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The Jacobi sums play a fundamental role in the theory of cyclotomy. Some

criteria for power residuacity can be expressed in terms of them; e.g., [9]. Formulas

for the number of solutions (h, k)e of

ges+h + l m get+k (mod/?),       0Ss,í< (p- \)¡e,

where p is a primes 1 (mod e) and g is a primitive root of p, can be expressed in

terms of the Jacobi sums of order e [12, (2.7)].

In 1935, L. E. Dickson published a series of three papers which reviewed and

extended the theory of cyclotomy. In the first he gave relationships between the

Jacobi sums of orders e, e^6, e=8, 10, and 12 [3]. He discussed the sums of prime

order and of order twice a prime, then treated explicitly e=14 and 22, in the

second paper [4]. In his final contribution he studied e=9 and 18. (Sign omissions

in formulas (37) were noted in [1]; an ambiguous sign in (44) was also resolved.)

The last part of this paper is entitled

THEORY FOR fae) = 8, e = 15, 16, 20, 24, 30.

One relation associated with e= 16 was omitted. The case e = 15 was left with an

undetermined sign. Only sketchy discussions were given to e=20 and 24, while

e=30 was ignored completely [5].

In this paper the sign ambiguity for e=15 is resolved, and complete analyses

for e=24 and 30 are given. Progress is also made toward fixing the sign of a fourth

root of unity which arises in connection with the Jacobi sums of order 12. Complete

treatments of e= 16 and 20 are found in [11] and [13], respectively.

The Jacobi sum R(m, n) of order e is defined by

(1) R(m, «) = 2 ß™ ̂ a+"lnd'a-8)»       ß = exP Oí/e).
a = 2

Closely related to the Jacobi sum is the Gaussian sum

(2) t(s ) = 2 ßs **« kt\       l = exp (2nilp).
)c=i
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The relation is

(3) R(m,n) = T(m)r(n)lr(m+n),

provided e does not divide m, n, or m + n [2, (0.6)].

Letf=(p-l)le. Consequences of these definitions are

(4) risW-s) - i-\y«p   ife\s,

(5) R(m, n) = R(n, m) = ( - l)n'F( -m - », ri),

(6) R(m, n)R(m + n,r) = R(m, r)R(m + r, ri).

(The use of (6) will be noted by displaying alongside the equation the bracketed

triple [m, n, r].)

By (3) and (4), if e does not divide m, n or m+n, then

(7) R(m, ri)R(-m, -ri) = p.

If (j, e) = 1, let Oj denote the automorphism which maps ß onto ß1. Then

(8) o-jR(m,ri) = R(jm,jri),       <t;t(í) = t(js).

Let e=xy. If Rx(m, ri) denotes a Jacobi sum of order x,

(9) Rx(m,ri) = R(ym,yri) [5,(3)].

Three special cases of the identity

ff r(kx+t) - j8-*ind» Mfy) ff r(fcc) [2, (0.9!)]
k-0 k=X

will be used, corresponding to y=2, 3, and 5:

(10) T(f)r(i+e/2) = ß-2iZr(2t)r(eß), where Z = ind9 2.

(11) T(f)r(f+e/3)T(i+2e/3) = ß-3tTr(3t)p, where F = ind9 3.

r(t )r(t+e/5)r(t+2e¡5)r(t + 3e/5)r(t + 4e/5)

= ß-5tFr(5t)p2, where F = ind, 5.
(12)

In this study it is assumed that the R(m, ri) for which the greatest common

divisor of m, n and e is greater than 1 are already known, as they are in fact Jacobi

sums of orders which are proper divisors of e, by (9). The remaining sums are

grouped into classes of conjugates, each class consisting of the automorphic

images of a single sum. Accordingly, relationships will be presented in terms of a

single representative of each conjugate class. By (5), a Jacobi sum may be expressible

in the form R(m, ri) in several ways. Thus F(l, ri) and F(l, e—l—ri) would not both

be representatives.

If in a numbered formula a certain value of e is assumed, the value of e will

appear as a subscript to the formula number.
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The Jacobi sums of order 12 are conjugate to R(l, 1), R(l, 2), R(l, 3), R(l, 4),

R(\, 5), and Jacobi sums of lower orders. The following relations were determined

by Dickson: [3, pp. 417-418]

(1312) 72(1, 1) = ß~2Z+3TR(3, 3),

(1412) cR(l,2) = R(2,4),

(1512) cR(l, 3) = £(3, 3),

(1612) R(l, 4) = (- iyß~2ZR(2, 4) = £(4, 4),

(1712) R(l,5) = (-iyß°TR(3,3),

where c = R(l, 3)1 R(l, 5). He also showed that c2 = (- l)fß3T, so that c is a fourth

root of unity. More precise information is given by Theorem 1, and equations (28)

and (78).

The Jacobi sums of order 24 are conjugate to R(l, ri), 1 ¿ n ¿ 11, and Jacobi sums

of lower orders. All the Jacobi sums of order 12 must now be expressed as if

e=24; e.g., (13) becomes

R(2, 2) = ß~iZ+6TR(6, 6).

The first two relations below were derived from (11) by Dickson (who omitted

the (-1)' factor from the former): [5, p. 200]

(1824) 72(1,6) = (-l)'/3-3r72(3, 6),

(1924) R(l,9) = ß~3Ta7R(l,2).

