
GEOMETRIC DIMENSION OF VECTOR BUNDLES
OVER LENS SPACES

BY

DENIS SJERVE

1. Introduction. Throughout p will denote an odd prime. Let a1; ...,an + 1

be relatively prime to p and let Zv denote the cyclic group with generator t and

relation tp= 1. If #=exp (2tt\/(— l)/p),[then we can define a free smooth action of

Zp on the sphere S2n+1 by tk(zu..., zn + 1) = (öfc«iz1,..., 6k««+izn + i), where

(zu..., zn + 1) is a complex «+1 tuple representing a point of S2n+1. The orbit

space of this action is called a (generalized) lens space and is denoted by L2n + 1. It is

a compact, connected, orientable manifold of dimension 2« + 1 and the quotient

map 77 : S2n+1 -+L2n+1 is a p-fo\d covering. If all the qk are equal then L2n+1 is

known as a standard lens space.

Suppose zf is a stable vector bundle over a finite CW complex X. Then £ may be

interpreted as the homotopy class of a map X -> BO, where BO is the classifying

space for the infinite orthogonal group, and the geometric dimension of £ is the

least nonnegative integer k such that the following lifting problem may be solved :

BO(k)

/
/

/

x'_>BO

We write g. dim £ for the geometric dimension of f •

If we let P¡ denote either the z'th Pontrjagin class or its mod p reduction and if c

is any integer satisfying 4c+1 =0 (modp), then our main theorems are:

Theorem A. If $ e (KO)~(L2n+1) n ker n*, then g. dim ¿f^2[«/2] +1.

Theorem B. Suppose n^2,p^[nß] + 3, and $ e (KO)~(L2n+1) n ker tt*. Then

g. dim | ^ 2[n/2] if, and only if, there exists a cohomology class ü e H2lnl2\L2n+1 ; Zp)

such that cP[n/2)(f) + "2=0.

Theorem C. (i) L2n+1 immerses in 7*2*+201/21+2 yor a¡¡ n an¿ a¡¡ 0dd primes p;

(ii) if all the qk are equal, «^2, and /?S[«/2] + 3, then L2n + 1 immerses in

R2n+2inm + 1 if, and only if,

(_iyn,2i/" + ["/2]\

is a quadratic residue modp;
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(iii) if all the qk are equal and

C + f^Oönod,),

fAe« F2n + 1 does not immerse in F2n+2[n/2].

Therefore Theorem C solves the immersion problem for lens spaces with no

twisting (i.e., all the qk equal) if the prime p is sufficiently large.

Recently there have been published papers on the immersion problem for stand-

ard lens spaces. In particular see [2], [3], [4], and [7]. In [4] the case p=3 is treated

and in [3] the following is proved: if p = 5 and n = apk+ßp1, where a, ß, k, 1 must

satisfy certain restrictions, then L2n+1 does not immerse in #2*+211/21+i_ -phis

result does not overlap with Theorem C.

Uchida's result [7] also applies to the standard lens spaces and says that F2n+1

immerses in /?2n+2tn/2]+4 jjje technique used in proving Theorems A and B is

similar to that used by Uchida. The difference lies in the treatment of the top

dimensional obstruction in the Postnikov resolution of the lifting problem :

BSO(k)
■x

/
/

/

(1-1)
/

i
L2n + 1_yBSO(d)

where k = 2[nß] or 2[«/2] +1 and a* is a sufficiently large integer. The fiber is the

Stiefel manifold Kdd_fc and therefore we must know something about their

homotopy groups. What we need is stated in §2. To the best of my knowledge this

result does not appear in the literature, even though I am sure it is well known.

Therefore, the proof is omitted.

Finally I would like to express my thanks to Professors E. Spanier and P. E.

Thomas of Berkeley for their help.

2. Preliminary lemmas. Let J denote any finite abelian group whose order is

relatively prime to p and let p:Z or Z ©./->-Z„ denote modp reduction. The

following lemma is well known:

Lemma (2.1). (i) H*(L2n+1;Zp) is a truncated polynomial algebra in the even

dimensions on a two dimensional generator;

(ii) H\L2n+1;Z) s Z //i=0, 2«+1,

^ Zp if i even and 2 = i=2«,

S 0 otherwise.

