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1. Introduction. By definition, a pseudocompact space is a topological space

on which every continuous real valued function is bounded. Pseudocompact spaces

which are completely regular have often been studied [1], [4], [5], [7]—[10], [12], and

[15], and some results have been obtained that apply to noncompletely regular

pseudocompact spaces [1], [10], and [13]. In general, however, much more is known

about completely regular pseudocompact spaces than is known about arbitrary

pseudocompact spaces.

In this paper, we obtain results that apply to pseudocompact spaces which are

not necessarily completely regular. We first obtain several characterizations of

pseudocompactness. Then we investigate which subspaces of pseudocompact

spaces are pseudocompact and consider some necessary and sufficient conditions

that a collection of spaces have a pseudocompact product.

We use the same notation and terminology as that in [3]. For definitions of the

terms "countably compact," "weakly normal," "normal," and "completely

normal," see [5].

R(N) will denote the set of real (natural) numbers. We shall denote the set of

continuous mappings of a space (X, V) into a space (Y, iT) by C((X, Y~), (Y, W))

or C(X, Y) if no confusion is possible. C(X, f") or C(X) will denote the set of

bounded functions in C((X, V), R), and L(X, *T) or L(X) will denote the set of all

functions in C(X, "T) which map (X, *T) into [0,1]. Given afunction/e C((X, -V), R),

we shall denote the zero set/_1(0) by Z(f) and the cozero set X-Z(f) by C(f).

We shall write 2£(X, T) for {Z(f) \fe C((X, -T), R)} and ViX.rT) for

{C(f)\feC((X,r),R)}.
If ^ is a collection of sets, the set of all finite intersections of elements of 38 will

be denoted by ST. We shall say that â is fixed (free) provided that Ç\ 8$^ 0

(f|^=0).
The author wishes to express his appreciation to the referee for his valuable

suggestions and, in particular, for Theorem 4.8 (i), Theorem 4.10 and Corollary

4.14, which are substantial generalizations of the author's original results.

2. Characterizations.

Definition 2.1. A filter base !% on a space is said to be an open filter base if and

only if all the sets belonging to 88 are open. An open filter base f ona space X is
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called completely regular provided that for each set Be Sä there exist a set B' e $8

and a function/e L(X) such that/vanishes on B' and equals 1 on X—B.

Definition 2.2. An open cover <9 of a space X is said to be cocompletely regular

provided that for each O eQ there exist a set 0' e (9 and a function fe L(X) such

that/vanishes on 0 and equals 1 on X-0'.

Theorem 2.3. Let X be a topological space. The following are equivalent.

(i) X is pseudocompact.

(ii) For every space Y andfunction fe C(X, Y),f(X) is pseudocompact.

(iii) For every completely normal space Y and function fe C(X, Y), f(X) is

countably compact.

(iv) For every metric space Y and function f e C(X, Y),f(X) is compact.

(v) For every fe C(X, R),f(X) is compact.

(vi) For every fe C(X),f(X) is compact.

(vii) Every function in C(X) assumes its greatest lower bound and its least upper

bound for some point or points of X.

(viii) If â& is a countable subset of&(X) such that 0 $ J"\ then J1 is fixed.

(ix) Every locally finite subset of(<S(X) is finite.

(x) Every countable completely regular filter base on X is fixed.

(xi) Every countable cocompletely regular cover of X has a finite subcover.

Proof. We omit the proofs of the equivalence of (i), (vi), (vii), and (viii), for they

are the same as Hewitt's proofs in [12, p. 67 and p. 70] that (i), (vi), (vii), and (viii)

are equivalent on a completely regular space.

It is not difficult to prove that (i), (ii), (iii), (iv), and (v) are equivalent if one

recalls the following facts : every subspace of a completely normal space is normal ;

a normal space is pseudocompact if and only if it is countably compact [12, p. 69] ;

compact and countably compact subsets of a metric space are identical.

