuming the continuum hypothesis

(C.H.) which states that 2K<> = X^

Let / be an arbitrary set and t e w1. A system 9I = </1, R^w, formed by a non-

empty set A and r;-ary relations R} among the elements of A, is a relational system

having similarity type t = fa, index set J, universe A = |91|,y'th relation i?, (for jeJ).

We will also consider more general systems 2I' = </4, R¿, dkyj£j_keK where 91 =

(A, R^iej and dke A.

Corresponding to t above is a first order language Lt with symbols ~, A, v,

E, =, individual variables v0, vu v2,. . ., /¿-placed relation symbols P, for 7 e J, and

individual constants ck for k e K.

The theory of 31, Th (91), is the set of all sentences 8 which are true in 9t. If

Th (9t) = Th (91'), we say 91 and 91' are elementarily equivalent, written 91 = 91'. The

elementary type of a relational system 9Í is the class of all 93 such that Th (23)

=Th(9t).
We shall use the usual set operations and relations: u, n, —, £. The empty set

will be denoted by 0, the set of integers by E*, and the nonnegatrve integers by

either E or co. For a set A, 2P(A) denotes the power set of A and 9>tia(A) the set of

finite subsets of A. D is a filter over A if D is a collection of subsets of A ; 0 $ D;

x e D and x^y implies y e D; and D is closed under intersection.

Finally, the phrases "almost everywhere" and "almost all" in the sequel shall

always mean "except for a finite number".

1.   Q.
Definition 1.1. Let {%}ieI be a class of similar relational systems, 7 infinite,

D the filter of cofinite subsets of 7. We define the almost everywhere direct product

of the 91¡'s (see Feferman and Vaught [3]), written 23=n¡e/ %/T>. First we form

the direct product P of the |91¡|'s;

P = fg\g: I-+ U |«t|, g(i) e I9LJ for all i e 7}.

We then form equivalence classes [g] of members of P by setting gi equivalent to g2

if {' I gi(i)=g2(i)} s 7). Then 1931 is the set of equivalence classes which we get in this

way. Suppose j is fixed, R¡ is the y'th relation in %, and R¡ is an «-ary relation.

Define an «-ary relation R over 1231 as follows :

*([*l], • • -. ten])     iff    {i\Ri(gl(i), ..; ¿fn(0)} G D.

This defines a relational system 23 of the same type as the 9l¡'s. If 9Í¡=9Í for all i, we

say 23 is an almost everywhere direct power.
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Theorem 1.3 below was obtained independently by Bjarni Jónsson and the

author, using essentially the same proof. Since the proof will be published in [15] in

detail, we give here only some indication of the method.

Definition 1.2. Say the cardinality of 21 = k. We say 21 is saturated if the follow-

ing condition holds: whenever Iç |2I|, the cardinality of X<k, 18=(21, x)xeX, and

S is a set of formulas of L¡a9 each having only v0 free, if every finite subset of S is

satisfiable in 23 then so is 2.

Theorem 1.3 (C.H.). Let {21¡}(eo be a collection of relational systems with the

same countable similarity type and such that the cardinality o/9Ii= Xi. Let D be the

filter of cofinite subsets of œ. Then the almost everywhere direct product

93 = r[ieü) 3ti/2> is saturated.

In order to simplify the saturation condition, we apply successively Theorem 3.1

of Feferman and Vaught [2], an elimination of quantifiers technique due to

Skolem (see Theorem 6.1 of [2]), and König's infinity lemma. Finally we make a

construction similar to the "cut-and-paste" construction used in Lemma 2.13

below.

In [6] Keisler discussed ^E)l^tia(E) as a Boolean algebra and showed that,

assuming the C.H., it is the universal homogeneous Boolean algebra of power Xx

(see [7]). Since this Boolean algebra is the countable almost everywhere direct

power of the two-element Boolean algebra, by Theorem 1.3 it is saturated.

We now wish to consider a particular almost everywhere direct power, Q. This

is defined in Nerode [9]. Let E* denote the set of integers (positive, negative or

zero). Let D be the filter of cofinite subsets of a>. Then Q=E*a/D. That is, Q

consists of equivalence classes of countably infinite sequences of integers, where we

identify two such sequences if they differ at only a finite number of places. The ring

operations in Q are pointwise and well defined. The 'zero' and 'one' of Q are

obvious. So Q is a ring with unit. Notice that if we take x,yeE*a;

x=(x0, xlt x2,...), v=(v0, Vi, j2, ■ • •), [x], [y] the corresponding equivalence

classes in Q; then [x] = [y] » xt=yt for almost all iew, and [x]#[y] => x^yt for

an infinite number of i e w. Notice also that the cardinality of Q=2"°.

As a particular case of Theorem 1.3, assuming the C.H. (so that the cardinality

of Q = Xj), we have that Q is saturated.

Remark 1.4 (C.H.). In [9], Nerode introduced the notion of arithmetic isolic

integer, and called the ring of arithmetic isolic integers A*(A). He showed that

Q = A*(A). By the C.H., both have power Xx. Since Q is saturated (homogeneous-

universal) it follows from Theorem 3.5 of Morley and Vaught [7] that Q = A*(A)

iff A*(A) is saturated.

Definition 1.5 (Jónsson [4]). Let M be a class of similar relational systems and

91 e M. Say the cardinality of |9I| =k. We say 9lis Af-universal if every 93 e M such

that the cardinality of 1231 ^ k is isomorphic to a subsystem of 21.
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The next proposition is a special case of a (well-known) more general result.