Moreover there is a two dimensional generator x such that in the even dimensions

H*(L2n+1;Z) is a polynomial algebra truncated by xn+1=0;
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(iii) /fi(F2n+1;7)=0/orO<i<2«+l;

(iv) it* : H2n+\L2n+1;J)-+H2n+\S2n + 1;J) is an isomorphism ;

(v) p* : H2i(L2n+1;Z)or H2i(L2n + 1;Z@J)-+ H2i(L2n + 1;ZP) is an isomorphism

if0<2i<2n+l.

This lemma could be proved by using the cell decomposition given in [5]. For the

next lemma let Kn>n_, be the Stiefel manifold of n-q frames in «-space. Denote by

« (resp. q) the greatest (resp. least) odd integer á « (resp. = a) and denote by S the

product S2i+1 x S2i+5x ■ - ■ x S2tl~3, where we must include the factor S""1 if «

is even and the factor Sq if a is even. If ñ=q replace S24+1 x ■ ■ • x S2ñ "3 by a point.

Putting «j equal to the least dimension of all the spheres in S we have :

Lemma (2.2). (i) For all i, ■n-i(Fn-n_a) and ^¡(S) are isomorphic modulo finite

groups;

(ii) ifn1>2, then the p-primary part ofirt(Vn¡n^¿) is zero for i<n1 + 2p — 3.

3. Proof of Theorem C. Let v.L2n+1->BO be the stable normal bundle of

F2n+1. Because tt: S2n+1 ->L2n+1 is a/?-fold Covering we see that n*(v)=0. There-

fore Theorem A applies and g. dim v = 2[«/2] +1. By a well-known theorem of

Hirsch (see [1]) this proves (i).

According to [5] the total Pontrjagin class of the tangent bundle r of L2n+1 is

given by

P(r) = (l+q2x2)-(l+q2 + 1x2)

where x is as in (2.1). If all the qk=q we get P(t) = (1 +q2x2)n+1. Since there is no

2-torsion in H*(L2n+1;Z) this implies that

«»)- 2(-1)ii"+%2i^2i.
«60 \    I   /

In particular we have

P:nm(y) = (-ly^^^q^m^n^

lfL2n+1 immerses in F2n + 2[7l,2] we must have FW=0 for i= [nß]. This proves (iii).

Now assume all the qk=q, «^2, and />ä[«/2] + 3. Theorem B applies so that

g. dim v£2[nß] if, and only if, there exists ü e H2lnl2\L2n+l;ZP) so that

C(_l)Cn/2]/?2+["/2A92[n/2^2[n/2] + 52  =  0>

where x is the mod p reduction of x. But x generates the even dimensions of the

truncated polynomial algebra H*(L2n+1;Zp) and therefore we can write ü=axínm.

Thus g. dim v - 2[«/2] if, and only if, there exists an integer a satisfying

c(-l)[n'21i"+["/2])a2["/2]+a2 = 0(mod/>).
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By simple number theory this is equivalent to

being a quadratic residue modp. This proves (ii).

4. Proof of Theorem A. Consider the lifting problem in (1.1) for k = 2[nß]+1.

If V denotes the fiber then (2.2) implies that ^¡(K) is finite with no "/>part" for

/<2«. Therefore, according to (2.1), in the Postnikov resolution we encounter only

one possible nonzero obstruction:

BSO(2[nß]+l)

>K(iT2ri(V),2n + l)

L2n _+BSO(d)

t? lifts Í up to Fand the last obstruction to lifting $ is r¡*(k) e H2n + 1(L2n + 1;7r2n(V)).

Since z; o 77 is trivial it must lift all the way to 7?S0(2[«/2]+ 1), and in particular, up

to E. Moreover, its lifting up to E must be unique and is therefore tjott. Since $ o n

lifts past Fso does jjot: and this implies ir*r)*(k)=0. But (2.1) now gives r¡*(k)=0.