(viii) implies (ix). Suppose that £f={Cn \ n e N} is an infinite locally finite system

of nonempty elements of ^(X). It follows from the normality of R that for each i

there is a function g¡ 6 L(X) which equals 1 on X— Ct and vanishes at some point in

C¡. For each n let hn be given by A„(x) = inf {gi(x) \ i^n}. Then each Z(hn) is non-

empty and contains Z(hn+1), and since SÛ is locally finite, each hneL(X) and

H {Z(h„)} = 0 ■ This contradicts (viii).

(ix) implies (x). Let Jr={F(«) | n e N} be a completely regular filter base on X

such that each F(n)=>F(«+1). For each Fe3F choose a function fF eL(X) which

vanishes on X— F and equals 1 on some set in P. Then (ix) implies that there is a

point x at which {C(fF) \ Fe^} is not locally finite. Evidently xef\{F\ Fe&)

(x) implies (xi). Suppose that there is a countable cocompletely regular cover 0

of X which has no finite subcover. Then 0 $ {X— 0 | 0 e 0}~. Since for each set

OeO there exists a set O' e<9 such that O'=>0, it is also true that 0 £^

={X— 0 | 0 e 6}". Thus ^ is a countable open filter base on X. Consider a set
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G=H {X- Cl 0(z) | / = 1,..., s} e &. For each i there exist 0(0' e ® and a function

feL(X) such that/ vanishes on 0(0 and equals 1 on X— 0(i)'. Define G' =

P| {X— Cl 0(0' | /■■ 1.s} and/= min {/ | i= 1,..., s}, and let g be the function

given by g(x)= 1 -f(x). Then G' 6 9, g e L(X), g(G')=0, and g(X-G) = 1. There-

fore, ^ is a countable completely regular filter base on JST. Since 0 covers X,

however, 9 is free.

(xi) implies (i). Consider an arbitrary function fe C(X, R). For each n e N let

U(ri)=f-\(-n,n)), and define <%={U(n)\neN}. Then <% is a countable co-

completely regular cover of X, so (xi) implies that there exists k e N such that

X<= £/(&). Therefore, fe C(X).

We consider next a number of modified pseudocompactness conditions on a

space X.

Definition 2.4. An open filter base 88 on a space is said to be regular provided

that for each set B e 88 there is a set C e ^ such that Ce B.

Definition 2.5. An open cover 0 of a space X is said to be coregular provided

that for every set 0 e 0 there is a set F e 0 such that 0<=F.

On any space X each of the following is a sufficient condition that X be pseudo-

compact.

A(l) Every countable open cover of X has a finite subcover.

A(2) Every countable filter base on X has an adherent point.

B(l) Every locally finite system of open sets of X is finite.

B(2) Every countable, locally finite, disjoint system of open sets of X is finite.

B(3) If ^ is a countable open cover of X and A is an infinite subset of X, then the

closure of some member of *% contains infinitely many points of A.

B(4) If % is a countable open cover of X, then there is a finite subcollection of ^

whose closures cover X.

B(5) Every countable open filter base on X has an adherent point.

C(l) If <%={U(n) | n e N} is a collection of nonempty open subsets of X such

that Cl U(i) n Cl U(j)= 0 whenever i^j, then % is not locally finite.

D(l) Every countable coregular cover of X has a finite subcover.

D(2) Every countable regular filter base on X is fixed.

Theorem 2.6. On a space X the following hold.

(i) A(l), and A(2) are equivalent.

(ü) B(l), B(2), B(3), B(4), and B(5) are equivalent.

(iii) D(l) and D(2) are equivalent.

(iv) A(2) implies B(5).

(v) B(5) implies C(l).

(vi) C(l) implies D(2).

(vii) D(2) implies that X is pseudocompact.

(viii) If each point of X has a fundamental system of closed neighborhoods, then

D(2) implies B(2).
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(ix) If X is a uniformizable pseudocompact space, then B(l) holds.

(x) If X is a weakly normal pseudocompact space, then A(l) holds.

Proof, (i) A(l) and A(2) are obviously equivalent.

