FREE X-STRUCTURES

BY

G. GRATZER()

Introduction. The concepts of free semigroups, free groups, free lattices, and
so on, play a central role in algebra. These concepts were unified by G. Birkhoff [1]
who showed that given any class of algebras, defined by a set T of identities, free
algebras can be defined and their existence can be proved. The construction is,
roughly speaking, the following: we start with a set X and from the elements of X
we generate an algebra as freely as possible, that is, elements will be identified
only if they have to be identified because of the identities in X. The free algebras,
thus constructed, have the property that every algebra satisfying £ is a homo-
morphic image of a free algebra.

If we consider classes of algebras defined by axiom systems more involved than
identities, the situation is not so simple. The case of universal axiom systems =
shows that free algebras need not exist, but if they do, they can be constructed using
Birkhoff’s method.

Arbitrary first order axiom systems raise new problems. If, by introducing new
operations, they can be reduced to universal axiom systems (as in case of groups),
then there is no new problem. But even in this case the question arises whether such
axiom systems can be handled directly. However, it can be shown that most first
order axiom systems cannot be reduced to universal ones if we want the reduction
to preserve the important algebraic properties of the class. Thus arises the necessity
of introducing some new concept of free algebras over arbitrary first order axiom
systems.

The first task is to find a proper definition of subalgebras and homomorphisms.
If an operation is replaced by an axiom requiring the existence of an element, we
immediately see that our subalgebras must be closed under the formation of
“inverses”” which are guaranteed by the axioms and that a homomorphism should.
have the substitution property for these elements as well.

In this paper a solution to these problems is proposed. For an arbitrary first
order axiom system X we define the concepts of Z-subalgebras and Z-homo-
morphisms. In terms of these concepts we define free Z-algebras.

Z-subalgebras and Z-homomorphisms are not related to each other the way
subalgebras and homomorphisms are. The injection of a =-subalgebra of a Z-algebra
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into the Z-algebra need not be a X-homomorphism. Also, a map of a X-generating
set can, in general, be extended to many X-homomorphisms. Thus free X-algebras
cannot be handled using the adjoint functor theorem. Therefore it is somewhat
surprising that we still get the Uniqueness Theorem (Theorem 2 of §3) for free
X-algebras.

The basic idea of the paper is the use of multi-valued functions, called Z-poly-
nomials, which are constructed from Z. These will turn out to be uniformly bounded
if free Z-algebras exist. Then these are used to define covering families of finite
sets on certain algebras, and the problems considered are localized on a suitable
finite set.

The basic properties of X-subalgebras and 'Z-homomorphisms are given in
§§1 and 2. §3 contains the Uniqueness Theorem. In §4 it is proved that fora given
X either there exists a positive integer n such that the free Z-algebra on k generators
exists if and only if k <n, or all free Z-algebras exist. In §5 necessary and sufficient
conditions are given for the existence of free Z-algebras and some partial results
are given on the problem: when can one construct the free Z-algebras using inverse
limits. The last section (§6) investigates when free X-algebras can be constructed
as free algebras over a richer type.

Most of the results of this paper were announced in [4]. The present approach
is somewhat more general, since we will formulate the results for structures
rather than algebras. This framework is much more natural for the whole theory;
also, it allows us to give some very natural examples (e.g., lattices as partially ordered
sets). Since relations are admitted, this theory subsumes the theory of algebras with
a scheme of operators (Higgins [5]) in a more natural way. As a result of this greater
generality one definition and three proofs become longer but otherwise there is no
essential change.

NOTATIONS. A type r is defined as a pair {7, 7,), where 7,=<n,,...,n,,...>,
y<oo(7), and 7, =<{m,,..., m,,...>, y<o0,(r) where oo(7) and o,(7) are arbitrary
ordinals, and m, and n, are nonnegative integers. A structure A of type = is a triple
{A; F, Ry, where F={f,,..., f1s-. .0, ¥<00(7)y, R=Lloy.. sy ...>, y<04y(7),
where f, is an n,-ary operation and r, is an m,-ary relation. All structures will be
assumed to be of a fixed type =, unless otherwise specified. We write o(7) for
0o(7)+04(7).

A homomorphism ¢ of the structure % into the structure 8B is a map of 4 into B
such that

Mao, - -+, @n,-1)p = f(@0@, . . ., An,-19)

for all ao, ..., a,,-1 € A and y <o,(), and

rao, ..., Gn,—1) implies r(aop, ..., an,-19),

forall g, ..., an,-1 € 4 and y<oy(7).
A polynomial p over U is a function from A" into A4, for some n < w, which we
get from the projections by substituting them into the f,, y < 04(7).
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L() is the first order language (with equality) associated with = in the usual
sense. A set X of first order sentences is called an axiom system. The class of all
structures satisfying £ will be denoted by Z*. If A € Z* then A will be called a
Z-structure. In this paper = will be kept fixed unless otherwise specified ; we assume
that every ® € X is given in prenex normal form.