Proposition 1.6 (C.H.). Since Q is saturated, it is N-universal, where N is the

elementary type of Q.

Nerode introduced the isolic integers A* in [8] and the arithmetic isolic integers

A*(A) in [9].

Proposition 1.7 (C.H.). A* and A*(A) can each be embedded as a subring of Q.

Proof, (i) By the C.H., the cardinality of Q = A*(A) = X1. We know Q is uni-

versal for its type. As remarked above, Q = A*(A). Hence A*(^4) can be embedded

as a subring of Q.

(ii) Let TQ denote the set of first order statements which hold in Q. Let A*

={A,}i6i. Lot

S = {xt # xk | j, kelandXj ¿ AJ

u {xj+xk = x¡ |7, k, le land Ay+Afc = A,}

u {Xj-xk = xt | j, k, le7and A,- Afc = A,}.

Claim that S u TQ is consistent. Let <f> be any finite conjunction of members of S.

It suffices for the claim to show that <j> is satisfiable in Q. Suppose <j> has the form

<p A ai A a2 A • • • A an where </> is the conjunction of the positive equations in <j> and

the ûj's are the inequations (of the form x,^xk). Let <¿i=^Aa¡, for i'=l to «. Of

course <f>t has a solution in A*. So by Theorem 2.1 of Nerode [8], 4>t also has a

solution in E*. If some x¡ appears in <j> but not in <£i; give it value 0 e E*. Call this

assignment of values to the variables appearing in <f> at. Repeat for each i, /= 1 to n.

Now for each variable xm appearing in <f>, define /■m = (r0n» ff, f2, ■. ■) e E*a by:

''ü-i)+A;n=the value assigned to xm in ah for j= 1 to « and for k=0, 1,2,_If we

now replace each xm in <f> by [rm], <f> is satisfied in Q since each positive equation in <f>

is satisfied at every coordinate (using the rm's) and each negative one is satisfied

infinitely often.

So the claim is proven and S u TQ is consistent and so has a model by the

Completeness Theorem. But by the C.H. and the downward Skolem-Löwenheim

theorem (see Tarski and Vaught [14]), S u TQ has a model of power Xa, call it 91.

So A* is embedded in 9Í. But 91 = Q and Q is universal for its type. Hence 91 can be

embedded in Q and thus so can A*.

2. Nonstandard models of arithmetic in Q. We wish to introduce the notion of

an indecomposable sequence x in E*a, and consequently an indecomposable

M e Q.
We say <f> is a formula of arithmetic if <j> is a first-order formula involving the

relations +, -, = and the constants 0 and 1. If <j>(v) is an arithmetic formula of

one free variable, then the arithmetic set A^ is {p | p e E* and <f>(p) is a true state-

ment of arithmetic}.
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Definition 2.1. Say x=(x0, xlt x2,...) e E*°. We say x is an indecomposable

sequence if, for every arithmetic formula 4>(v) of one free variable, either {/ |<¿(x¡)

is true} or {/1 ~ ^(x¡) is true} is finite. Clearly the definition extends (is well defined)

to [x] e Q.

We say tf>(v) splits x (or [x]) if <f> is a witness to the fact that x is not

indecomposable.

Let ijj0, <pi, >f>2,... be a list of all arithmetic formulas of one free variable. The

list is clearly countable. One of A^a and A„#0 is infinite, say AWo. Choose x0 e Ato.

One of Ato r\ Al¡/1 and AtonA^^,1 is infinite, say the latter. Choose x1eAto

r\A„Wv Xx^Xq. One of A^nA^^^ n A^ and An n A„tl n A.^2 is infinite, say

the former. Choose x2 e AWo n ^.^n AW2, x2#*i, x2^x0. Repeat ad infinitum.

Let x=(x0, Xu x2,...). Clearly x is indecomposable; for if 4>(v) splits x, then <f> is

¡pi for some i and hence if we assume (without loss of generality) that in the process

described above A„#) was used, then {Jl&Ot/)} is finite (alternatively {j\ ~^¡(x,)} is

finite), i.e. {j\<j>(x,)} is finite, and hence <f> could not split x. In this way we can con-

struct 2N° such [jc]'s which are indecomposable.

In particular, suppose Ato is the set of nonnegative primes and we choose to

begin the process with it. As described we get x=(x0, xit x2,...) with the Xj's

distinct and positive primes. Let

v = (x0, x0, x2, x2, xt, xit x6, xe,...) = (yQ, ylt y2,...).

Since x is indecomposable, y is too. Let

w = x-y = (xl, x&o, x\, x3x2, x%, xsXi,...) = (w0, wti w2,...).

Now w is not indecomposable since wn, for n even, is a square, and wn, for n odd,

is not a square (product of two unequal positive primes cannot be a square) ; thus

w can be split by the formula (E,x)(v=x2). We have thus found two indecomposable

members of Q, [x] and [y], whose product in Q is not indecomposable.

Now let z=-y=(-x0, -x0, -x2, -x2, -x4, -xt,.. .) = (z0, zu z2,...). Let

t=x+z=(0, Xí—Xq, 0, x3 — x2, 0, x5—xt,.. .)=(t0, h, t2,...). But t is not inde-

composable since tn is 0 for n even and is not 0 (we choose x^Xj for i^j) for n

odd ; thus the formula v = 0 splits f. So we have found two indecomposable members

of Q, [x] and [z] (z is indecomposable since y was), whose sum in Q is not

indecomposable.