(ii). It was proved in [1] that B(l), B(2), B(3), and B(4) are equivalent.

B(4) implies B(5). If & is a countable open filter base on X which has empty

adherence, then 6={X-F\ FelF) is a countable open cover of X such that for

every finite subcollection 3P of <S, (J & is not dense in X.

B(5) implies B(4). If ^i is a countable open cover of X, and if for every finite

subcollection Jt of ^, Zd: (J {M | M e Ji), then {X- U \ UeW^isa countable

open filter base on X which has empty adherence.

The proof of (iii) is similar to the proof of the equivalence of B(4) and B(5).

(iv) is trivial.

(v). Suppose that B(5) holds, and let {£/(«) | « e N} be a collection of nonempty

open subsets of Xsuch that Cl U(i) n Cl U(j)= 0 whenever i+j. For each neN

let V(n) = [J {U(j) I ye«}- Then {V(n)} is a countable open filter base on X and

hence has an adherent point x. Clearly, for any neighborhood V of x,

V n U(n) 7¿ 0 for infinitely many «.

(vi). Suppose that there exists a free, countable, regular filter base on X. Then an

inductive argument shows that there exists a free open filter base ^={G(«) \ne N}

such that for each neN, G(«)=>C1 G(«+l) and G(«)-C1 G(«+l)^ 0. Define

£/(«) = G(2«)-C1 G(2«+1) for each neN, and consider <% = {U(n) \neN}. Since

^ is free, no point of X has the property that each of its neighborhoods intersects

infinitely many of the sets in <%. On the other hand, % is a collection of nonempty

open subsets of X, and whenever i<j, Cl U(j)cG(2i+l), but Cl [/(/)<= G(2i-1)

-G(2i+1). This contradicts C(l).

(vii). Every countable completely regular filter base is a countable regular filter

base, so it follows from D(2) and (x) of Theorem 2.3 that Xis pseudocompact.

(viii). In [2] Banaschewski proved that if jf is a regular space on which every

regular filter base is fixed, then X does not contain a countably infinite family of

open sets whose closures are mutually disjoint and have a closed union. A corollary

to his method of proof is that if X is a space in which every point has a fundamental

system of closed neighborhoods, then D(2) implies C(l).

In order to see that C(l) implies B(2), suppose that £'={L(n) | « e N} is a locally

finite system of nonempty open sets of X such that L(i) n L(j)= 0 whenever z'#/

For each heJV choose a nonempty open set M(n) such that Cl M(n)<=L(ri), and set

Jt={M(n) I neN}. Then M is locally finite, and Cl M(i) n Cl M(j)<=L(i)

n L(j)= 0 whenever i^j.

(ix). In [1] it was proved that on a uniformizable space B(l) is equivalent to

pseudocompactness.

(x) is a consequence of the fact that a weakly normal pseudocompact space is

countably compact [5].
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In §3 we shall construct several examples of pseudocompact spaces in order to

show that the converses of (v), (vi), and (vii) of Theorem 2.6 are false. Of course,

the converse of (iv) is also false, since, for example, the Tychonoff plank is pseudo-

compact and completely regular, but not countably compact [5].

We conclude this section with a slight generalization of Theorem 17 in [12].

Theorem 2.7. Let X be a completely regular space. The following are equivalent.

(i) X is pseudocompact.

(ii) Whenever X is embedded in a Hausdorff (regular, completely regular) space Y

and Y—X is first countable, then X is closed in Y.

Proof, (i) implies (ii). Let y be a Hausdorff space in which X is embedded, and

suppose that 0 is a countable fundamental system of open neighborhoods of a point

yeX. Then 8e=<5\Xis a countable open filter base on X, so there is a point xe X

such that x e 0 for all O eG. Therefore, v=x e X.