There are four basic results which will be frequently used.

THEOREM A (THE COMPACTNESS THEOREM). If every finite subset of a first order
axiom system X has a model, then 2 has a model.

THEOREM B (INVERSE LIMIT THEOREM). The inverse limit of finite nonvoid sets
is never void.

Let feT1(4;|i€l) and 2 a dual prime ideal of the Boolean algebra P(/)
of all subsets of 1. [ [o (%; | i € I) will denote the prime product and /" the equiva-
lence class containing f.

THeOREM C. Let ¥(x,,...,x,_,) be a formula free at most in x,, ..., X,_;.
Then O(f;, ..., f3 -1) if and only if {i|O(f,(D), . . ., fu-1()))} € 2.

THEOREM D. Let U be a relational system with constants and % a universal axiom
system which contains the relations of % and an additional relation R. If R can be
defined on every finite subset of A so as to satisfy %, then R can be defined on A so
as to satisfy Z.

REFERENCES. [3] for Theorems A, C, and D, [2] for Theorem B.

1. Inverses and Z-subalgebras. If X is universal then every substructure of a
Z-structure satisfies X, so there is no problem; Z-substructure should mean sub-
structure. As an example of an axiom system which is not universal, let us take the
axiom system X, of lattices as partially ordered sets:

Q:(X)PRx S xAa((xsyaysx)>x=pA((xSyay=sz—>x=7)
O: ()PVED@W(x s zAySzA(xSuay = u)—>z =)

Oy: D(VED@Wz S xAazsya((@sxArusy)—>usy).

IA

Then a sublattice of (L; <) is not any sub-partially ordered set (H; <) satisfying
Z,, but it has the additional property that if x, y € H, then the z, required by @,
and the z, required by ®; are also in H.

In this example x and y uniquely determine z in ®, and ®;. What should we do
if this is not the case ? Let us consider the axiom system X, of complemented lattices
with 0 and 1:

D (X)P)E)XVX=XAXAX=XAXVY=pVXAXAY
=yAxAxV(VI=@EVyYVIAXA(QAZ
=@ APYAZAXV(EAY)=xAxA(XVY=2X).

Oy (x)@)xvy=1axAry=0.
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Set L={0, 1, po, p1, P2}, p: V p;=1 and p; A p;=0if i#j. If <H; v, A,0, 1>
is a substructure of g satisfying X, and p, € H, then, by ®,, p, or p,e H.
Thus {po, p1,0, 1}; v, A, 0, 1>, {po, P2, 0, 1}; vV, A,0,1> and & are the sub-
structures of @ satisfying X, which contain p,,.

Now any good substructure concept should have the property that every subset
B is contained in a smallest substructure of that kind. By symmetry, in the above
example, the substructure generated by {p,} has to be . That is, along with x,
the substructure has to contain all y required by ®,. This leads us to the concept
of Z-substructure: B is a Z-substructure of U, if B is a substructure, and if x,, . . .,
X, € B and there is a ® € X with (x;)---(x,)3y)- - -, then all y € 4 satisfying ®
are in B. To illustrate this, take the following two axioms:

(1) ()@E)¥i(x, p),

(2) (x)(ay )(u)(av)‘FZ(x’ ¥, u, v)a
where ¥'; and ¥, do not contain quantifiers.

For (1) this definition means that if a € B, b € A and ¥,(q, b) then b € B. For (2)
this means that if ae B, be 4 and

(3) (w)(Fv)¥4(a, b, u, v) in AC),
then b € B, and furthermore if for a, c € B and d € A there exists a b € 4 such that
(3) holds and ¥'(q, b, ¢, d), then d € B.

A @ sequence for (1) means a, b with ¥,(a, b); a ® sequence for (2) will be
a, b, c, d satisfying (3) and ¥y(a, b, c, d).

To give a rigorous definition of Z-substructures first we must define the concept
of inverse.

DEeFINITION 1. Let ® € X be of the following form:

(%) + + (¥ng - 1)@V0)(Xno) -+ (¥n, - )EAP)(Xn,) - - - Ay)(Xn,) - - -
(xn—l)‘{r(xm R ] xno—la Yo, xng) R xnl—la Yoo s Vs xnk, RS xn—l),

@

where 0=n,<n,<--- <n,=<n; 0=n, means that no universal quantifier precedes
dye, Mo=n; means that there is no universal quantifier between 3y, and
3y, and so on, n,=n means that no universal quantifier follows y,; ¥ contains
no quantifiers. Set e(®)=k+ 1. The concepts of ®—1/ inverse and ® —1I sequence
are defined for all 0=</< e(®) by induction on /. Let % be a Z-structure, a,, a,, . . .
and by, b;,... € A.