Definition 2.2. R is an indecomposable subring of Q if R is a subring of Q all of

whose members are indecomposable. R' is a maximal indecomposable subring of

Q if R' is an indecomposable subring of Q and is contained in no other such

subring.

For n e F*, (n, n,n,...)is clearly indecomposable. Thus E* is "contained" in Q

as an indecomposable subring, and we shall henceforth simply write ne Q.

If [z] e Q, then by E*([z]) we mean the subring of Q generated by F* and [z].
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Proposition 2.3. If [z] is indecomposable, then E*([z]) is an indecomposable

subring of Q.

Proof. Take any [x] e E*([z]). We must show that [x] is indecomposable. But

[x]=p([z]), wherep is a polynomial with coefficients in E*. That is, x=p(z), where

the operations are pointwise (given z, we can actually let x be p(z)). Suppose <f>(v)

splits x=p(z). Then >/i(v) = (Ey)[<f>(y) Ap(v)= y] will split z, which is a contradiction.

Corollary 2.4. Maximal indecomposable subrings R' of Q do exist.

Proof. Apply Zorn's Lemma.

Of course, for every R', E* s R'.

There is a well-known recursive function j : E x E -*- E, which is one-one and

onto, defined by j(x, y) = (x+y)(x+y+l)/2+x. Using this function we define

7: E* x E* -► E*, a one-one recursive function (but not onto) as follows:

J(x, y) = 2j(x, y) if x Z 0 and v £ 0,

= -2j(-x, -y) if x = 0 and y ^ 0,

= 2j(x, -y)+\ if x > 0 and y < 0,

= -[2j(-x, y)+1] if x < 0 and v > 0.

Define (abusing notation) 7: £* x E* x E* -> £"*, again one-one recursive and not

onto, by J(x, y, z)=J(J(x, y), z). Repeating, by induction we define J: E*n -» £*,

one-one recursive for all «.

If M> [y] e Ô define J([x], [v]) (pointwise) to be [z] € Q where zi=J(xi, y¡) for

all i. A similar definition defines 7: Qn ->- Ö for all «.

Further, if 7 has « arguments, we can define in the usual way recursive functions

Ku...,Kn of one argument with the property that J(Ki(v),..., Kn(v)) = v.

Lemma 2.5. If R' is a maximal indecomposable subring of Q, then R' is closed

under J.

Proof. We shall show that if [x], [y] e R', then J([x], [y]) e R'. The proof for

three or more arguments follows at once from the definition of 7.

Now [x] e R' implies x indecomposable, of course. So we must have (i) xt > 0 for

almost all i, (ii) xt < 0 for almost all i, or (iii) x¡=0 for almost all i; else one of these

formulas could be used to split x. Similarly for y. Assume, without loss of gener-

ality, that xt > 0 and v¡ < 0 for almost all i. So in this case J([x], [ v])=2j([x], — [ v])

+ 1. Thus it suffices to show j([x], ~[y])eR'. Now j([x], -[y])=j([x], [-v])

= 0'(*o, -y0)J(xi, -yi),j(x2, -y2),...). At once, ([*] + [-v])(M+ [-v] +1) e R'.

Call it [z]. Claim [z]/2 = [(z0/2, zJ2, z2/2, ...)]e R'. Let [z]/2=[w] (w^Zt/2) and

suppose [w] $ R'. Let M be the subring of Q generated by R' and [w]. Take [b] e M;

[b] has the form [a^M"-!- • • • + [a0] = [anwnl-+a„], where [a¡] e R' for 7=0

to «. If b is not indecomposable, suppose <f>(v) splits it. Now

[2nb] = [afl(2w)'l+an.1.2.(2w)n-1-(-an_2.22.(2w)n-2+.--l-2'la0].
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(Of course, we are operating pointwise on these sequences.) So

[2nb] = [anzn + 2an-1z»-1 + 22an.2zn-2+ ■ ■ ■ +2na0] e R'.

So 2nb is an indecomposable sequence. But the formula <f)(v) = (Eü)[2n-u=v /\<j>(u)]

splits 2nb, which is a contradiction. Thus b is indecomposable, and so M is an

indecomposable subring of Q properly containing R', again a contradiction. So

[z]/2 = [w]eR'. That is,

(M + [-j])(M + [-j]+D/2e7?'.

Consequently

j([x], l-y]) = (M + [-v])(M + [-v] + l)/2 + MeF'.

Clearly the procedure just described could be repeated if we were considering a case

other than x¡ > 0 and vt < 0 for almost all i. The lemma is proved.

Lemma 2.6. Suppose f(v0,..., vn) is an arithmetic function ofn +1 free variables;

and [a0], [a1],..., [an] e R', a maximal indecomposable subring of Q. Then if

[b] =f([a°],..., [an]) = [f(a°,..., an)] is the result of applying f to the a''s pointwise,

then [b] e R'.