This proves Theorem A.

5. Proof of Theorem B.    For convenience put /;;= [n/2]. Then we are assuming

| is a real stable vector bundle over L2n + 1 and that 7r*(f) is trivial and

(5.1) p i m + 3,       n ^ 2.

Put B = BSO(2n + 3) and B' = BSO(2m) and  let p:B-+B' be the standard

fibration with fiber the Stiefel manifold V= V2n + 3,2ii + 3-2m . As mentioned in the

introduction to prove Theorem B we study the Postnikov resolution of the lifting

problem:

77

/
/

/
L2B + 1_ ->B
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The following facts are well known and will be used implicitly in what follows :

(1) H*(BSO(2k+ l);Z)sZ[Pl5... .,Pk]@ T;

(2) H*(BSO(2k);Z)^Z[Pi, ...,Pk, X2k] © T with the relation Pfc=xL;

(3) H*(BSO(2k +1) ; ZP)^ZP[PU ...,Pk);

(4) H*(BSO(2k);Zp)^Zp[Pu...,Pk, X2k) with the relation Pk = y¡fc; where v2fc

is the Euler class and 7 is a subring consisting of elements of order 2.

The fiber V of p: B -> B' is 2«z —1 connected and TT2m(V)^Z. Thus there is a

fundamental class ve H2m(V;Z) and the first Postnikov invariant is k0 = r(v)

e H2m+l(B; Z), where t is the transgression in the fibration V -*■ 77 jl> B. Inducing

a principal fibration over B with k0 as classifying map we get the commutative

diagram

V->B'

9i

j     +
K(Z, 2m) -^—* Ei

Pi
Y

B-^A:(Z,2w+l)
ko

Lemma (5.2). k0 = ow2m, where w2m e H2m(B; Z2) is a Stiefel-Whitney class and S

is the Bockstein coboundary associated to the coefficient sequence 0->Z->Z

^Z2-+0.

Proof. Let 73" = BSO(2m +1). Then we have a commutative diagram of fibrations

5.2m->v

B'     =     77

P

B"- ^B

where/?',/)" are the natural fibrations. If s* e H2m(S2m;Z) is the fundamental class

and t' the transgression for /»', then

p"*(k0) = p"*t(v) = t'(s*) = X2m+i e H2^(B";Z),

the Euler class (see [6]). The fiber ofp" is 2m connected and therefore

/>"*: H2m+1(B; Z) -* H2n+1(B";Z)

is a monomorphism. Now 8w2m=x2m + i is a relation in H*(B";Z) and thus

p"*(Sw2m) =/>"*(*<,), i.e., k0 = Sw2m.   Q.E.D.
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Now consider the Serre exact sequence of p: B' -> B:

[December

H2m(B; Z) —> H2m(B';Z) —> H2m(V; Z) —> H2m+1(B;Z)

-+0

This reduces to

-► H2m(B; Z) ^—^ H2m(B'; Z) ^—* Z-► Z2

because H2m(V;Z)^Z is generated by v, r(v) = k0^0, and 2k0=0. Since xnm

e H2m(B' ; Z) generates coker p* in dimension 2m we see that i*(xzm) = ± 2v.

If need be we change the sign of v so that

(5.3) i*(x2m) = 2v.

This will not change the Postnikov resolution since k0= —k0.

Now consider the higher Postnikov invariants :

K(irim _ 2, 4m- 2) >F2m.1^i^F(rr4m.1, 4«*)—H-+K(ZP, 4m)

K(77i + 2m_1,i+2m-l)

(5.4)
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where ^ = ^(7). Let/be the composite F2m_i->->Ei. Now from (2.2) it

follows that

(5.5) (i) 7r¡ has no "/>-part" for f<4m + 3;

(ii) 7T( is finite for 2m<i<4m— 1 and 4«j —1 </<4«j + 3;

(iii) 7r4m_! and nim+3 are isomorphic to Z modulo finite groups.

Recall that p: Trim-x -> Zp is modp reduction. Then define k" to be p*(k2m.-¡).