By (10), with f=3,

t(3)t(15) = j8-6Zt(6)t(12).

R(3, 15) = (-1/72(3, 6) = ß~6zR(6, 12) = ß~ezR(6, 6),

by (3) and (5). Combine with (18):

(2024) R(l, 6) = ß*z-3TR(6,6),

since ß12z= 1. Also, ß12T= 1, so

(2124) o5R(l, 6) = a13/2(l, 6) = onR(l, 6) = R(l, 6).

72(1, 6)o5R(l, 11) = <75*(1, 6)72(1, 11) [6, 1, 5].

(2224) asR(l, 11) = R(l, 11),

by (21). Since <r7=<T5<T11,

(2324) a7R(l,U) = R(l, 11).

By (10), withf=l,

(2424) r(l)r(13) = |S-2M2)t(12).

(2524) 72(1,1) = (-\)'ß-2ZR(\, 11),
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by (3) and (5). By (23),

(2624) o7R(l, 1) = F(l, 1).

t(8)t(8)=/jt(2)/t(10) follows from (16) and (4). Setting /> = t(14)t(10) gives

t(8)t(8) = t(2)t(14). Then

t(1)t(7) t(1)t(7) = r(l)r(l) r(7)r(7)

t(8) r(8) t(2) t(14) '

F(l, 7)2 = F(l, l)a7F(l, 1).

(2724) F(l, 7) = dR(l, 1),

by (26), where d= ±1. d is specified completely in equation (94).

F(l, 1)F(2, 6) = F(l, 6)F(1, 7) [1, 1, 6].

F(6,6)/c = /36Z"3rF(6,6)a-,

by (15), (20), and (27). Thus

(2824) c = dßsz+3T.

From (24), with two applications of (5),

(-l)'F(l, 10) = ß-2ZR(2, 10).

(2924) F(l, 10) = (- l)fß-2Z+6TR(6, 6),

by (17). Combine with (20):

(3024) F(l, 10) = (- iyß*z~STR(l, 6).

F(l, 5)F(1, 6) = F(l, l)<r5F(l, 10) [1, 5, 1].

F(l, 5)a5F(l, 6) = F(l, 1>5F(1, 10),

by (21). Divide by equation (30) to which «js has been applied:

(3124) F(l, 5) = (-1)^-^-^(1,1).

F(l, 4)F(1, 5) = F(l, 1)F(2,4) [1,4,1].

F(l,4) = (-iy¿3*z+3rF(4,8)/c,

by (31) and (14). By (28) and (16),

(3224) F(l,4) = (-iya-^F(8,8).

F(l, 7)F(1, 8) = F(l, 1)(- iya7F(l, 9) [1, 7, 1].

(3324) F(l,8) = a"(-l)'a7F(l,9),

by (27).

F(l, 3)F(4, 4) = F(l, 4)(- iya5F(l, 8) [1, 3, 4].
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Since

72(4, 4) = £-«72(8, 8) [3,(84)],

(3424) R(l, 3) = dß6Za5R(l, 8),

by (32).

For e= 15, Jacobi sums are conjugate to 72(1,1), 72(1, 2), 72(1, 3), 72(1, 4), R(l, 5),

and Jacobi sums of lower orders, for by (5) and (8)

(3515) 72(1, 6) = R(l, 8) = a872(l, 2),

(3615) R(l, 1) = R(l, 1) = cr772(l, 1).

Dickson showed [5, pp. 198-199] that

(3715) 72(1, 3) = 0-^72(3, 3),

(3815) a2/2(l,2)=^3r72(l,2),

(3915) 72(1, 5) = bß*T~5FR(l, 1),

(4015) R(l,4) = bß-*T+5FR(l,2),

where b= ± 1. b is specified completely by equation (102).

Now let e = 30. Since

(4130) o7R(l, 13) = R(l, 1),   a2372(l, 12) = 72(1, 6),

the Jacobi sums of order 30 are conjugate to R(\, «), 1 á«á 11, 72(1, 14), 72(2, 3),

and Jacobi sums of lower orders.

From (10), with t= 1,

(4230) t(1)t(16) = 0-«t<2)»<15).

(4330) 72(l,l) = (-iyiS-2Zi2(l,14),

by (3) and (5). Also from (42),

t(1)t(14)/t(15) = £-2zt(2)t(14)/t(16).

72(1, 14) = ß~2zR(2, 14).

(4430) 72(1, 14) = ß~2zo7R(2, 2),

by (36).
<713JR(1, 7)72(1, 14) = i2(l, I>13i2(l, 14) [1, 13, 1].

a13i2(l,7) = (-iyiS-2ZtT13i2(l, 14),

by (43). Apply the automorphism a7 :

(4530) 72(1,7) = (-1)^-^72(1, 14).

72(1, 7)72(1, 8) = 72(1, 1)(-1)^72(1, 3) [1, 7, 1].

(4630) 72(1,8) = (-iy^2Za772(l, 3),

by (43) and (45).
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From (11) with f=l and p=t(22)t(8),

F(l, 21) = jS-3rF(3, 8).

(4730) 7?(1, 8) = (-iy¿8-3ra16F(l, 2).