Proof. Suppose [b] $ R' and let M be the subring of Q generated by 7?' and [b]. If

[c] e M, then [c] =p([b]) where p is a polynomial in one variable with coefficients

in R'. So [c] = [g (b, d°,..., dm)] where [d<] e R' for i'=0 to m and g is an arithmetic

function. But [b] = [f(a°,..., an)]. Thus [c] = [g(f(a°,..., an), d°,... dm)] with

[a*] and [dl] e R' and / and g arithmetic functions. Claim c is indecomposable. If

4>(v) splits c, define tp(v0, ...,vn, v'0,..., v'm) = <Kg(f(v0,..., vn), v'0,..., v'm)). Since

[a0],..., [a»], [d°],..., [dm] e R', [e] = [J(a°,..., a\ d\ ..., dm)] e R' by Lemma

2.5. But 8(v)=i/i(K1(v), ..., Km+n+2(v)) is an arithmetic formula, since <f>, Kt, g,/are

all arithmetic. Moreover, 8 clearly splits e, which is a contradiction. So c is in-

decomposable and M is an indecomposable subring of Q properly containing R'.

This is another contradiction. Hence [b] e R'.

The next theorem is one of the main results of this section. We assume F* is well-

ordered in such a way that if <f>(v) is an arithmetic formula of one free variable and

(EvW>(v) is true in F*, then the least v such that <£(u), i.e. pv<j>(v), is an arithmetic

function.

Theorem 2.7. Suppose R' is a maximal indecomposable subring of Q, <f>(v0,..., vn)

is an arithmetic formula of n +1 free variables, and [a0],..., [a71] e R'. Further,

assume 4>(a°,..., a") is true in E* for almost all i. Then 4>([a°],..., [an]) is true in R'.

Proof. Writing $ in prenex disjunctive normal form, we can assume the first

block of quantifiers is universal. (Otherwise we just tack on at the beginning a

superfluous universal quantifier.) We write <j> as

(Zj). • (z^Ey,)- ■ -(Ey^w,)- ■ (wp)(EUl)- ■ (Eut)- ■  [v A F]
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where T is of the form (or the negation of the form) a+ß=y,a-ß=y, or a=ß

where a, ß, and y may be variables or the constants [a0],..., [an]. Usually we will

omit from the notation the variables and constants of which T is a function. In the

formula above we should write

T(zi, ...,zq,yi,...,ym,wi,..., wp, uu .. .,ut,..., [a0],..., [an]).

This notation will be used only when changes in the 7"s are made.

Suppose we are given [b1],..., [bQ] e R'. Let i* be a fixed coordinate. Let c\ be the

least member of E* such that

(Ey2) ■ ■ ■ (Eym)(w2) • • • [ v A T(b},..., Z>?, c\, y2,..., ym,..., a?,..., of)].

Notice that we are using the /th coordinates of the a^'s and the bj,s. Now let c2 be

the least member of E* such that

(Ey3)- ■ -(Eym)(wi)- - -[v hT(b\,. ..,*?, d, cf,y3,.. .,ym,. ..,a?.of)]

and we again use the ith coordinates of the given sequences. Repeat this and get

Cj1,..., cf. Now suppose we are given [d1],..., [dp] e R'. Let el be the least such

that

(Eu2)- • -[v AlW,..., if, c},..., c?, d¡, ...,d?, e¡, u2,..., a?,.. .,af)].

Repeat in this way through all the variables of </>. So given [b1],..., [b9], [d1],...,

[dp],... eR', we define [c1],..., [c™], [e1],..., [é],... e Q in this way. Claim

v a Tdb1],..., [c1],..., [if1],..., [e1],..., [a0],...). Suppose there is a disjunct

A Tsuch that at an infinite number of coordinates (using the values from b1,..., c1,

..., etc.), a T is true in E * ; and at an infinite number of coordinates, a T is false

in E*. Define

¿fa, ...,z„,Wi,...,wp,...) = (Eyi)- ■ -(Eym)(Eui)- ■ (Eut)- ■ ■

{ Vi   is the least such that (Ey'2) ■ ■ ■ (^X^í) ' ' ' «)(^"i) • ' ' (Eu't) • [ V A J]

A y2 is the least such that (Ey3) ■ ■ ■ (Ey'm)(w'i) ■ ■ ■ (w'p)(Eu'i) ■ ■ ■ (Eu't) ■ [V A T(- j\- • )]

Aym is the least such that (w{) ■ ■ (w'p)(Eu'i) ■ ■ (Eu't) • [ v A T(-yx■ -ym- )]

A «i is the least such that (Eu2) ■ (Eu't) • [ V A T( ■ Vi • ymux ■ )]

etc.
A(A70}.

Now jqpi..., [b«], [dll..., [d>],.. .)= [a] e R'. But <KKi(v), K2(v),...) splits

a, a contradiction. So there must be a disjunct A T from v A T with the property

that at almost all coordinates (using the values from a1 • ■ ■ b1 • ■ ■ c1 • • • etc.), A T is

true in E*. Hence the claim has been proven.

Now we claim that [c1],..., [c"], [e1].[é],... e R'. p.yx(Ey2)- - -(Eym)(wi)

■ ■ -(wp)(Eui)- ■ (Eut)- • • [ v A T(xi- ■ -Zi- ■ ■)] is an arithmetic function with free
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variables xu ...,zx,_ We obtained [c1] from [a1]- ■ [b1]- ••   by pointwise

applications of this function. So by Lemma 2.6, [c1] e R'. In a similar way [c2],...,

[cm] e R'. Then again [e1] e R' because we can use

jM/i(Fu2)- ■ • [V Ar(*i■■■z1---y1---w1---wp, uj]

and apply it to [a1]- ■ ■ [b1]- ■ ■ [c1]- ■ ■ [d1]- ■ ■ [dp]. Thus we have the second claim,

and so ¿([a0],..., [an]) is true in R'.