(i) bois a ®—O0inverse of ay, . . ., @y, in A if

(%ne) -+ (Xny-1)@Ap1) - - - (Fyi)(xn) - - - (xn-1)

»
‘I’(ao, ] ano—la bO’ xnm RS ] xnl—l, Yoo Vi xnp DR ] xn—l)

holds in ¥; in this case, ay, . . ., a,,-1, bo is a ®—0 sequence;

(?) Note that (3) is not a formula in our language, since a, b are elements of 4; (3), and all
such formulas similarly, should read: <a, b)> satisfies (W)(3v)¥(x, y, u, v) in A,
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(ii) b,is a ®—/inverse of ay, . . ., @, -, in A if there exists a & —(/—1) sequence
Qoy ...y Qny—1, boy . . ., @ny—1, by such that

(Xn) - (nyy =)@ 1)+ @Pi)n)) - - (- )¥ @0, - - -, Gng-1, bos - - s

anl_l—la bl—ls am_p BRI an;—l’ bh xnp RS xm+1—1, yl+ls s Vi xnk’ ceey xn—l)

holds in A. Then, ao, ..., @ny-1,b0, ..., @ny_;-1, D121, @y 5. .y Gn,—1, byis 2 O—1
sequence.

®-inverse will mean ®—/ inverse for some /<e(®) and Z-inverse will mean
®-inverse for some ® € Z. A complete ® sequence is a ® —(e(P)—1) sequence.

REMARK. Note that e(®) is the number of existential quantifiers in the prefix of
®. Intuitively, a ®—/ inverse is an element whose existence is guaranteed by
(3y)), the Ith existential quantifier.

Most proofs of statements on inverses can be carried out only by induction on /
as in Definition 1, which is sometimes technically involved. Therefore, with the
exceptions of Lemma 1 and Theorem 1 we will work out the proofs only for
axioms of the forms (1) and (2) and leave the details of a formal proof to the reader.

The following lemma shows that the two concepts introduced in Definition 1
can be expressed by first order relations.

LEMMA 1. For every ® € Z and I < e(®) there exists a formula ®W(x,,...,y) in
L(7) free in x,, ...,y such that for a Z-structure N and a,,...,be A, bisa ®—1
inverse of ay, . .. if and only if ®W(a,, ..., b). Furthermore, there exists a formula
OD(xg, ..., Xpgo1, Yos - - -5 Xny—1, 1) in L(7) free in xq,...,¥o,...,y, such that if
A is a Z-structure and ay,..., 0y, _1,b0;...,8n,_1, b €A, then a,,..., a1,
bo, ..., -1, by is a ®—1 sequence in A if and only if ®P(ay, ..., an,_1,bo, ...,
Any-1, by) in 2.

Proof. If @ is of the form (1), then ®(x, y)=¥,(x, y)= ®O(x, y). If © is of the
form (2), then ®°(x, y)=(u)3v)¥y(x, y, u, v) and

(D[l](xo’ X1, y) = (az)(q)m](xoy z) A "Fz(xo’ 3, X, J’))
Furthermore, ®©(x, y)= ®(x, y) and

‘D(D(xo, Yo, X1, yl) = q)(O)(xO, yO) A ‘F2(x0, Yo, X1, yl)'

The general proof for @, as it is given in Definition 1, proceeds by induction on /.
For /=0,

(I)[O](xo, cees Epg—1s J’o) = (xno)' : '(xnl- 1)(3}’1)(-*"1)‘ t
(HYk)(xnk)‘ (X )¥(xo, - . -, Xnog—15Y0s Xngs + + s Vies Xnges + + <5 Xn_1),
and
OO = POl
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Suppose that we have already constructed ®¢-V and ®~*!, Then

1 — -1
d)( )(x09 RS xno-n}’o, ) xn;—l,yl) = (D( )(xOs LR xno—l’yo’ L) xn,_l—la yl-l)

A (xnx)' * '(xn1+1—1)(3yl+1)' : '(xn)qf(xO) e Vs xnp ey xu)
and

Y(x,, .. ., Xn,-15 = @yo) - @yi-1)PVxo, . . ., Yo, Xnyseoos Xnj—1s ».