F(1,6)F(1,7) = F(1,1)F(2,6) [1,6,1].

(4830) F(l, 6) = ß12zR(2, 6),

(4930) F(l,6) = /J12z-6rF(6,6),

by (37).

F(l, 3)a17F(2, 6) = F(l, 14)(- iyF(3, 12) [1, 3, 14].

F(l, 3)ß-"To17R(6, 6) = F(l, 14)(-iyi3-6zF(12, 12),

by (37) and [12, (2.24)]. Hence

(5030) F(l, 3) = (-iy8-6z + 12rF(l, 14).

F(1,1)F(2,3) = F(1,3)F(1,4) [1,1,3].

By (43) and (50),

(5130) F(2,3) = J8-*Z+^F(1,4).

Combine (39) with (44): Since ß15F= 1,

(5230) o7R(2, 10) = bß2Z~eT + 5FR(l, 14).

F(l, 9)a7F(2, 10) = F(l, 6)(- iya7F(l, 2) [1, 9, 6].

(5330) F(l,9) = ^-2Z-3r-5FF(l,6),

by (52), (47), (46), and (50).

F(l, 6)a7F(l, 5) = F(l, 5)F(6, 6) [1, 6, 5].

(5430) <r7F(l,5) = ^-12Z + 6rF(l,5),

by (49).

F(l, ll)(-iya13F(l, 5) = F(l, 5)^(1, 6) [1, 11, 5].

Divide by equation (54) to which «r13 has been applied; then apply au:

(5530) F(l, ll) = (-iyi3-6Z-12rF(l,6).

F(l, 5)a7F(2, 10) = F(l, 14)F(5, 15) [1, 5, 14].

By (10), with f = 5,

R(5, 5) _ ß~i0ZR(5, 15) - (-1)'¿310ZF(10, 10).

Hence by (52),

(5630)        F(l, 5) = ¿>¿38Z+6T-5FF(5, 5) = (- îyèjS-122-67'-5^^, 10).

anF(l, 4)auF(5, 5) = 0llR(l, 5)o7R(2, 10) [11, 14, 25].
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By (52), and with an applied to (56),

(5730) onR(\, 4) = ß-™R(\, 14).

72(1, 10)(-1)^72(1, 4) = 72(1, 5)o-772(2, 10) [1, 10, 5].

(5830) 72(1, 10) = (- l)'bß2z-6T-5FR(l, 5),

by (57) and (52).

More information about the incompletely determined factors c, d, and b,

defined by (15), (27), and (40), respectively, can be gained from further investigation

of the theory of cyclotomy of orders 12, 24, and 15, respectively. Since in each case

e has two distinct prime factors, each Jacobi sum of order e has a representation

of the form 72(«, vn), v an integer. (By contrast, this is not true for 72(2, 3), <?=30.)

Collecting the exponents of ß in (1) which are in the same residue class (mod e)

yields the following expansion of 72(n, vn) in a finite Fourier series:

(59) 72(«, vn) = (-1)"»' £ B(f, v)ßni [10, (2.6)].
e-l

2
1 = 0

Let (h, k)e denote the number of solutions of

ges+h+l = get + k(modp),   0<¡í,rS/-l.

The («, k)c are called cyclotomic numbers. The coefficients 7J(z, v) in (59) are

Dickson-Hurwitz sums [10, (2.7)] defined by

(60) B(i,v)=%(h,i-vh)e
e-l

ft = 0

It follows that if e=xy, and if Bx(i, v) denotes a Dickson-Hurwitz sum of order x,

y-l

(61) Bx(i, v) = 2 B(i+jx, v).
i = 0

A. L. Whiteman proved that if (v, e) = 1, then

(62) 7J(z, v) = B(iv', v'), where vv' = 1 (mod e)        [12, Lemma 1].

The cyclotomic numbers satisfy [3, p. 394]

(63) (h,k)e = (e-h,k-h)e,

(64) (h, k)e = (/c, h)e, /even,

= (k + -2e,h + 2e)e,   /odd,

e-l

2 (h, k)e = f-1,   if/is even and h = 0 (mod e),
k = 0

(65) = /-1,   if/is odd and h = -2e (mod e),

= /,        otherwise.
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An immediate consequence is

e-l

2
ft=0(66)
2 (h, k) = /-1,   if k = 0 (mod e),

= / otherwise.

B(i,G)=f-l,   e\i,

= / e\i.

It follows that

(67)

From (60) and (63),

(68) B(i,v) = B(i,e-v-l).

Combining (67) and (68) gives

(69) B(i,e-l)=f-l,   e\i,

= /        e\i.

If e is even and F= e\2,

(70) (h, k)E = (A, fc)e + (h+E, k)e + (h,k+E)e + (h + E,k+E)e     [11, (2.6)].