In the remainder of this section, unless stated otherwise, all cohomology groups

will have Zp coefficients.

Lemma (5.6). There is a unique class k e Him(Ex) such thatf*(k)=k". Moreover

qr(k)=0.
Proof. From (5.4) we see that / is a composition of fibrations whose fibers are

Eilenberg-MacLane spaces F(7rr, r), 2m+l=r-4m—2. By (5.5) it follows that the

mod/) cohomology of these fibers is trivial and therefore/*: Ff*(F1)^F^*(F2m_1)

by some Serre exact sequences. Finally a*(A:)=a*m_1(/c")=P*<7*m-i(^2m-i)=0.

Q.E.D.
The reason for introducing k is given by:

Lemma (5.7). f lifts past E2m.1 in the Postnikov resolution (5.4) if, and only if,

there exists a lifting r¡:L2n+1 -»> Fj so that 7¡*(k)=0.

(5.8)

>K(ZP, 4m)

>K(Zp,4m)

Proof. First note that £ lifts to E1 since ¿;*(k0)=0 by (2.1). The obstructions to

lifting i up to E2m-i lie in the groups Hi(L2n+1;Trt_1) for 2m+2 = i=4m-l. But

all these groups are zero according to (2.1) and (5.5) so that i lifts to ij:F2n+1

-*"£a»-i. Let ■n=f°v'-L2rL+1 -*■ Ex. Then i lifts past F2m_j if, and only if, we can
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choose fj so that i?*(A:2m-i)=0. But p*: Him(L2n + 1; 7r4m_1)^774m(72n + 1;Zp) and

therefore fj*(k2m_j) = 0 if, and only if, t¡*(/<")=0. Now/* is an isomorphism

for Zp coefficients and so ij*(k")=0 if, and only if, r¡*(k)=0. This shows that if £

lifts past E2m-i then such a map 77 exists. Conversely, given -n we can lift it to £2m-i

and proceed as above.    Q.E.D.

The situation now is shown in the preceding equation (5.8).

Define a cohomology operation Ô by d =j*(k) e Him(Z, 2m ; Zp). pi : Ei -+ B is a

principal fibration and therefore there is an action of the fiber 7v(Z, 2m) on the

total space Ex, ¡xi : K(Z, 2m) x Ex -> 7^ (see [6]). This induces an action on the

homotopy level ft¿: [°, 7v(Z, 2«z)] x [o, £J —>. [0) £J. If fx> £2 are liftings of i to Ei

then they differ by this action, i.e., there exists a class u e H2m(L2n+1;Z) such that

£2 is the composite

d w x i, a,
L2n + 1 -^¿2„ + l xL2n + l -„ ¿-(^ 2w) X £a —-> Ex

where á is diagonal. Let t e 772m(Z, 2«z ; ZP) be the fundamental class. In §6 it is

proved that 6 = i2. If we use the notation ü for zz reduced mod p we have :

Lemma (5.9). (i) i4(k)=\ ® k + 12 ®\+i <g> xfor some x e H2m(Ei);

(ii) £(*)-zf*(/<) = z72 + zzUzf*(x).

Proof. Let Si : K(Z, 2m) -»■ K(Z, 2m) x Ex and s2 : Ei -*■ K(Z, 2m) x Ey be the

canonical inclusions with respect to chosen base points. Then ^ ° sx ~j and

Pi ° j2~ l£l (see [6]). By the Künneth formula p*(k) must contain 1 <g) k+12 ® 1.

Because of (5.1) it follows that H'(Z, 2m ;ZP)=0 for 2m<i< 4m and 774m(Z, 2/w ; Zp)

^Zj, generated by i2. Thus, there is at most one more term in p*(k) and that is a

cross term 1 <g> x. Finally

em=(u ■ e1)*(k)=d\u x ¿ov?(*)
= </*(« x &)*(1 ®A: + t2(8)l+t®x)= f*(/c) + z72 + « u if (*).   Q.E.D.