REMARK. We constructed the @ and ®® from ®. It is easy to see that ® can
be constructed from @ and ®©,

DEFINITION 2. Let U be a X-structure and let 8 be a substructure of A. Then B
is a Z-substructure of U if whenever a,,...,a,€ B, be A and b is a Z-inverse of
ao, ..., a;in A then b € B.

The most important property of Z-substructures is the following:

THEOREM 1. Let A be a Z-structure and let B be a Z-substructure of ; let ® € X
andl<e(®). Ifay, ..., by, ... € Band ®¥(ay, . . ., by, . . ., @y, -1, b)) in U, then it also
holds in B.

Proof. Illustration: Let @ be of the form (2) and ®©(a,, b,) in UA; that is,
()(3v)¥ o(ao, bo, u, v) in A. If ¢ € B there exists a d € A with ¥y(ay, bo, ¢, d). Now
DO(ay,, by) implies d is a ®—1 inverse of a and ¢, whence d € B. This proves that
DO (g, by) in B. DY(ay, by, a,, by) can be handled similarly.

To prove Theorem 1 we first note that every @ sequence can be extended to a
complete ® sequence, hence it is enough to prove Theorem 1 for complete @
sequences.

For ¢(®)=0 Theorem 1 follows from the known (and obvious) theorem that
if a universal sentence holds for the structure ¥, it holds for the substructure
B of A.

Assume that Theorem 1 is proved for all sentences with less than k + 1 existential
quantifiers, let ® be given as in (4), let a, . .., by, @n,, - . ., b be a complete ©
sequence in %A with'a,, ..., by,..., b, € B and let 7'=7 @ (ny+1) be the type we
get from r by adding the constants p, . . ., P, -1, ¢. Let 2’ and B’ be structures of
type 7' which we get from % and 9B by interpreting p; as g, and g as b,. Finally, let

Q" = (xn9) - (¥n, - 1)EAy1)(xn) - - Cyi)- -
(xn—l)‘F(pO’ .. ~,pno—1, ‘I, xnm e Voo xn—l)'
Then e(®')=e(®)—1; ay,, . .., by is a complete @’ sequence in A’ (this follows
from the definition of satisfaction), hence by the induction hypothesis, it is a
complete @’ sequence in B’, which, in turn, implies that ay, ..., bo, @y, . . ., by
is a complete @ sequence in B. This completes the proof of Theorem 1.
COROLLARY 1. Under the same conditions as in Theorem 1, if ®(a,, . . ., a,_,, b)
in U then it also holds in B.

Thus in a -substructure ® —O0 inverses exist, and so X is satisfied.

COROLLARY 2. A Z-substructure of a Z-structure is again a Z-structure.
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It should be emphasized that the converse to Theorem 1 does not hold. A trivial
example is the following: let {B; -> be a two-element commutative idempotent
semigroup, B={0, 1}, and 4={0, 1,4}, 1-a=a-1=a, 0-a=a, a-0=1, a-a=a.
Let ®=3y,)(x0)(¥oXo=XoYo). Then there is only one ® —O0 inverse in %, namely 1,
hence B is a ®-substructure. But there are two ®—0 inverses in 8 (0 and 1).

A few elementary properties of Z-substructures follow.

LEMMA 2. Let W be a Z-structure and let B be a Z-substructure of U. Let € be a
Z-substructure of B. Then € is a Z-substructure of U.

ReMARK. By Corollary 2 to Theorem 1, % is a Z-structure.

Proof. Let do,...,a,€ Cand be A and let b be a Z-inverse of a,, . . ., a,. Then
b € B, since B is a Z-substructure. By Corollary 1 to Theorem 1, b is a Z-inverse
of ay, ..., a in B whence b € C since € is a Z-substructure of B.

LEMMA 3. Let U be a Z-structure and & #H< A. Then there exists a smallest
Y-substructure B with H< B.

Proof. Obvious, since the intersection of X-substructures is again a Z-sub-
structure, provided it is not void.

We will set B=[H]; and we will say that H Z-generates B or H is a 2-generating
set of B.

LeMMA 4. Let U be a Z-structure, @ #H< A. Set Hy=H, H,_,={a|ac A and
a=p(ao, . .., A1), where p is a polynomial and a,, . ..,a,_,€ H,_,}, H,=H,_,
U {a|ac A, and there exist b, . .., b € H,_, such that a is a Z-inverse of by, . ..
b, in N}. Then

[H:=U@H|0=i< w).

Proof. H,<[H]; can be proved by induction on n, so we get
U |05i<w < [H

It is routine to check that {\J (H,; | 0Si<w); F, R) is a Z-substructure, so we get
equality.

A useful criterion for ae[H]; can be given in terms of Z-polynomials. Z-
polynomial symbols are a new type of expression defined as follows:

DErFINITION 3. Let n be a positive integer. The set P,(X) of n-ary Z-polynomial
symbols is defined by rules (i)—(iv) below.