Let Q denote the field of rationals. Let e=12. Q(ß) is a fourth-degree extension

of Q. {1, ß, ß2, ß3} is a basis for Ô03) over Q. Let 7>(f, »)=£(/, t;)-F(i + 6, v). Then

7J>(i, t;)= -7)(f+6, v). Since 1 +£4+¿38=0,

(-irF(l, r) = f ^0'. »^ - 2 D(4 ̂ = W, v)-D(A, v)
i = 0 i = 0

+ [D(l, v)-D(5, v)]ß+[D(2, v) + D(4, v)]ß2+[D(3, v) + D(5, v)]ß3-

A column vector notation will be used to represent Jacobi sums in terms of the

basis to simplify visualizing the equating of coefficients of basis elements. The «th

component, 0^n¿<f>(e)-1, will be the coefficient of ß71. Thus

(-iy'R(l,v) =

-D(0,v)-D(4,v)-

D(l,v)-D(5,v)

D(2,v) + D(4,v)

lD(3,v) + D(5,v)_

(7112) D(0, 3) + D(4, 3) + F(8, 3) = 7)4(0, 3) = -1,

by (61) and (69). Similarly,

(7212) F(l, 3)+D(5, 3) + D(9, 3) = 0.
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Since c is a fourth root of unity, it follows from (15) that 72(1, 3) is invariant

under the automorphism o-s.

(7312)

(-iy72(l,3) = (-1)^72(1,3) =

0(0, 3)-75(8,3)

7>(5,3)-7>(l,3)

-75(4, 3)+ 75(8, 3)

|_-75(9, 3)4-75(1, 3) J

■   D(0,3)-D(4,3)

D(l,3)-D(5,3)

-75(8, 3)+ 75(4, 3.)

.-75(9, 3)+ 75(5, 3)

Equate coefficients of ß:

(7412) 7>(1, 3) = 75(5, 3).

Combining with (72) shows that

(7512) -75(9, 3) + 7)(l, 3) = 375(1,3).

Equate coefficients of ß2 :

(7612) 75(4, 3) = 75(8, 3).

Combine with (71):

(7712) 75(0, 3) - 75(4, 3) = -1 - 375(4, 3).

Substituting (74), (75), (76), and (77) into (73) yields

(- iy72(l, 3) = -1-375(4, 3) + 375(l, 3)z.

72(3, 3) = -X+2 Yi,   X = 1 (mod 4), X2 + 4Y2 = p   [3, pp. 400-401 ].

By (15),

(7812) c[-l-375(4, 3)+375(l, 3)z] = (-\)r(-X+2Yi).

If c= 1, equating real parts in (78) gives

-1 = (- iy(-X) (mod 3);   X = (- iy (mod 3).

Ifc=-1, A = -(-iy(mod3).

If c=i, equating imaginary parts in (78) yields

-1 = (-iy2r(mod3);    7= (-iy(mod3).

If c=-z, r=-(-iy(mod3).

This proves that c= ± 1 if and only if 3| Y, and also

Theorem 1. Let p=l (mod 12), p=X2+4Y2, Z=il(mod4). Iff is even and

X= 1 (mod 12) or f is odd and X= 5 (mod 12), then c= 1. Iff is even and X= 5

(mod 12) or fis odd and X= 1 (mod 12), then c= — 1.

If c= ±z, the analogue of Theorem 1 cannot be formulated without knowing

724(1, 1), or something equivalent, explicitly, because the sign of Y depends upon

the choice of the primitive root g.
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Let e=24. Q(ß) is an eighth-degree extension of Q. Let D(i,v) = B(i,v)

—B(i+12, v). A basis representation for (— 1)V/F(1, v) is given in Figure 1. The fact

that 1 +ß8+ß16=0 is used in determining the components.

D(0,v)-D( S,v)

D(l,v)-D(9,v)

D(2,v)-D(W,v)

D(3,v)-D(ll,v)

D(4,v) + D( S,v)

D(5,v)+D(9,v)

D(6,v) + D(\0,v)

lDC7,v) + D(U,v\

Figure 1

(7924)

Apply (62) to the D(i, 11):

D(l, 11) = Dill, 11), D(2, 11) = -7>(10, 11), D(3, 11) = D(9, 11),
(8024)

D(4, 11) = -7>(8, 11), D(5, 11) = DC1, 11), D(6, 11) = -F-(6, 11) = 0.

Incorporating (80) into (79) gives the following representations for (- l)rF(l, 11)

and (— iy<75F(l, 11) shown in Figure 2:

(-D'Ra, H) =

£»(0,11)+ 0(4,11)1

£>(1, ll)-£>(3,11)

2D(2,11)

£»(3,11)-£>(1, 11)

0

£»(5,11) + £»(3, 11)
-£K2,11)

L£>(1, ll) + £>(5, 11)J

(-iy<75i?(l,ll) =

£-(0,ll)+£>(4, 11)

£•(5,11)+£»(3, 11)
-2£»(2, 11)

-£>(3,11)-£"(5, 11)

0

£•(1, ll)-£>(3, 11)

£•(2, 11)

L    £»(5, 11)+£>(1, 11)J

Figure 2

a5F(l, 11)=F(1, 11), by (22), so coefficients may be equated. For¿S6, F»(2,11)=0.

Equate coefficients of ß:

Then

Thus if

D(l, 11)-7J>(3, 11) = D(3, 11)+F(5, 11).

2[D(l, ll)-7)(3, 11)] = 7J>(1, ll) + 7)(5, 11).