Corollary 2.8. Assume § and [a0],..., [an] are as in the theorem. Then

if>([a0],..., [an]) true in R' o <f>(a?,..., af) true in E* for almost all i.

Proof. One direction is just the theorem. Suppose <£([<z°],..., [an]) is true in R'.

If it is not the case that <f>(a°,..., af) is true in F* for almost all / then <j>(a°,..., af)

is false in F* for almost all i, because otherwise <f>(Kx(v),..., Kn+1(v)) would split

J([a°],..., [an]) e R'. So ~4>(a°,..., af) is true in F* for almost all i, and hence

by the theorem ~4>([a°],..., [an]) is true in R', a contradiction.

Corollary 2.9. Every maximal indecomposable subring R' of Q is a nonstandard

model of the true statements of arithmetic <F*, +, -, =, 0, 1>.

Proof. In Corollary 2.8, take [a0],..., [a71] e E* £ Q. This gives at once that R'

is a proper elementary extension of F*, and hence is a strong nonstandard model

of arithmetic (see Robinson [13, p. 243]).

Corollary 2.10. Assume f(x0,..., *n) is an arithmetic function and [a0],...,

[an] e R'. Thenf(a?,..., af) = bi is true in E* almost everywhere <>f([a°],..., [an])

= [b] is true in R'.

Proof. The ' <= ' follows at once by considering / as a relation and applying

Corollary 2.8 ([b] e R' by assumption). Now assume that [b] e Q is gotten by

pointwise applications of / to [a0],..., [an]. But then [b] e R' by Lemma 2.6.

So now again, considering / as a relation, apply Corollary 2.8 and we have the

'=>' part.

Suppose 2I = <^4, =, +, -, 0, 1> is a strong nonstandard model of arithmetic.

Theorem 2.11. 7/21 is a strong nonstandard model of arithmetic and the cardinality

ofA^'&i, then 21 can be embedded in Q as an indecomposable subring.

To prove this theorem we require Lemma 2.13 below.

Definition 2.12. We wish to define the notion of a primitive formula (cf.

Robinson [13, p. 92]). Let d0, du d2,... be constants; x0, xu x2,... variables. Let

•Ao, 4>u 4>2,--- be a list of all arithmetic formulas of one free variable. F0,7i, T2,...

shall denote formulas of the form u+v=w, u-v=w, and u ̂  v, where u, v, and w may

be di's or x¡'s. A primitive formula (or sentence) is a quantified conjunction of 77s,

<f>,(xk)'s, and <f>,(dkys with all quantifiers of the form (Ext).
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Lemma 2.13. We assume that: D is a countable subring o/9l; D^E*;fis a ring

isomorphism of D into a fixed R'0, a maximal indecomposable subring of Q ; and

be A — D. Further assume that if*fi(d0,.. .,dn) is a primitive sentence with constants

d0,...,dneD andiji is true in 91, then >p(f(d0),.. .,f(dn)) is true in R'0. Then there is a

maximal indecomposable subring R'i of Q such that f can be extended to /', a ring

isomorphism of the ring D' generated by D and{b} into R[, with the property that if

ifi(dó,.. .,dm) is a primitive sentence, d[ e D', and true in 9t, then ^(f'(d'o),.. .,/'(</«))

is true in R[.

Proof. Let D = {d0, du d2,...}, countable. Let >/j0, tfiu i/i2, ... be a list (countable)

of all primitive sentences which have constants out of the set D u {b}, with b

definitely appearing in each fa, and which are true in 91. Of course each ce A has the

property that for every fa, either fa(c) or ~ fa(c) is true in 91. Notice that any finite

conjunction of primitive sentences is equivalent to a primitive sentence. Now fa¡(b)

is true in 91. Thus (Ex)ifi0(x) is also true in 91, and by assumption then, if we replace

the constants dt by the constants f(dt), (Ex)ifi0(x) is true in R'0. So we get indecom-

posable sequences in E*a b°, xi,Q, é (replacing respectively b, the variables xt in fa,

the constants dt in <p0) such that every conjunct of <fi0 is satisfied in R'0, when these

substitutions are made. Now, by Corollary 2.8, we get the existence of a coordi-

nate p0 such that every conjunct of fa is satisfied coordinate-wise in E* at every

coordinate ä/>0, when the above substitutions are made. fa(b) a • • • A fa(b) leads to

the sentence (Ex)[ifi0(x) A • • • A fa(x)] which is equivalent to a primitive sentence.

We can now repeat the process above, getting indecomposable sequences bn, x*-n, é

(replacing respectively b, the variables xh and the constants dt used in 4>o(b) a

• - • a >fin(b)) with each conjunct of ^0(¿>n) A • • • A i/in(bn) satisfied coordinate-wise in

E* at each coordinate ^pn. (We choosepn>pn-x also.) We repeat for all «. Notice

that the sequences é which we get are the same each time; they are the (fixed)

representatives from f(d¡). However the V and xiJ may differ with each /

Now define the new sequences'in E*a as follows:

Cj = a?     for all coordinates i satisfying /' < px,

= a"     for all coordinates i satisfying pn S i < pn + i,

yl = x{'°   for all coordinates / satisfying i < pu

= x{'n  for all coordinates i satisfying />„ ̂  i < pn+i.