(ii) implies (i). Suppose that A'is not pseudocompact. Then by (x) of Theorem 2.3

there is a countable completely regular filter base & on X which is free. Let

Y= X u {&}, and define a subset F of Y to be open if and only if (a) F n X is open

in X, and (b) if & e F, then F f\ X^G for some Geß\ Then Y- Xu first countable,

and F is a completely regular space containing X as a dense proper subspace. This

contradicts (ii).

Corollary 2.8. Let X be a topological space. The following are equivalent.

(i) X is pseudocompact.

(ii) For every first countable completely regular space Y and function fe C(X, Y),

f(X) is a closed subspace of Y.

Proof, (i) implies (ii). If X is pseudocompact, then f(X) is pseudocompact, so

Theorem 2.7 implies that/(A') is a closed subset of Y.

(ii) implies (i). If there is a function ge C(X, R) — C(X), then the function

h = 1/(1 + \g\)e L(X) has the property that 0 e Cl h(X)-h(X).

3. Examples of pseudocompact spaces. As noted earlier, the Tychonoff plank

shows that B(5) does not imply A(l). A more simple example of the same thing is

the following:

Example 3.1. Let X= [0, 1], denote the usual topology on X by "V, and let JÏ

be the topology on X generated by "V u {{X— l/n\ne N}}.

For every set WeJÏ, CL// W is a closed subset of (X, ir). Thus every open filter

base on (X, Jf) has an adherent point.

Since {1/w | n e N} has no limit point in (X, Jf), (X, Jf) is not countably compact.

In [1] and [14] examples were constructed in order to show that on a Fi-space

B(l) is not a necessary condition for pseudocompactness. This result can be

sharpened. The following example is a Hausdorff space on which C(l) does not

imply B(l).
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Example 3.2. The example given here is the countable connected Hausdorff

space constructed by Bing.

Denote by Y the set of all points (p, q) in the plane such that/? and q are rational,

and 9 = 0. If a = (p,Q)eY and e>0, let W(a, e)={(s, 0) e Y\ \s-p\<e). If

a=(p,q)e Y,q>0, and e>0, choose c,deRso that (p, q), (c, 0), and (d, 0) are

vertices of an equilateral triangle, and define W(a, e) to be

{(/>>?)} u {(■*. 0)e Y\ \s-c\ < e or \s-d\ < e}.

Let if be the topology on Y generated by {W(a, e) \ a e Y and e>0}.

(Y, #0 satisfies C(l) vacuously, for no two nonempty open sets in (Y, #") have

disjoint closures.

{{(P> 0) e Y | p > «} | « e N} is an infinite locally finite system of open sets.

Definition 3.3. A space X is said to be a Stone space (or a completely Haus-

dorff space) provided that C(X, R) separates the points of X.

According to Theorem 2.6, B(l), C(l), and D(2) are equivalent on a regular space

X. The next example shows that even on a Stone space D(2) may not imply C(l).

Example 3.4. The example given here was given by Herrlich in [11] in order to

show that there exists a space X with the following properties : (a) not every open

filter base on A'has an adherent point; (b) if # and & are any open filter bases on

X such that each J e f contains the closure of some Leif, then ß has nonempty

adherence.

Let (X, "T) be as in 3.1. Choose disjoint dense subsets X(\), X(2), and X(3) of

(X, T) such that X=X(\) u X(2) u X(3), and let ¿P be the topology on X

generated byfu {X(l), X(2)}.

Since y<=J^, (X, 3^) is a Stone space. D(2) is an immediate consequence of (b).

Fix a point xe [0, 1) n X(l). For each neN define £/(«) = (x+l/(2« + l),

x+1/2«) n X(2). Then {U(n) \ «=T/(2-2;c)} is an infinite locally finite collection

of nonempty open subsets of (X, 3^) whose closures are disjoint.

The following example is a pseudocompact Stone space which does not have

property D(2).

Example 3.5. Let (X, y) be as above, and choose a collection of sets X(ri)<^ X,

« = 1,2,..., which have the following properties: for each neN, X(n) is a dense

subset of (X, *T); X(i) r\ X(j)= 0 whenever i #j"; X=\J{X(ri) \neN}. Denote

by "JT the topology on X generated by y u {X(2n-1) u X(2ri) u AT2«+1) | neN}

v{X(2n-l)\neN}.