U= D(0, ll) + 7>(4, 11),        W= D(l, 11)- F>(3, 11),

i-iyRil, 11) = U+W(ß-ß3+ß5 + 2ß'!) = U.+ W(-6)112.
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By (7), U2 + 6W2=p. Since p=U2=l (mod 24), R^ is even. Hence if W=2V,

p=U2+24V2, and

(8124) (~l)fR(h H) = U+2(-6y>2 V,    U = 75(0, ll) + 75(4, 11),

F = ¿[75(1, 11)-75(3, 11)].

From (25) and (27),

ß2Z(-l)! dR(\,l) = 72(1,11).

23

72(1, 11) = ß~ez(- iy a-|S8Z72(l, 7) = ß*z d J B(i, 7)¿3i+8Z.
i = 0

23

72(1, 11) = ß6Z d 2 7?(z-8Z, 7)/?.

jS62*/ = 72(i,ii) = (-iy

2V

0

-2F

0

2F

0

4V.

'D( -8Z,7)-75( 8-8Z.7)"

75(l-8Z,7)-75( 9-8Z,7)

75(2-8Z,7)-75(10-8Z,7)

75(3-8Z,7)-75(ll-8Z,7)

75(4-8Z,7) + 75( 8-8Z,7)

75(5-8Z,7) + 75( 9-8Z,7)

75(6-8Z, 7) + 75(10-8Z,7)

.75(7 - 8Z, 7) + 75(11 - 8Z, 7).
Figure 3

Equate coefficients of j84 :

75(8-8Z, 7) = -75(4-8Z, 7) = 75(16-8Z, 7).

By (69) and (61),

(8224) -1 = 758(0, 7) = 75(-8Z, 7) + 75(8 -8Z, 7) + 75(16-8Z, 7)
= 75(-8Z, 7) +275(8-8Z, 7).

Equate coefficients of 1 :

ß6Zd[D(-8Z,7)-D(Z-8Z,7)] = (-l)'U.

i86Za'[75(-8Z,7) + 275(8-8Z,7)] = (-l)fU(mod 3).

By (82),

(8324) ¿= -(-iy|36Zf7(mod3).

If k is odd and (j, k)=\, let (j\k) denote the Jacobi symbol. If k is prime, let

(j|&)4 denote the quartic residue symbol:

(j\k)i = 1 if j is a quartic residue (mod A:);

01^)4 = -1 if (/I*) = 1 DUt7 is not a quartic residue (mod k).

The symbol (j\k\ will not be used if (j\k)= — 1.
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Since ß6Z=(2\p)i and Um{U.\3) (mod 3), (83) becomes

(84) d = -(-iy(2\pUU\3).

To simplify (84), further study of the cyclotomic numbers is necessary. The

following was proved by Emma Lehmer [6, Lemma I] :

Lemma. 7-ef Z=ind 2 (mod e). The cyclotomic number (0, Z)e is odd. All other

cyclotomic numbers (0, k)e, 0 = k = e—l, are even.

Now assume 4\e, and let e=2E. Let D(i, v) = B(i, v)-B(i+E, v).

Theorem 2.

D(0, E) = 1 + 2 2 (°> 2®b - 4 2 (2/. E)e-
h=o i = o

Proof. D(0,E) = 2ehz0[(h,-Eh)e-(h,E-Eh)e],  by (60).  According to  (66)

S=U(A,0)e-(A,F)e]=-l. Thus

7J>(0,F)-1 = % [(h, -Eh\-(h, E-Eh)e+(h,0)e-(h, E)e]
h=0

= 2£f[(2;,0)i-(2;!£)e]
1 = 0

= 2 f [(2/ 0)e + (2j, E)e - 2(2/ E)e]
1 = 0

= 2 2(2h,0)E-4 2(2j,E)e,
1 = 0

by (70),

= 2 2 (0,2h)E-4Ef (2/ F)e,
ft = 0 Í = 0

by (64).

Corollary 1. Let 8|e. FAe«

7J>(0, F) s 1 -4/+2 2  (0» 2Ä)s (mod 8)-
ft = 0

Proof. If/is even, by (63) and (64), (2/ E)e = (E, 2j)e = (E, 2j-E)e = (2j-E, E)e.

4 2 (2j, £). = 8 ¿f (2A. £)e - 0 m 4/(mod 8).
1 m 0 h = 0

If/is odd, by (64), (2/ F)e = (0, 2/+F)e.

4 f* (2/ F)e = 4 J' (0, 2£)e ee 4 ee 4/(mod 8),
1=0 k=0

for as (2\p) = 1, exactly one of the terms in the last sum is odd, by the lemma.

Corollary 2. Let e=8. Then D(0,4)s7-2 ind 2 (mod 8).
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Proof. 2S=o(0,2«)4=2[(0,0)4 + (0,2)4] = 2(0,0)2-4(0,2)4, by (63), (64), and

(70). By the lemma, as (2\p) = 1,

2(0, 2)4 = ind 2 (mod 4).

2(0,0)2 = 4/-2 [3,(18)].
By Corollary 1,

75(0, 4) = 1+4/-2-2 ind 2-4/ s 7-2 ind 2 (mod 8).

Theorem 3. If p=\ (mod24), p=U2+24V2, then (6\U) = (U\p), (V\p)=\.

Proof. If a is a prime divisor of U,

p = 24F2 (mod a).   6p = 144V2 (mod a).