() x, e P,2),i=0,...,n—1;

(i) if Po, ..., Py,_; € Py(2), then f(P,, . .., P, _;) € Py(2);

(iii) if ® € X, I<e(®), n, universal quantifiers precede the 3y, and P, . . ., Py, -,
€ P,(Z) then ®B(P,, ..., P, _,) € P,(Z);

(iv) P,(X) is the smallest set satisfying (i)-(iii).

The semantical interpretation of Z-polynomials as multi-valued functions
called Z-polynomials is given in the following definition.
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DEFINITION 4. Let P e P,(Z), let A be a Z-structure, and let ao, ..., a,_, € 4.
Then (P)u(ao,. .., d,_,), or simply P(ay,...,a,_,), is a subset of A defined as
follows:

(i) if P=x,, then P(a,, .. ., a,_,)={a};

(i) if P=f(Py,..., P,,_,), then P(ay,...,a,_1)={a|a=f(bo, ..., b,,_,) for
some b, € P(ao, ..., ay_1), i=0,...,n,—1};

(iii) if P=OW(P,,..., P, _,) then P(ay,...,a,_;)={a|a is a ®—/ inverse of
some b, . .., b, _, with b€ Py(ao, .. ., ay_1), i=0, ..., nm—1}.

LEMMA 5. Let A be a Z-structure, @ # H< A. Then a € [H 1y if and only if for some
positive integer n, P P,(X), and hy, . . ., h,_, € H, we have a€ P(h,, . .., h,_,).

Proof. If a € [H]; then, by Lemma 4, a € H, for some i <w and then the proof
of aeP(hy,..., h,_,) proceeds by an easy induction on i. Conversely, if
acP(h,,. .., h,_,), then we can prove that a € H, for some i, by induction on the
“rank” of P.

COROLLARY. Let U be a Z-structure and let B be a Z-substructure of U. Let
PeP,(2), by,...,b,_1€B. Then P(by, ..., b, )= B.

The following two lemmas will be used frequently.

LEMMA 6. Let P € P,(X). Then there exists a formula rp(x,, ..., X,_1,y) in L(7)
such that if W is a Z-structure and a,...,a,_,, be A, then be P(ay, . .., a,_1)
if and only if rp(ay, . . ., Gy-1, b).

LEMMA 7. Let U be a Z-structure, let B be a Z-substructure of U and let P € P, ().
If ag,...,a,_,, be B and be (P)u(ao, ..., a,-,) then be (P)s(ao,-..,a,-1). In
other words, if rp(ay, . . ., @, _1, b) in U, then re(ao, . . ., @, -1, b) in B.

Lemmas 6 and 7 follow from Lemma 1 by an easy induction.

Lemma 7 states that Py< Pgs. The example given following Theorem 1 shows
that Py#Pgp in general. However, if all sentences in X are either universal, or of
type V3 (that is, no universal quantifier follows an existential quantifier) then
Py =Py always.

2. X-homomorphisms and slender X-subalgebras. The example of lattices as
partially ordered sets (see §1) shows that the usual concept of homomorphism
may not preserve algebraic properties, e.g., the homomorphic image of a lattice
may not be a lattice or the homomorphic image of a distributive lattice may be
nondistributive. Therefore, we need a homomorphism concept which preserves
the inverses.

DEFINITION 1. Let % and B be Z-structures and let ¢ be a mapping of 4 into B.
Then ¢ is called a X-homomorphism if ¢ is a homomorphism and if for any positive
integer n, P€ P,(X), and 4, . . ., a,_, € A we have

P(aO’ L] an—1)¢ = P(ao% DR ] an—ltp)'
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It should be emphasized that Z-isomorphism is the same as isomorphism. Also,
if we deal with algebras only, then in Definition 1 the clause ¢ is a homomorphism”
can be omitted.

Of course, one can give an equivalent definition without the use of Z-polynomials.

LEMMA 1. Let U and B be Z-structures and let ¢ be a mapping of A into B. Then
@ is a Z-homomorphism if and only if the following conditions are satisfied:
(i) ¢ is @ homomorphism;
Gi) if ®eZ, l<e(d), b, ag,...,a,€ A and b is a ®—1 inverse of ay, . . ., a; in U,
then by is a ® — |l inverse of ayp, . . ., ap in B;
(iii) if ®eX, I<e(D), ap,...,a,€ A, b€ Band bis a ®—1 inverse of asp, . . ., ap
in B, then there exists a b € A such that b is a ® — 1 inverse of a,, . . ., a, and bp=b.