The space (X, W) has the following properties.

(i) The sets F(«) = U {X(j) |; = 2«-1}, « = 1, 2,..., form a free regular filter

base on (X, iT).

(ii) If a, beR, O and P are open subsets of R, 0=>P, fe C((X, iT), R), and

f((a, b) n X(j))^P, then f((a, b) n Z)<=0.

Proof, (i). Each F(n) is clearly an open set of (X, #"), and for any neN,
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CV F(n + 1) = (J {X(j) | j= 2n}<=-F(n). Thus {F(«)} is a regular filter base. It follows

from the properties of the X(n) that {F(n)} is free,

(ii). We first observe that the following equations hold for any neN and

WeiT.

Or ((a, b) n JST(l)) = [a, è] n (Jf(l) u AT(2)).

CV ((a, ¿) n X(2n + 1)) = [a, b] n (JST(2«) u A"(2«+ 1) u jr(2n+2)).

Clur ((a, b) nX(2n)) = [a, b] n Jr(2/i).

If (a, 6) n *(1)<= W, then [a, b] n (JT(1) u I(2))cC^ W.

If (a, 6) n ^(2«+ l)c «/, then [a, ¿>] n (J!f(2n) u A"(2« +1) u X(2n+2))<=Cl^-W.

If (a, b) n A"(2)<= IT, then [a, ¿>] n (A"(l) u AT2) u X(3) u Ar(4))c=Cl^ PK.

If (a, b) n J¡r(2ji+2)<= fP, then [a, ¿>] n (JT(2n) u X(2n+l) u JT(2n + 2)

U Z(2« + 3) u JSf(2n + 4))cClr W.

Since R is normal, there exist open sets Z(«)<=7? such that for each neN,

PcZ(h)<=C1 Z(b)cZ(»+1)c 0. Define r(«)-/-x(Z(«)), «=1,2,.... Then (a, ¿)

n *(/')<= ̂ (1). {Y(n) \ n e N)ciT, and for each neN, Cl*- Y(n)<= Y(n+ 1). An

inductive argument based on the equations above shows that if j is odd, then for

every integer n^(j-2)\2, (a, b)n\J {X(k) | k^j+ 1 +2n}<=- Y(2+n), and if; is

even, then for every integer n^(j+2)¡2, (a, b)n\J {X(k) \ k^j+2n-2}<^ Y(n).

Thus

(a, b) n X = (J {(a, b)n\J {X(k) | kúj+2n-2) \ n e N, n = 0'+2)/2}

c \J {r(2+») | n = 0'+2)/2} = (J {Y(n) \neN).

Therefore,/((a, b) n *)e/(U W«)}) = U {/(!>))}<= U {Z(»»<=0.

4. Pseudocompact product spaces. Terasaka's example (see [8, p. 135]) shows

that if X is a countably compact completely regular space, then XxX need not be

pseudocompact. Comfort's example in [4] shows that if {X(h) \ neN} are com-

pletely regular spaces, then n {X(n) \ne N} is not necessarily pseudocompact

even if F] {X(n) | n e B) is pseudocompact for every finite (nonempty) subset B of

N. On the other hand, Glicksberg [9] and Bagley, Connell, and McKnight [1]

have proved that under certain supplementary hypotheses the product of a col-

lection of pseudocompact completely regular spaces is pseudocompact.

Our aim in this section is to obtain several product theorems which apply to

noncompletely regular pseudocompact spaces.

Theorem 4.1. Let {X(a)\aeA} be a collection of topological spaces. If

X—T\ {X(a) \ ae A} is pseudocompact, then FJ {X(b) [ b e B) is pseudocompact for

every nonempty subset B of A. If A is infinite and X is not pseudocompact, then there

is a countably infinite subset J of A such that Y= T~[ {X(j) \jeJ} is not pseudo-

compact.