1 = (6p\q) = (6\q)(p\q) = (6\q)(q\p),

by the Law of Quadratic Reciprocity. Hence

(6\u) = Yl(^) = Tl^\p) = (u\p)-
<i\u a\u

Now let q be an odd prime divisor of V.

p=U2 (moda).   (p\q) = 1 = (q\p).   ft   (il/>) = 1.
«|V;<jodd

Since (2\p)= \,(V\p) = \.

(I am indebted to Professor Louis Sacks for suggesting the technique of this

proof.)
ii

ind 12 = - 2 ("> °)i2« (mod 12) [8, Theorem 1]
h = 0

for e= 12, p= 1 (mod 24). Apply (64), then add (65) with «=0:

ii
(85) ind 4+ind 3 = (p-1)/12 — 1 - 2 (" +1)(0, «)12 (mod 12).

ft = 0

If (85) is taken (mod 4), ind 4 drops out. The terms containing (0, /z)12, « odd,

also drop out, for according to the lemma, they are even, and their coefficients

« +1 are even.

ind 3 = (p-\)¡\2-\-(0, 0)12-(0, 4)12-(0, 8)12 + (0, 2)12

+ (0,6)12 + (0,10)12(mod4).

Now let e=24. By Corollary 1,

(8724) 75(0, 12) = 1 -4/+2 J (0, 2«)12 (mod 8).
Ä = 0

(8824) 758(0, 4) = 75(0, 12) + 75(8, 12) + 75(16, 12),

by (61). By (80) and (68), 75(8, 12) = 75(16, 12). Apply Corollary 2 to (88):

(8924) 75(0, 12)+275(8, 12) = 7 - 2 ind 2 (mod 8).
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Subtract (87) from (89) and divide by 2; then subtract (86):

(9024)      Z>(8, 12)-ind 3 = -ind 2-2(0, 2)12-2(0, 6)12-2(0, 10)12 (mod 4).

Since ind 2 = 2 (mod 4) if and only if one of the three cyclotomic numbers (0, 2)12,

(0, 6)12, or (0, 10)12 is odd,

(9124) F>(8, 12) =. ind 3 (mod 4).

U = D(0, 12)-7>(8, 12) = D8(0, 4)-37J>(8, 12),

by (81), (80), (68), and (88). Apply Corollary 2 and (91):

(92) U= 3-3 ind 3 (mod 4),

-U = 1-ind 3 (mod 4),

(93) -(-l\U) = (3\p)t.

Now apply (93) to (84):

d= -(-l)'(2\pUU\3) = -(-iy(2|/>)4(3|t/)(-l|i/)

= (-iy(2\p\(3\V)(3\p)i = (-iy(12|i/)(6|/>)4

- (-iy(2|l/X6|t/X6|/»)4 = (-iy+(C72-1),8(i/|/7)(6|/;)4,

by Theorem 3,

= (-íy + íp-i-aw»)»^^!^ = r_ly + 3f-3v^6(j?_24V2)\p)i

= (-m-Mv2\p\ = i-mnp)* = í-iywpi
By Theorem 3,

(94) d-i-iy.

Equations (81) and (94) can be combined with equations (13)—(34) to give the

following summary of the relations between the Jacobi sums of order 24:

U+2(-6)ll2V = (-iyF(l, 11) = ß2ZR(l, 1)

= (-1)V¿S2ZF(1, 7) = (-iy|36Z + 37F(l, 5),

- X+2(- l)1'2 Y = R(6, 6) = ßiZ~6TR(2, 2)

= (-l)vß6Z+3TR(2, 6) = ß-6TR(2, 10)

= ß6z+3TR(l,6) = (-iyiS2Z+6rF(l, 10),

Ä(8, 8) = ß~iZR(4, 8) = (-l)vj82z + 3rF(2, 4)

= F(2,8) = (-iy+^"2ZF(l,4),

F(l, 2) - (- iy+T3rF(l, 8) = ß~3To7R(l, 9)

= (-iyß«z-3To5R(l,3).

Given p=X2+4Y2=U2 + 24V2, ind 3 (mod 4) can be determined from X and

y (see Theorem 1): ind 3 = 0 (mod 4) if and only if 3| Y. Then the sign of U can be

determined from (92).
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72(1, v) =

Now let e=15.  Q(ß) is an eighth-degree extension of Q. Since l+ßs+ß10

= 1 +|S3+/?6+iS9+i812=0, a basis representation for 72(1, v) is given in Figure 4:

"7i(0, v)+B(l3, z;)+7i(14, z;)-7J( 8, z;)-7J( 9, t>)-7i(10, v)

75(1, v) + B( 8, v)-B(ll, v)-B(l3, v)

B(2, v) + B( 9, f)-7i(12, v)-B(l4, v)

B(3, i>)+7i(14, v)-B( 8, v)-B( 9, v)

B(4, v)+B( 8, z;)-7J(13, f)-7J(14, v)

B(5, v) + B(\3, v)-B( 8, t>)—B(10, v)

B(6, v)+B(l4, v)-B( 9, v)-B(U, v)

B(l, v)+B( 8, z;) + 7J( 9, f)-7J(12, i>)-7?(13, t>)-7J(14, z;).

Figure 4

From (38) and (40),

a2[iS-5F72(l,4)] = |3-5*T2(l,4).