Defining a cohomology operation <p by ¡p=j*(x) e H2m(Z, 2m; Zp) we get by a

similar proof:

Lemma (5.10). (i) /**(*) =1 <g)*+ç> ® 1;

(ii) £(*)-£(*) = *(«)■

If ii, £2 are liftings of f to £! then Ç2 = u-Çi and zj:1= -zz-£2. Thus (5.9) gives

z72-Mu &(pc) = em-etik) = -moù-ew)) = -«"2-"^m
i.e., 2z<2 = zz u (£*(*) - £*(*)) = m u ?(«). Since this is true for all u e H2m(L2n+1;Z)

we get

(5.11) <P = 2c

(5.10) now becomes
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Lemma (5.12). (i) p*(x)=l ®x + 2i <g> 1;

(ii) &(x)-tf(x)=2û.

The importance of x is now clear since two liftings are homotopic if, and only if,

£î(x) = é*ix). Notice also that there is a unique ^ satisfying £*(x)=0. In all that

follows ix will denote this particular lifting. Summarizing we have proved :

Lemma (5.13). (i) p*(k)= 1 <g) k + i2 ® 1 + « <g> x/or some x e H2m(Ex);

(ii) 9=;*(x) = 2t;

(iii) ftW-ffW-fi*;
(iv) 8(x) = 2«.

In §7 it is proved that £* (k) = cPm(¿¡), where c is as in §1. From (5.13) and (5.7)

we immediately get

Theorem (5.14). f lifts past F2m_a in the Postnikov resolution (5.4) if, and only if,

there exists ue H2m(L2n+1;Z) so that cPm(C) + ü2=0. If such a u exists then £2

— ±h-£i are the liftings of i that lift past E2m_x-

Now it is simple to finish the proof of Theorem B. Assume there exists a co-

homology class u satisfying (5.14). Then i at least lifts past F^m-i- The proof is

completed exactly as Theorem A in §4.

6. Proof of 6 = i2.   Define v to be the composite

K(Z, 2m) x B'   Xgl> K(Z, 2m) x Ex -^—> Ex.

According to [6] there is a homotopy commutative diagram of fibrations

K(Z, 2m) = K(Z, 2m)

j

K(Z, 2m) xB' —> Ex

\p \pi

where p is the product fibration. Finally there is the relative Serre exact sequence

-► HT(Ex) —*■ HT(K(Z, 2m) x B') -^-* Hr+1(B, B')

1 * *

-> HT+1(Ex)-►• • • —♦ Him(K(Z, 2m) x B'),

where t0 is the relative transgression and 1 is the composite Fj 2i> B<=(B, B'). The

next lemma is technical and will be needed later.

Lemma (6.1). In dimensions =4m + 3, H*(B, B') is a free H*(B) module on one

generator 8(x2m) e H2m + 1(B, B'), where 8 is the coboundary for the pair (B, B').
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Proof. Note that/7*: 77*(77)-► H*(B') is 1-1 in these dimensions and therefore

the following sequence is exact for a^4«z+2:

0-► H"(B) —» H"(B')-► 77a+1(7i, 73')-> 0.

Now coker p* is a free H*(B) module on one generator v2m € H2m(B') in dimensions

¿4m + 3. Since S is an H*(B) morphism the result follows.   Q.E.D.

Corollary (6.2). v*: 77'(£i) -*■ H\K(Z, 2m) x 77) is 1-1 for i=2m, 4m.

Since 774m(Z, 2m; ZP)^ZP is generated by t2 we certainly have 6=ai? for some

integer a. Just as we proved (5.11) we can show that <p=2ai.

Theorem (6.3). 0^0, i.e., a^0(modp).