Of course it is intended that c e E*a correspond tobe A, and y' e E*a to the vari-

ables Xj. The sequence c is indecomposable because, from the construction, if b

satisfied <f>¡ in 91, then from some coordinate on, c¡ satisfies <¡>j and hence <f>j could not

split c. (Since b satisfies fa in 9t, 4>j(b) will eventually appear as a conjunct in some

tf/k.) Similarly the sequences y' are indecomposable. Moreover any polynomial z

in the ys, c''s, and c is also indecomposable since z will eventually be defined and

its properties "discussed" in the ^('s and hence, for the same reasons as above,
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it will be indecomposable. Consequently the yJ's, e''s, and c generate an indecom-

posable subring R in Q and we get a maximal indecomposable subring R[ 2 R

2/(7)) u {c}. We define/' =/on D,f'(b) = [c], and we define/' on the subring D' of

2Í generated by D and b in the usual way. CIearly/'(7J>') s R £ R{. Let ^(¿0, • • •, <&)

be a primitive sentence, constants in D', and true in 21. But the d[ are generated by

d/s e D and by b. Hence there is a primitive sentence 0(¿>, d0,..., dt), with constants

in 7) u {b}, which is equivalent to i¡> and which is true in 2t. From the construction

above, 8([c],f(d0),... ,f(dt)) is true in R{. But then so is i(f'(d'0),... ,/'(<&)), and

the lemma is proved.

Proof of Theorem 2.11. Let a0, a1,a2,...,aa,...,a<w1 be a list of A—E*.

Apply Lemma 2.13 with D=E*, b = a0,f= the identity map, R'0 any fixed maxi-

mal indecomposable subring of Q. The condition on primitive sentences holds

because 21 and R'0 are strong nonstandard models of arithmetic. By transfinite

induction, we successively apply the lemma to the a¡s and this embeds 91 in Q as an

indecomposable subring.

Corollary 2.14. Every maximal indecomposable subring R' of Q is uncountable.

Proof. Suppose R'0 has power X0. There exists a proper elementary extension 23

of R'0 with the cardinality of |23| =X0. Take b e |23| -R'0. Apply Lemma 2.13 with

D = R'0,f =the identity map, R0 = R0. We get R[ ^R'0 and R^R'o- This contradicts

the maximality of R'0.

A well-known method for obtaining nonstandard models of arithmetic is the

ultraproduct construction.

We shall denote nonprincipal ultrafilters over w by DF. If D is the filter of cofinite

subsets of cu, then D^DF for every DF. Thus if [x]eE*a/D=Q, then [x]£

[x]F e E*a\DF. Suppose R! is a maximal indecomposable subring of Q. Then there

is a natural embedding of R' into E*°/DF for every DF, gotten simply by mapping

[x] e R' to [x]F e E*a/DF. One can then ask the questions : Given any R', is there a

DF such that the natural embedding is onto? And given any DF, is there an R'

such that the natural embedding is onto ? In the remainder of the section we answer

the latter question negatively (Proposition 2.16), and present some further results

connecting indecomposable sequences and nonprincipal ultrafilters.

Definition 2.15 Suppose x=(x0,x1,x2,.,.)eE*a, Ae^(E)-&>nr,(E). Let

A={a0, ax, a2,...}, enumerated without repetitions in increasing order. Then we

define xA e E*a by xA = (xao, xai, xa2,...).

Proposition 2.16. There is a nonprincipal ultrafilter DF and a sequence s e E*a

such that [s]F contains no indecomposable sequences.

Proof. Let s=(0, +1,-1, +2, -2, +3, -3,...). Define 2i={J| A^m and

sA is indecomposable}. Claim that 21 generates a filter. It suffices to show that if

Jj.Â\eSt then Of-1 A¡ =¿ 0■ Suppose f]f= iA¡=0. Then U?= i Ai = co. Now
it is a simple task to obtain n +1 infinite arithmetic sets Blt..., Bn + 1 such that
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BiC\Bj=0 for z'#7 and Uf-i1 B¡ = E*. Suppose fa(v) defines B¡, /= 1 to «+1. Let

TA={a e E* \ a appears in the sequence sA}. Then for each i, z'= 1 to «, there must

be a Bj such that B¡ n 7*¿( is infinite and TA¡ — B, is finite; otherwise there would be

a Bk such that both 5fc n 7^ and 7,4, - 5fc are infinite and then fa(v) would split

i^r But there are n+1 2?/s and only « v4t's. Thus for some B¡, 77,-U"=i 7^, is

infinite. This contradicts U?=i At = w. So 91 generates a filter. It is a trivial fact

that any integer is contained in some indecomposable sequence. Hence PUe« A

= 0. So there is a nonprincipal ultrafilter Z)f291. Consider [j]F e 7>p. If x is an

indecomposable sequence and xe[j]f then Si=x¡ for ieAeDF and then sA is

indecomposable. But then we would have put Ze9l£7)i-, which contradicts

A e DF. Then [s]F contains no indecomposable sequences.

Using the DF of this theorem we form E*a/DF. No R' can map onto E*a/DF

under the natural embedding because if [x] e R' -» [s]F eE*a/DF where i=

(0, +1, — 1,...), then [x] S [s]F and then [s]F would contain the indecomposable

sequence x.