The observation that Theorem 4.1 holds for completely regular spaces is due to

Glicksberg [9].
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Definition 4.2. A space A-is said to be feebly compact [13], or lightly compact

[1], provided that Zhas property B(l).

In [13] A. H. Stone proved that every product of feebly compact spaces, of which

all but one (at most) are sequentially compact, is feebly compact. Since on a uni-

formizable space feeble compactness and pseudocompactness are equivalent, it

follows from Stone's theorem that every product of pseudocompact uniformizable

spaces, of which all but one (at most) are sequentially compact, is pseudocompact.

One can also obtain a similar result for spaces which are not necessarily uniform-

izable.

Lemma 4.3. The product of a sequentially compact space and a pseudocompact

space is pseudocompact.

Theorem 4.4. Every product of pseudocompact spaces, of which all but one (at

most) are sequentially compact, is pseudocompact.

Definition 4.5. A mapping/of a space Zinto a space Fis said to be Z-closed

provided that for every Z e 2£(X), f(Z) is a closed subset of Y.

In [15] Tamaño proved that for pseudocompact completely regular spaces X and

Y, Xx Y is pseudocompact if and only if Y\x is Z-closed. The next theorem is a

partial generalization of this result.

Lemma 4.6. Let 3~ and W be completely regular topologies on a set X, and suppose

that (X, <%) is pseudocompact and (X, ¡?~) is first countable. Then ¡F^ty if and only

ifST = qi.

Proof. Let F be a closed subset of (X, *%). Then there is a subset y of °U such that

F= (~) {CW V | V e y}. In [9] Glicksberg proved that the closure of every open

subset of a pseudocompact completely regular space is pseudocompact. Thus each

(CW V, ̂ |C1# V) and, consequently, each (CW V, J~\Clqi V) is pseudocompact.

Since every pseudocompact subset of a first countable completely regular space is

closed, each Cl^ V is a closed subset of (X, S~). Therefore, F is a closed subset of

(X,F).
Definition 4.7. If X is a topological space, we shall denote by wX the uni-

formizable space which has the same points and the same continuous real valued

functions as those of X.

Theorem 4.8. Let X and Y be pseudocompact spaces.

(0 IfTix is Z-closed, then Xx Y is pseudocompact.

(ii) If Xx Y is a Stone space, wXx w Y is first countable, and Xx Y is pseudo-

compact, then Ylx " Z-closed.

Proof, (i). Suppose that Y is pseudocompact, T~[x is Z-closed, and/e C(Xx Y, R).

Then the function g(x) = sup {f(x, y) \ y e Y} is continuous, for consider a point

x' e X. If e > 0, ELÍÍC*, v) | \f(x, y) —f(x', y)\ ^ e}) is a closed set not containing x',
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so its complement is a neighborhood V of x'. V has the property: if x e V, then

\f(x, y) -fix', y)\<e for all y e Y. Now g(x') =/(x', /) and g(x) =/(x, v") for some

v', y" 6 7, by pseudocompactness. Thus /(x, v") ̂ /(x, v') >/(x', v') - £ and

f(x, y") <f(x', V") + e ¿f(x', /) + e, so I g(x) -g(x')I < e.
If Xx y is not pseudocompact, then there exists/e C(Ix y, (—oo, 0)) such that

SUP {f(x, v)}=0. Since Y is pseudocompact, g(x) <0 for each x e Z, but

sup {g(x) | x e X} = sup {/(x, v)} = 0.

Thus X cannot be pseudocompact.

(ii) Lemma 4.6 implies that wXxwY=w(Xx Y).lhus&(Xx Y) = &(w(Xx Y))

= 3?(wXxwY). Since T~[x: wXx wY-> wX is Z-closed, and the closed subsets of

wX are closed in X, the mapping Ylx'- %x Y-+ X is Z-closed.