Proof. Assume the contrary, i.e., 0=0 and 93=0. By the Serre exact sequence of

the fibration px : £a -> B and the definition of <p there is v e H2m(B) such that

x=pî(y). Now the transgression t0: H"(K(Z, 2m) x 77) -> 77s + X(B, 77) is an

H*(B) morphism where H*(K(Z, 2m) x 77) is made into an H*(B) module by the

map

K(Z, 2m) x 77 -^-> 77 -£-»- 7i

(see [6]). Also t0 can be defined on a subset of Him(K(Z, 2m) x 77) containing

image v*. Moreover t0 is zero on image v*. Thus

v*(k) = (1 xfll)Vf(/c) = (1 xqi)*(l ®k + l®x) = i ®/7*(y)

since pf(k)=\ ®A:+Ö®1 + 1®^ (see the proof of (5.9)) and af(/c)=0. This

means that t0(í ®/7*(v))=0. But r0(t (g p*(y)) = t0( v • t ® 1) (by the definition of

the H*(B) module structure)=y t0(i <g) 1). Therefore it follows that either v=0

or t0(i ® 1) = 0.

Assume v = 0. Then x=pf(y) = 0 and v*(/:) = t (g)/7*(v) = 0, i.e., /c = 0 by (6.2).

This implies that the modp reduction of the Postnikov invariant A:2m_i is zero. Let

^2m-i be the fiber of a2m_i in (5.4). Then V2m_i is 4m — 2 connected and

^im-i(Vim-i)=^im-i- If v e 774m" \V2m-1 ; 7T4m_ x) is the fundamental class, then

k2m _ 1 is the transgression of v in the fibration a2m _ 1. Since p*(/c2m _ x)=0 we see that

/3*(zj) transgresses to zero, which implies by the Serre exact sequence of q2m-i, that

P*(v) is the image of a class in Him-\B'). But 774m-1(£')=0 and thus p*(v)=0.

This is a contradiction since p*(v) can be identified with modp reduction in

Horn (irim_i; Zp).

Therefore j#0 and t0(i ® 1)=0. Then there exists zeH2m(Ei) such that

v*(z) = i <g> 1. But

v*(z) = (1 xqi)*p.f(z) = (1 ® ffl)*(l ® z+7*(z) ® 1) = 1 ®flf(z)+7*(z) ® 1.

Thus a*(z)=0 andy"*(z) = t. But a* is an isomorphism in dimension 2«? and again

we have a contradiction.   Q.E.D.
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We have proved that 6 = ai2, where a^0(modp). Let a' be such that

aa! = 1 (mod p). Then multiplication by a' in Zp induces a homotopy equivalence

of K(ZP, 4m) with itself. It is clear that as far as the obstructions to lifting £ are

concerned we may replace k by a'*(k) as the Postnikov invariant, i.e., without loss of

generality we may assume 6=i2.

7. Proof of Çf(k) = cPm(Ç). mod p reduction of the first Postnikov invariant k0

is zero since H2m+1(B; Zp)=0. Thus there is a commutative diagram of fibrations

K(Z, 2m)

Ex —

■* K(ZP, 2m)

i
-> K(ZP, 2m) x B

(7.1) \Pl

B

pk0

-+K(Zp,2m+l)

B

\k0

K(Z,2m+\)

(7.2)   Let A: B' -> K(ZP, 2m) xB be the composite g o q1 and let F denote the

fiber of A.

Then we have the commutative diagram

(7.3)

>K(ZP, 2m)xB-

where Fj = fiber Oj. K(ZP, 2m) is an /i-space via loop multiplication p2: K(ZP, 2m)

x K(ZP, 2m) -> K(ZP, 2m). The action of the fiber on the total space of the trivial

fibration induced by pk0 is simply p2 x 1 : K(ZP, 2m) x K(ZP, 2m) x B -» K(ZP, 2m)

x B and we have the commutative diagram

(7.4)

K(Z, 2m) xEx —

P*g
Y

K(ZP, 2m) x K(ZP, 2m) x B

p-i
+ Ex

p2xl
» K(ZP, 2m) x B

Let tj e H2m(Zp, 2m; ZP) be the fundamental class.

Lemma (7.5). (i) A*(tl ® l) = (lß)X2m+p*(y)for some y e H2m(B);

(ii) A* : Hr(K(ZP, 2m) xB)^- HT(B') is an isomorphism ifr<4m;
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(iii) 1 ® b + ix (g> b' + \i2x <g) 1 eHim(K(Zp, 2m)xB) n kerA*, where be Hlm(B)

and b' e H2m(B), if and only ifb' + 2Xy = 0 and 2yb' + 4b + ÁPm = 0.