Proof. Let ¢ be a Z-homomorphism. Then (i) is satisfied by definition. (ii) and
(iii) follow easily by taking P=®%(x,, ..., x,) and applying the definition of
Y-homomorphism. Conversely, if (i)-(iii) are satisfied then we prove
P(a, ..., a,_)p=Playp, ..., a,_.p) by induction. If P=x,, the statement is trivial.
If P=f(P,,..., P, ,), then it follows from (i). If P=®"(P,,..., P) it follows
from, (ii) and (iij).

Some important properties of Z-homomorphisms are given in the following
lemmas.

LEMMA 2. Let A and B be Z-structures and let ¢ be a Z-homomorphism of U into
B; set C=Ap. Then € is a Z-substructure of B.

LEMMA 3. Let U, B, and € be Z-structures, let ¢ be a Z-homomorphism of U into
B, and let  be a Z-homomorphism of B into €. Then @y is a Z-homomorphism
of W into €.

A property of homomorphisms (which is very important in proofs concerning
free algebras) fails to hold for X-homomorphisms. Namely, if ¢ is a Z-homo-
morphism of % into € and B is a Z-substructure of A then @5 (the restriction of ¢
to B) is not necessarily a Z-homomorphism of B into €. Let by, ..., b,_; € B,
Pe P,(X); it follows from the corollary to Lemma 5 in §1 that Pu(b,, ..., b,-1)< B,
and from Corollary 1 to Theorem 1 that Pu(b, . . ., b,_1) = Ps(by, . . ., b,_1). When-
ever Pu(b, . . ., b,_1)#Pu(b,, . . .,b, _,), we find that gy is not a Z-homomorphism.
This leads us to the definition of slender Z-substructures.

DEFINITION 2. Let B be a Z-substructure of the Z-structure 2. Then B is called
a slender Z-substructure if for any positive integer n, P € P,(X) and a,,...,a,_, € B
we have that Py(aq, ..., a,_)=Ps(a,, . . ., a,_1).

LEMMA 4. Let B be a Z-substructure of the Z-structure . Then B is slender if
and only if for ® €X, I<e(®) and b, ay, . . ., a, € B we have that b is a ® —1 inverse
of a, . .., a, in B implies that b is a ®—1 inverse of a, . . ., a, in A.

The proof is again a simple induction based on Definition 3 of §1.
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LEMMA 5. Let B be a Z-substructure of the Z-structure U. The following condi-

tions on B are equivalent;
(1) B is slender;

(ii) if € is any Z-structure and ¢ is a Z-homomorphism of U into €, then ¢y is a
Z-homomorphism of B into €;

(iii) if € is any Z-structure and ¢ is a Z-homomorphism of € into B, then ¢ is a
Z-homomorphism of € into U;

(iv) if € is any Z-structure and ¢ is a Z-homomorphism of € onto B, then ¢ is a
Z-homomorphism of € into A.

(V) ¢: x — x is a Z-homomorphism of B into U.

Proof. The following implications are obvious: (i) implies (ii), (iii), (iv), and (v);
(iii) implies (iv); (iv) implies (v) (B =€) ; (ii) implies (v) (X =€). Thus it suffices to prove
that (v) implies (i); indeed (v) implies that, Pg(bo, ..., b,_1)p=Pu(b,, ..., b,_1)
(bos . .., b,_; € B), that is, B is slender.

LEMMA 6. Let B be a slender Z-substructure of the Z-structure . Then the follow-
ing conditions hold:
(i). let € be a Z-structure and let ¢ be a Z-homomorphism of € into U with
Co < B; then ¢ is a Z-homomorphism of € into B;
(ii) let € be a Z-substructure of A with C< B; then € is a T-substructure of B;
(iii) let H< B; then [H]y in U equals [H]; in B.

The proofs are trivial.

3. Free Z-structures and the Uniqueness Theorem. Now we are ready to define
free X-structures.

DEFINITION 1. Let o be an ordinal. Fz(c)is the free Z-structure with « Z-generators,
if the following conditions are satisfied:

(i) Fx(e) is a Z-structure;

(ii) Fx(e) is Z-generated by the elements x,, ..., x,, ..., y<a;

(iii) if A is a Z-structure and a,,...,qa,,... € 4 for y<e, then the mapping
¢: x,—a,, y<o can be extended to a X-homomorphism, ¢.

REMARK. The X-homomorphism § in (iii) need not be unique. Indeed, let 7=0
and let X consist of the following two axioms:

PR)@Ex=yvx=zvx=uvy=zvy=uvz=u)
(X)E)E2)x #y Ay # zax # 2).