Definition 4.9. If K is an infinite cardinal number, a space X will be called

F-pseudocompact provided that the following holds : whenever J27 is a filter base on

X such that F contains K or fewer sets and each set belonging to !F is a union of

cozero sets of X, then F has an adherent point.

Theorem 4.10. Let Y be a K-pseudocompact space, and suppose that X is a

pseudocompact space in which every point has a fundamental system of neighborhoods

containing K or fewer sets. Then Xx Y is pseudocompact.

Proof. Suppose that Ix y is not pseudocompact. Then there exist Z=Z(f) in

XxY (say/£ 0) and x0 £ X with x0 £ Cl (PL (Z)) - PL (Z). Let V be a fundamental

system of neighborhoods of x0 containing ^ K sets, and for each V e'f choose a

point xv £ V n Fix(Z). Since Fis pseudocompact and/(x0, v) >0 for all v, there is

an a>0 with f(x0, y) = a for all v. For each Ve'V let F(K) be the cozero set

{v £ y \f(xy, v)<a/3}, and set G(F) = |J {F(S) \ S e tT and 5c K}. Let v0 be an

adherent point of {G(V)}. Choose a neighborhood Ux W of (x0, v0) such that

/| UxW>2a\3. Since C/=>{xv | Fc[/}, and WnF(^0 for some V<=U, a

contradiction is obtained.

Corollary 4.11. Let X and Y be pseudocompact spaces such that every point of

X has a fundamental system of neighborhoods containing K or fewer sets, Y is

uniformizable, and every point of Y has a K-pseudocompact neighborhood. Then

Xx Y is pseudocompact.

Proof. Let J*" be a countable completely regular filter base on Xx Y. Because Y

is feebly compact, Yly (&) has an adherent point v. Let W be a F-pseudocompact

neighborhood of v. Then Ix W is pseudocompact by Theorem 4.10, and since

F | (Xx W) is a countable completely regular filter base on Xx W, F \ (Xx W)

is fixed.

In [13] C. T. Scarborough studied properties of spaces on which every open filter

base has an adherent point. He called a space of this type an 77(i) space.
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Corollary 4.12. If X and Y are pseudocompact spaces, one of which is an H(i)

space, then Xx Y is pseudocompact.

Corollary 4.13. Lei {X(i) \ i=\,..., «} be a collection of pseudocompact

spaces such that for each j= 2, X(j) is uniformizable, and each point of X(j) has an

77(i) neighborhood. Then J~[ {X(i) | /= 1,..., «} is pseudocompact.

In [6] S. P. Franklin calls a space X sequential if every sequentially closed subset

of X is closed.

Corollary 4.14. If X and Y are pseudocompact spaces, one of which is sequential,

then Xx Y is pseudocompact.

Proof. The proof of Theorem 4.10 for the case A^=X0 shows that Xx y is

pseudocompact if Y is AT-pseudocompact and X is a pseudocompact sequential

space. One can use (ix) of Theorem 2.3 to show that X0-pseudocompactness and

pseudocompactness are equivalent conditions.

Theorem 4.15. If X is a pseudocompact k-space [5] and Y is a pseudocompact

completely regular space, then Xx Y is pseudocompact.

The proof is the same as Tamano's proof in [15] of Proposition 2.

In [7] Frolik obtained a useful necessary and sufficient condition that a space

belong to the class & of all completely regular spaces X such that for every pseudo-

compact completely regular space Y the product X x Y is pseudocompact. He also

constructed a space X e 3P containing an infinite disjoint family % of nonempty

open subsets of X such that for every compact subset K of X, K r\ U= 0 for all but

finitely many U e %. The following result is also of interest.

Theorem 4.16. There exists a Stone space (X,H>~) which has the following

properties.

(i) There is an infinite disjoint family tfl of nonempty open subsets of X such that

for every subset Kof X which has the property D(2), Kc\ U= 0 for all but finitely

many U e °U.

(ii) For every pseudocompact space Y, (X, if) xY is pseudocompact.

(iii) // A   is  any  nonempty  set   and  if   Ya = (X,W) for  all  aeA,   then

Y= n {Ya | a e A} is pseudocompact.