ß-*FR(l, 4) = f B(i, 4)p-*F = f B(i+5F, 4)ß\
i = 0 i = 0

a2[ß~5FR(\, 4)] = 2 W, 4)ß2i~10F = 2 B(Si+5F, 4)ß\

Applying (62) to the 7i(z, 4) yields

7?(1 + 5/, 4) = 7?(4 + 5/ 4), 7J(2 + 5/ 4) = 75(8 + Sj, 4),       / = 0, 1, 2.

Define for 7=0, 5, and 10

Gj = B(j+SF, 4)-2-[B(j+ 12 + 5F, 4)+5(7+6 + 5F, 4)],

77, = M5<J+12+5F,4)-7JC/+6 + 5F,4)].

By (61) and (69),

(9515) G0 + G5 + 610 = 7?5(0, 4)-i[7i5(2, 4) + 7?5(l, 4)]= -1,

(9615) 770 + 775 + 7710 = 7J5(2, 4) - 7J5(1, 4) = 0.

j8_5F72(l,4) and a2[ß'5FR(l,4)] can be represented in terms of Gj and 77,,

7=0, 5, 10, as shown in Figure 5:

jS-".R(l,4) =

Go + Hr) — 2/J5 — Cio + H\o

2H5-2H10

-2H0 + 2Hs

2H0-2HS

2H$ — 2Hio

Gs — Hs — Gw + Hu,

0

l-2H0 + 2Hs

Figure 5

o2[ß-5FRa,4))--

Go — Ho — Gs — If5 ~i~ 2/zio

2H5-2H10

2Hq — 2Hio

— 2H0 + 2Hio

2H5-2H10

— G5 — Hs + Gio + Hio

0

2/ïo — ¿.Hiq
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Equate coefficients of ß5 :

(9715) G5 = G10.

Then by (95),

(9815) G0=-1-2G5.

Equate coefficients of ß2 :

4770 - 2775+27710.

By (96), 6770=2(770+776 + 7710)=0. Hence

(9915) 770 = 0,   7710 = -775.

For brevity, letF(=F0 + 3F, 2).

[December

14

2
i=-0

ß~3TR(l, 2) = 2 W, 2)ß'~3T = 2 B(i+3T, 2)ßl = f £#•
14

I
i=0

ß-3TR(l, 2) =

£o+£i3+£i4—£a—£9 —£^

£i+£s—£n_£i3

L2+L9—£12 —£14

Ls+Lii —£g—£9

£4 +Lg — £13 — £l4

£6+£l3~ £8_ £10

£e+£i4_ £9—£11

.£7 +£8+£9—£12—£13 —£l4.

Figure 6

ß-5FR(l,4) =

r-l-3G5-3£f5-

4H5

2HB
-2H5

4HS

-2H5

0

2£T5

Since by (40), ß~3TR(l, 2) = bß~5FR(l, 4), coefficients may be equated up to the

factor b. Adding the coefficients of 1, ß3, and ß6 and subtracting the coefficients of

ß2 and ß5 yields -1 - 3G5 - 5775 and

Lq +£/3 +£/g +£9 +L\2 + 5£/j4   L2   L¡   Lg —Lu —F^4 — 57.9

- F3(0,2)-F3(2,2)+5(L14-L9) = 5(F14-L9)-1,

by (61) and (69). Hence

(10015) -1 - 3G5 = - b (mod 5).

ß~5FR(l,4) = -l-3G5 + 775[-3+4|3+2J82-2J83+4|S4-2J85 + 2J87]

= -l-3G5+775(-15)1/2.

(10115)       ^-5FF(1,4) = -M+JV(-15)1'2,    M=1+3G5,   N = 775.

p=M2+ 15N2, by (7). Combine with (100):

M m b (mod 5), M = 1 (mod 3).

(102)    M = 1 (mod 15) implies b = 1, M = 4 (mod 15) implies b = -1.



1968] ON JACOBI SUMS OF CERTAIN COMPOSITE ORDERS 499

The relationships between the Jacobi sums of orders 15 and 30 will now be

summarized. The notation corresponding to e=30 will be used. The factor(-l);

will be replaced by its equivalent jS15r.

72(2, 2) = bß-12T~5FR(2, 10) = iS-*ztr1372(l, 14)

= jS-2z+15Tcr1372(l, 7) = jS-2Z+15r72(l, 13)

= /J-8Z+lsra1372(l, 1) = /?14Z + 9ra1372(l, 3)

= j8-"-6T<r1B/i(l, 8) = j8-4Z+12r72(l, 2)

= ß~*z + 5Fa23R(l, 4) = ß-2Z~6T+5Fa23R(2, 3),

72(6, 6) = ßeTR(2, 6) = £-12Z+6T72(l, 6)

= bß-10Z+9T+5FR(l, 9) = ¿S-6Z+3r72(l, 11)

= /?-12Z+6r<72372(l; 12),

72(10, 10) = ¿S10Z-5i72(l, 10) = ¿012Z+9r+5F72(l, 5),

72(2,4) = bß6T+5FR(2, 8).

All the Jacobi sums of order 30 can be expressed in terms of Jacobi sums of

lower orders. This property holds for Jacobi sums of orders 6, 10, 14, and 18, but

not 22 [3, p. 408], [4, pp. 372-373], [5, pp. 194-195].