Then a Z-structure is a 3 element set. Let A={ay, a;, as}, B={b,, by, b,}. Then
A=Fx(1), e.g., ao is a free Z-generator. The mapping ¢: a, — b, has two extensions
to X-homomorphisms of A onto B, namely, a, — by, a, — b,, a, — b, and a, — b,,
a, > by, a, — b,.
Most of the difficulties in the theory of free Z-structures come from this fact.
The following example is a further illustration of the nonuniqueness of @.
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In this example we deal with algebras of the form {4; v, A, 0, 1), and X consists
of the lattice axioms, postulates for 0 and 1 to be the zero and unit, and the
following axiom:

@@A)E)@)(x =0—>y=z=DAa@x=1->y=2=0)
AE#0Ax#1)>(y#zaxVy=1axAy=0axvz=1
AxANZ=0A(xVu=1AxANu=0)—u=yvu=_7z))).

In words: every element #0, 1 has exactly two complements. It was shown in
a paper of C. C. Chen and the author (J. Algebra (1969)) that Fx(e) exists for all «.
If we take F(w) and map all x; into any one atom of the five element modular
nondistributive lattice, then this map has 2¥o extensions to 2-homomorphisms
(this is best possible since |Fy(w)| = R,).

The theory of free Z-structures is based on the following result which, in a
certain sense, is a substitute for the uniqueness of .

THEOREM 1. Let us assume that F(n) exists. Then every P € P,(X) with m<n is
bounded, that is there exists a least positive integer kp such that if U is a Z-structure,
oy ..., 0ny_1 € A, then

|P(a0’ X am—l)' pS kP-

Proof. Let us assume that Theorem 1 is not true. Then there exist P e P, (%)
with m<n, Z-structures Ay, Ay, ..., and a@b, ..., a,_; €4, (¢=1,2,...) such that

|P@ab,...,ah_1)| =t t=12...).

STATEMENT. Under these conditions, for every cardinal m, there exists a XZ-
structure % and there exist a,, . . ., a,_, € 4 such that

|[P(@gs - . -s Gp-y)| = m.

Proof. Let o be the initial ordinal of cardinality m and ' =7 @ («+m); that
is we get the type 7' by adjoining the constants K,.),. .., Kozysys..., y<a+m
to 7. Set ly=Kkowyras -+ s bn-1=Kowy+a+m—1, and let us write k, for ko4 ,, y<e.

Let H be a finite set of ordinals < «; we define a sentence @y of L(7") as follows:

Oy = ACe(lo,...sbn-r, k) [y e HY A A (ky # ks |y, 8€ H, y # 9),

where rp is the formula in L(7) which was defined in Lemma 6, §1.

Let Q be the set of all ®,. We claim that there exists a structure %’ satisfying
2 U Q. By the compactness theorem (Theorem A), it suffices to show that T U Q,
has a model for all finite Q, Q. Let Q,={®y,..., Py, }and set H=H, U - - -
U H,_,. Since @, implies @, i=0,..., #—1, it is sufficient to show that X U {®,}
has a model. Let H={y,, ..., ys_1}. Let % be the structure that we get from %,
by interpreting /; as @ (i=0,...,m—1) and k,, ..., k,,_, as distinct elements of
P(ay, ..., a;_;); we can do that since |P(a3,. .., a}_,)|2s; let us interpret k,,
Y#%0, - - -» ¥s—1 in an arbitrary manner. It is obvious then that % satisfies £ U {®,,}.
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Now let %' be a model of X U Q. Let a,,...,a,_, be the interpretations of
ly,..., I,, and let by,..., b,,..., be the interpretations of ko, ..., k,, ..., for
y<a. Then

boy...s by ... €P(Gy,...,a0n_1)

and b, #b, if y, 8 <a and y#38. Thus |P(ay, . . ., an-1)| = m. Therefore the r-reduct
A of A’ satisfies the requirements, concluding the proof of the statement.

Let xo, ..., X, be the Z-generators of Fg(n). Set [P(xo, ..., Xpn-1)|=n. If A
is any X-structure and aq, ..., a,_, € 4, then there exists a Z-homomorphism ¢
of Fx(n) into A with xep=ay, ..., Xp_1p=an_,, thus

P(xo, ooy xm—l)‘P = P(ao, ey am—l)
and therefore
IP(ao, ey a,,,_1)| é lP(xo, ey x,,_l)l =n.

Take any cardinal m with n<m and apply the Statement with m. The arising
contradiction, m < n, concludes the proof of Theorem 1.

COROLLARY. Let us assume that §x(n) exists. Let P € P(Z), let A be a Z-structure,
Aoy . ..., Qi1 € A. If there exist b, . . ., b, _, € A with m Zn such that

Aoy -+ Q-1 € [boy ..., bn_1]5
then P(ay, . . ., a,_,) is finite.