Lemma 2.17. Let DF be a nonprincipal ultrafilter over w, and E*a/DF the ultra-

power of E* defined by DF. Then every member ofE*a/DF contains an indecompos-

able sequence o for every x e E*a there is an A e DF such that xA is indecomposable.

Proof. Assume the first condition and consider x e E*a. Then [x]F e E*U/DF

and there is a y e [x]F with y indecomposable. Since x and y are in the same

equivalence class of E*a/DF, there is an A e DF such that A¡r¡ = v¡ iff i e A. Thus xA

is yA and yA is indecomposable since y is.

Now assume the second condition and consider [x]F e E*a/DF. We have,

fixing x, an A e DF such that xA is indecomposable. Define y e E*a as follows:

ifieA,y¡ = Xi,

if i<a0 (the smallest member of A), v(=;cO0,

ifa;<i<a; + 1,^ = xay+1.

From the construction it is clear that y is indecomposable. Furthermore,

B={i\ x¡ = Vi} 2 A and so B e DF. Thus v 6 [x]F.

Lemma 2.18. Given s e E*a and A an infinite subset of E. Then there exists an

infinite B^A such that sB is indecomposable.

Proof. The proof proceeds in much the same way as the method, used earlier

in this section, to construct indecomposable sequences. If TA={a e E* | a appears in

the sequence sA} is finite, then we can make sB a constant sequence. If TA is infinite,

then we use the method just mentioned, but we arrange to choose all values from

TA.

Proposition 2.19 (C.H.). There is a nonprincipal ultrafilter DF over w such that-

every [x]F e E*a¡DF contains an indecomposable sequence.
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Proof. Let [s°], [s1], [s2],..., [sa], ...,a<tu1 be a listing of the members of Q.

The proof proceeds by induction. We assume that for a countable number of j4's

we have found Al^E such that sA> is indecomposable and any finite number of the

A"s has an infinite intersection. Let us relabel these sl,s as t°, t1, t2,... and the

yi"s corresponding to them as B°, B1, B2, — Now consider a new s\ call it s.

Choose b0 e B°, bx e B1 n B°-{b0},... and, in general, bneBn n B"-1 n-■ ■

n B°—{b0, ...,bn-i}. This is possible because any finite intersection of the B^s is

infinite. Define A={b0, bu b2,...}. Clearly A is infinite. Now apply Lemma 2.18 to

s and A. We get an infinite Bz{b0, blt b2,...} such that sB is indecomposable. For

any finite number of the B% say J4*,...,#•, we have Bn f^^i&i^B-

{b0,..., bk-i} where k£ij for all7= 1 to m. Since B is infinite, so is B n 07=1 &'•

Thus we have {/'}? u {s} and {#}? u {B} satisfying the induction hypothesis. By

transfinite induction, we have the result for all the s", a < mv It is a trivial matter to

perform the above construction in such a way that for every ee E* there is an A1

associated with some s' such that e $ A\ We assume this was done. Hence the A{\

generate a filter F over w, and there is a nonprincipal ultrafilter DF 2 F. Suppose

x e E*a, and x e [s1] e Q for some fixed i. Since sA> is indecomposable, so is x¿. Of

course A1 e DF. We then have the result by Lemma 2.17.

3. Diophantine correct rings.

Definition 3.1 (cf. Nerode [10]). A ring D is weakly diophantine correct

(w.d.c.) if every finite conjunction of formulas of the form di + d¡=dk, di-d,=dk, or

dt =£ dj, which contains at most one formula of the last type and which is true in D,

has a solution in E*.

For example, by Theorem 2.1 of Nerode [8], A* is w.d.c. It is also easy to see

that

Proposition 3.2. Q and all its subrings are w.d.c.

Proof. Clearly it suffices to show that Q is w.d.c. Let <f> be a conjunction such as

in Definition 3.1. <f> has the form 0 A Xi^x}. (It suffices to consider this since it is the

worst case.) Since ^ is a conjunction of positive equations holding in Q, we can

fix representatives from all the equivalence classes of <f> and get a coordinate k0

such that for all coordinates greater than k0, $ holds coordinatewise (in E*). Now

Xi^Xj is satisfied infinitely often coordinatewise. Let kx>k0 be one of these

coordinates. Hence the kxth coordinate of the representatives provides the required

solution.

Proposition 3.3. A necessary and sufficient condition for a ring D of power

^ Si to be embeddable in Q is that D be w.d.c.

Proof. The necessity was shown above. Suppose now that D is w.d.c. The proof

proceeds exactly as in Proposition 1.7 (ii), replacing A* by D and appealing to the

w.d.c. property of D instead of to the theorem of Nerode. We do not need the C.H.

here because we assume the cardinality of T)^^.
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Corollary 3.4 (C.H.). If M is the class ofw.d.c. rings, then Q is M-universal

(see Definition 1.5).

Proof. By the C.H., the cardinality of Q = X1. By the proposition, every member

of M of power ¿ üx can be embedded in Q. And of course, Qe M.

Let M be a class of similar relational systems. The following conditions and their

numbering are from Jónsson [5].

(V) The union of any chain of members of M belongs to M.

(VI)K If 21 e M and X^\%\, the cardinality of X<k, then ;if£|23| for some

23 e M, |23| £ |2l|, the cardinality of |23| <*.