Proof. Let (X, if) be the space constructed in Example 3.5 and let

<% = {X(2n-l)\neN}.

(i) If K is any subset of X such that K n U^ 0 for infinitely many U e <%, then

{K n F(n) | « e N}, where the F(«) are as in 3.5, is a free, countable, regular filter

base on K.

Since (X, if) is a first countable pseudocompact space, Corollary 4.14 implies

that (ii) holds.
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(iii) Consider a function/E C( Y, R). If y e Y, and 0 and F are open subsets of R

such that/( v) £ F and F<= O, then there is a basic open set F<= y such that y e B and

f(B)<^F. Repeated application of (ii) of 3.5 to the restrictions of/to appropriate

subspaces of Y shows that there is a basic open set B' of the compact space

M=U {wYa\aeA} such that y £ B' and /(£')<= 0. Thus fe C(M, R) = C(M).

5. Pseudocompact subspaces of pseudocompact spaces. In [9] Glicksberg ob-

served that in a pseudocompact completely regular space the closure of every open

subset is pseudocompact. In [1] it was proved more generally that a space X is

feebly compact if and only if the closure of each open subset of Jfis feebly compact.

Thus every open subset of a feebly compact space has pseudocompact closure.

Similar results can also be obtained for spaces with property C(l).

Theorem 5.1. A space X has property C(l) if and only if the closure of every open

subset of X has property C(l).

The proof is immediate. As the following example shows, the closure of an open

subset of a pseudocompact space X need not be pseudocompact even if X has

property D(l).

Example 5.2. Let (X, 3f) be as in 3.4. Choose a £ X(l) n [0, 1), let A = X(2)

n (a, I], and define/(x) = l/(x—a) if xeCljf A. Then A e Jí? and a $ Clj? A, so/is

an unbounded continuous mapping of (CLr A, ¿F | Cljf A) into R.

We can prove the following result.

Theorem 5.3. Let Xbea space with property D(l), and suppose that A is an open

subset of X such that A—A has property D(l). Then A has property D(l).

Proof. Let F be a countable regular filter base on A. If 0 $ F \ (A — A), then

F | (A—A) is a regular filter base on A—A and hence must be fixed.

Suppose that there exists a set F £ F such that F r\(A—A)= 0. Since the closure

of a subset B of A with respect to A is the same as B, we can choose a set 77 e F

such that 77^ F Let &={G e F | G<=77}. Then 9 is easily seen to be a countable

regular filter base on X. Because X has property D(l), 9 and, consequently, F

must be fixed.

An analogous theorem holds for pseudocompact spaces.

Theorem 5.4. Let X be a pseudocompact space, and suppose that A is an open

subset of X such that A —A is pseudocompact. Then A is pseudocompact.

Proof. Let fe C(I, R). Since /| (Ä-A) e C(I-A, R) = C(I-A), there is an

neN such that |/(x)| <n for all x e A-A. Define g by g(x)=n if x £ X—Ä and

g(x)=max {|/(x)|, «} if x £ A. Then g e C(X, R) = C(X), so there is a k e N such

that max {|/(x)|, n} = k for all x £ Ä, i.e.,fe C(Ä~).

Remark 5.5. If Zis the Tychonoff plank, then the closure of every open subset

of X is pseudocompact, but there is an open dense subset 0 of X such that X— O

is an infinite discrete space.
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Corollary 5.6. Let X be a pseudocompact space, and suppose that a closed

subset C of X is quasi-compact. Then Cl (X— C) is pseudocompact.

Corollary 5.7. Let X and Y be pseudocompact spaces, and suppose that an open

subset W of Y has quasi-compact closure. The following are equivalent.

(i) Xx Y is pseudocompact.

(ii) Xx(Y-W) is pseudocompact.

This is an extension of a result in [9, p. 377]. Corollary 4.12 and Theorem 5.4

show that Glicksberg's proof can be applied here.
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