Proof. A*(tl <g> l)=qïg*(ix <8> 1) and so /*A*(tl <g> l) = v*j*g*(^ (g> l) = v*P*(ix)

z=v*(l) = v = p*(v). But we also have i*(?X2m) = v according to (5.3). From the Serre

exact sequence of p: B' -> B we get h*(ix ® I) = lx2m+P*(y) for some y e H2m(B).

This proves (i). (ii) and (iii) are short calculations.   Q.E.D.

From the Serre exact sequence of A we easily get:

Corollary (7.6).

HT(F)^ZP   ifr = 0,4m-l,

Zt 0      i/O < r < 4m—I.

According to (7.1) and (7.5) there exists uniquely k! e Him(K(Zp, 2m) x B) such

that

(7.7) h*(k') = 0   and  j*g*(k') = i2,

namely k'=l ®b+tx <8>F + i2 ® 1, where A'=-2y and A=-(4-)Fm+y2. Thus

g*(k') satisfies q*(g*(k')) = 0 andj*(g*(k')) = t2. Both of these conditions are satisfied

by k and we would like to show that g*(k')=k.

Let Vt be the fiber of a^F'^Fj. Then we have the fibrations Ki + 1->- K¡ü^.

Kfam+i, 2m + i), i'^0, where V0= V, v0 = v, and p, e H2m+i(Vi, 7r2m+i) is the funda-

mental class. The maps Vi + 1 -> Vt compose to give a map V2m-x -*■ l^i- From (5.5)

it follows that this composition induces an isomorphism between H*(Vx) and

H*(V2m-x)- Therefore

HT(Vx)-Zp   ifr = 0oT4m-l,
(7.8) ~

^ 0      ifO < r < 4m-l,

since V2m-x is 4m—2 connected and Him " x( V2m _ 0£ Horn 0i4m_i, Zp)sZp.

From (7.3) we get the commutative diagram

/*H**-1iF)-i—+H*m-1iVi)

g*

(7.9)

Him(K(ZP, 2m) x B) -?—+ Him(Ex)

where ru r are the respective transgressions. Since h*(k')=0 the Serre exact

sequence of A says that there is v' e Him " *(F) such that k' = t'(v'). Thus g*(&')

= Txj'*(v'). Since a*(A:)=0 we see that k is in the image of tj and therefore if we

could show that/*: /f'4m-1(F)^//'4m-1(K1) it would follow that k is in the image

of g*. To do this we need only show that g*(k')^0. After a straightforward

calculation based on (7.4) we get

(7.10) v*g*(k') = t®X2m + '2® I-

Because k! is the only class satisfying (7.7) we conclude k=g*(k').
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Nowv*(/c) = (lxa1)V1*(/<) = (lxa1)*(l ® k + t2 ® 1 +. ® x) = i2 ® l + t®?f(x)

since a*(/<)=0. Therefore we get

(7.11) a*(x) = X2m.

«*(ij ® l)=a*g*(ti ® l) = -2X2m+/?*(v) by (7.5). Since a* is an isomorphism in

dimension 2m it follows that

(7.12) g*(h ® 1) = **+/>*( v).

Finally

ff(*) = £i*S*(*') = i?z?*0 ® ¿+'i ® ¿>' + <2 ® 1)

= f*(6) + íiV('i ® l)f*(é')+íff*(h ® I)2

= í*(e)+f*(v)zf*(í)') + íf*(v)2 = zf*(¿>+>>*>'+ v2)

= f*(-iPJ = cPm(i).

A final remark. Since (7CO)~(S2n + 1)=0 if «^0 (mod 4) and Z2 otherwise

and since it can be shown that (7vO)~(L2n+1) has order twice a power of p if

« = 0 (mod 4) it follows that the restriction £ e ker 7r* in Theorems A and B is not so

restrictive.
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