To conclude, an application of the theory of cyclotomy of order 15 will be

presented. The proof given here is a variation of Emma Lehmer's original proof of

Marguerite Dunton's conjecture.

Lemma Let z=g' (mod/?). For a fixed v, 1 ̂ v^e— 1,

e-l

2>
ti=:0

e— J.

indg (l-zv) = (p-1)/2+ 2 "(", v)e (mod e).

Proof. Define the set Sv={n\2^nSp —i, ind n = v (mode)}. The zeros of

x'—zv (modp) are the elements of Sv. Thus if 2v and TJV denote the sum and

product, respectively, over the elements of Sv,

xr-zv = Y\(x-n) (modp).
V

Setje-1:

l-z* = l~[(l~n)(modp).
V

ind (1 -zv) m 2 ind (1 -n) = find (-1)+2 hid («-1)

Zu(u,v)e = (p-l)l2+ 2 i
u=0 «=0

c — j. c — j.

= ind (-1)+ 2 "(", v)e ■ (P-1)/2+ 2 "("' v^ (mod *)•

Theorem 4. Let p = 15/+1 = M2 +15N2 and let 6=(1 + \/5)/2. Then 6 is a cubic

residue (modp) if and only if N is a multiple of 3 [7, p. 138].
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Proof. Let e= 15 and z=gf (mod/?).

(10315) 6 = (1 + V5)/2 = l+z3 + z12 = -z6-z9 (modp).

14

ind (1 -z») EE 2 "(", f)is (mod 15),
14

I
since/is even.

(10415) ind (1 -z») EE 2 [(3i+ L »)1B-(3f+2, »)16] (mod 3).
t = 0

Adding once, then twice

14

/=    2   ("»")l5
11 = 0

(see (66)) to (104) gives

(10515) ind (1 -z-O+Z EE 2 [(3i, v)15-(3t+1, v)15] (mod 3),
( = 0

4

(10615) ind (1 -z")-f = 2 [(3i+2, !7)1B-(3r, o)15] (mod 3).
t=0

By (99) and (101),

4N = 2(775 - 7710) = F(2 + 5F, 4) - F(l 1 + 5F, 4) -B(l + 5F, 4)+F(l + 5F, 4)

= F(2+5F, 10)-F(11 + 5F, 10)-F(7 + 5F, 10) + F(1 + 5F, 10),

by (68),

= 2 [(A,2+5F-10/i)ls-(Ä, 11 + 5F-10Ä)15-(A,7 + 5F-10A)15
h = 0

+ (h,l + 5F-l0h)15],

by (60). In the last two terms of the above summation, replace h by h — 1 :

14

4A/= 2 [(h,2+5F-l0h)15-(h, ll + 5F-l0h)15-(h-l,2 + 5F-l0h)15

+ (h-l,U + 5F-l0h)15]

= 2 P, 2 + 5F+ 5A)15 - (h -1, 2+5F+ 5A)15 - (h, 11 + 5F+ 5A)15

+ (h-l,U + 5F+5h)15]

= 2 [(3f,2+5F)15-(3f+2,2 + 5F)15 + (3f+l,7 + 5F)15-(3i,7 + 5F)15
( = 0

+ (3f+2,12+5F)is-(3i+l, 12 + 5F)15-(3f, ll + 5F)15 + (3f+2,11 + 5F)15

-(3f+l,l+5F)15 + (3i,l + 5F)15-(3f+2,6 + 5F)15 + (3f+l,6 + 5F)15].

ft = 0

14

2
Ä=0



1968] ON JACOBI SUMS OF CERTAIN COMPOSITE ORDERS 501

Replace the cyclotomic numbers by their equivalents as given in (104), (105), and

(106):

4N = N= - ind (I - z2+5F)+f-ind (I-z^^-f-ind (I-z12 + 5F)

+ind (1 -z11+5r)-/+ind (1 -z1+5F)+/+ind (1 -z6+5F)

a -ind (1 -z2)-ind (1 -z7)-ind (1 -z12)+ind (1 -z)+ind (1 -z11)

+ ind(l-z6)

EE -ind(l+z)-ind(l+zn)-ind(l + z6)

EE - ind (1 + z) - ind (z4 +1) - ind (z12+z3) - ind z14

se -ind(l+z+z4+z5)-ind(z12 + z3)-14indz

he - ind (z+zi- z10) + ind (z6+z9)+ind z (mod 3),

since 1+z5 + z10ee0 (modp) and (z12+z3)(z6 + z9)= -1 (modp).

N = -ind z10-ind (z6 + z9- l) + ind (z6+z9) + ind z

EE -10 ind z - ind ( - (z6 + z9)2) + ind (z6+z9) + ind z

5= - ind (-(z6+z9))ee -ind 6 (mod 3),

by (103).

Although the prime ideal decompositions of the Jacobi sums in Q(ß) [5, Theorem

4] were not mentioned, they were used to advantage in this study. The Jacobi sums

were computed for a number of primes/?. The numerical values were of considerable

value in formulating and later checking the results. These computations were

performed on facilities of the Computer Center of the University of Pittsburgh : the

IBM 7090/1401 system, partially supported by NSF grant G11309, and the IBM

360/50 system, supported in part by NIH grant FR-00250-01A1.
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