Definition 3.5 (Jónsson [5]). Let Af be a class of similar relational systems and

91 e M, the cardinality of |9I| =k. 91 is M-homogeneous if for any 23 e M, |23| £ |9Í|,

the cardinality of |23| < k and for any isomorphism/of 23 into 21,/can be extended

to an automorphism of 2t.

Proposition 3.6 (C.H.). Q is not M-homogeneous, for M the class of w.d.c.

rings.

Proof. It is easy to see that M satisfies (V) and (VI)^. We have Qe M and the

cardinality of ô = Xj. So we can apply Corollary 2.4(d) of Morley and Vaught [7],

and hence it will suffice to construct 231; 232, subrings of Q, each countable,

23i £ 232, and an isomorphism/of 23a into Q such that/cannot be extended to an

isomorphism g of 232 into Q.

Define s e E*a to be (4, 9, J.6, 25,...), and r e E*a to be (2, 3, 4, 5,...). Then

[s],[r]eQ. Let SS^F*^]), i.e. [s] adjoined to F* in Q. Let 232 = F*([j], [r]).

Define /: 23±-> Q, isomorphism, by f([s]) = [r]. Say g, as above, exists. Let

g([r]) = [x]. Then g([s])=g([r]2)=g([r])2 = [x]2. But g([s])=f([s])=[r]. So [r]

= [x]2, i.e. rt = xf almost everywhere. Contradiction. So no such g can exist and Q

is not Af-homogeneous.

In [10], Nerode has shown (without stating it) that every countable diophantine

correct ring (see Definition 3.8) can be embedded in A* and in A*(^l).

Let XaE* consist of all countably infinite sequences x of elements of F* such that

{ie E | ^¡#0} is finite. Let L* be the lattice of finitary recursively enumerable

relations F£F*m. Every ReL* has an extension RA. £A*£" (see Nerode [8]).

Define

Riik = {xeXaE* | Xi+Xj = xk),

Saie = {x e XaE   \ Xi • Xj = xk},

Ti, = {x € XaE* | xi ¥= x,},

and

U„ = ZfflF*-7y = {xe X0E* | xt = x,}.

Proposition 3.7. Every countable w.d.c. ring D can be embedded in A* and in

A*(A).
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Proof. Let D={d0, du d2,...}, enumerated without repetitions. Let F* be the

filter generated by the Rijks such that di+d,=dk and the Sijk's such that di-dj = dk.

Since D is w.d.c, F* is a proper filter in L*. By Theorem 4.7 of Nerode [10], we get

x e A*a such that F* = {A e L* | xe AA.}. Claimx¡^x, for i^j. If xi=xj, x e (t/w)A..

Hence í/¡; eF*. So there exists a finite number of Rijks and Sijks whose inter-

section, call it 7, satisfies IzUtj. Now since D is w.d.c, In Fiy/0. But then

Uij = XaE*-Tij^I. Contradiction. Hence x^Xj, and 7) is embedded in A* by

d¡ -> Xi. The same proof works for A*(A).

Corollary 3.8. Every countable subring of Q can be embedded in A* and in

A*(A).

In [10], Nerode defined the notion of a diophantine correct nonstandard model

of arithmetic. Generalizing from this, we have

Definition 3.8. A ring D is diophantine correct (d.c) if every finite conjunction

of formulas of the form di + d¡ = dk, di-d¡=dk, or d^dj, which is true in D, has a

solution in F*.

Clearly if D is d.c. then D is w.d.c.

Lemma 3.9. Every indecomposable subring R of Q is diophantine correct.

Proof. Let 0 be a conjunction as described in Definition 3.8 involving [r°],...,

[rn] e R. We assume <p is true in R. Clearly if [/•'] + [rs] = [rk] or [/•'] • [r1] = [rk] is true

in R, then the relation holds coordinate-wise among the r"s for almost all coordi-

nates. Say [r1] + [r7]. Then [r¡ - r1] # 0. But [r1] - [r'] e R, since F is a ring, and hence

r{-rj is indecomposable. So r¿-r¿#0 for almost all coordinates k or else the

formula v=0 would split [/•'—r']. Thus the inequality relation holds between r'

and r' at almost all coordinates. So there is a coordinate p beyond which all the

conjuncts of ^ hold in E* coordinate-wise. Take k>p and the r¿'s provide the

desired solution in F*.

Lemma 3.10. If D is a d.c. ring of power ¿ X1; then D can be embedded in Q as an

indecomposable subring.

Proof. Let $ be any finite conjunction of members of

S = {di Ï d, I dt # dj is true in D}

u {di + d, = dk | di+dj = dk is true in D}

u {dt ■ d, = dk\ df dj = dk is true in D}.

Let T* denote the set of all statements of arithmetic true in <F*, =,+,-, 0, 1>.

Then we have at once that T* u {<£} is satisfiable in F*. Hence by the downward

Skolem-Löwenheim theorem (see Tarski and Vaught [14]), D is embeddable in a

model 91 of T* of power Xi. By Theorem 2.11, 2t is embeddable in Q as an in-

decomposable subring. Hence D is embeddable in Q as an indecomposable

subring.
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Proposition 3.11. A necessary and sufficient condition for a ring D of power

á Ni to be embeddable in Q as an indecomposable subring is that D be diophantine

correct.

Proof. The proof is immediate from Lemmas 3.9 and 3.10.
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