Proof. Since ao,...,a,_1€[bo,..., bn_1]s, there exist P,,..., P._; € Py(X)
such that q, € P(b,, ..., bn_1), i=0,...,k—1. Thus

Py, ..., ac_1) S P(Po(bo, - -y bm_1)s - - s Pr_1(bo, . - -, by 1))
and the right-hand side is finite by Theorem 1.

THEOREM 2 (THE UNIQUENESS THEOREM). If the free Z-structure on o generators,
Fs() exists, then it is unique up to isomorphism.

We will prove the following stronger version of Theorem 2.

THEOREM 2'. Let Fy(«) and Fz(e) be free Z-structures, with Z-generators X, . . .,
Xys oo Gnd Xg, . ..y Xy . . ., Y <a, respectively. Let @ be a Z-homomorphism of Fy(c)
into Fg(e) with x,p=x,, for y <«. Then ¢ is an isomorphism.

Since {Hg(e) is free and Fz(a) is a Z-structure, it follows that such a ¢ exists;
thus Theorem 2’ implies Theorem 2.

Proof. Let a e Fy(«); then there exist n<w, yq,...,yn-1<a and Pe P,(X)
such that a € P(x;,, . .., x,,_,). Thus

Fr(@)p 2 P(Xygy - - o5 Xy, _)p = P(X}, ..., X5, 1) 3 @,

which means that ¢ is onto.
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’

Let ¢' be a Z-homomorphism of Fy(e) into Fx(«) for which x,¢'=x, (y<o).
Let P’ and P" € P,(X) and y,, . . ., Ya-1 <o. Then

(P'Xygs - v Xy ) Y P (Xygy o s Xy _))P
= (P'(Xygs ooy Xy )Y P(Xyoy o0y Xy, _ )@
= P(Xygy ooy Xy ) Y P (Xyg o ooy X))

Since P'(Xy5- - -5 Xy, ) Y P"(Xyg, . . ., Xy, _,) is finite by Theorem 1, this implies
that @ is 1-1 on this set. Since any two elements of (n) belong toa set of this form,
we get that ¢ (and similarly ¢') is a 1-1 and onto homomorphism. To show that ¢
is an isomorphism we have to prove that

raop, . .., Gn,-19) implies rao, ..., Gn,-1)-

(We can use this condition since ¢ is 1-1.)
Let a, € P(x,,, . . ., X, _,), 0Si<m, and form the sets

A= PGy, )]0 i<m)
and

A = H(P,(x;o,...,x;"_l) |0 2i<m,).

Let¢™: A — A’ and (¢')™: A’ — A be the maps induced by p and ¢’, respectively.
Finally, let

B = {<b09 RRE] me_l> | <b0, RS bmy—1> €4 and "y(bo, RS bm,-—l)}
and
.B’ = {<bo, ceey bm7_1> | <b0, ceey bm,—1> € A, and r-,(b, ceey bmy—l)}-

Then 4 and A’ are finite sets, ™y, (¢')™ are 1-1 and onto maps. Furthermore,
By™ < B’ and B'(¢')"< B, thus ¢™ is a 1-1 and onto map between B and B,
showing that ¢ is an isomorphism. This completes the proof of Theorem 2.

COROLLARY. Let o and B be ordinals with a=p. Then if Fs(e) exists, Fx(B) also
exists and they are isomorphic.

4. On the family of free X-structures. Let E(Z) denote the class of all ordinals
o for which Fx(e) exists. In this section we will characterize E(Z). The characteriza-
tion theorem is based on the following result.

THEOREM 1. Assume that Fy(e) exists; let xq, ..., X,, ...,y <o be a free Z-genera-
ting system of Fx(c). Let B be an ordinal, let y;<o for 8 <B such that if 8+#8'
then y;# vy, and set

B = [{x,,]8 < B}ls

Then B is a slender Z-substructure of Fs(c:). Therefore, F(B) exists and it is isomorphic
to B.

Proof. The second statement follows immediately from the first one and from
Lemma 5 (ii) of §2.
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In order to simplify our notations, let e=n<w, B=m(<w) and y,=i, i<m.
Thus, we will prove that if A = Fx(n) exists and

B = [XQ, ceay xm_llx,

then B is slender (the general proof is similar).
First we make a few observations. Let ¢ be a Z-homomorphism of A into B
with Xep=2Xo, .. ., Xp-19=Xm-1 (Xu®, . . ., X,—1 can be arbitrary elements of B).
(i) If Pe P, (2), then Py(xo, ..., Xpn—-1)=P8(X0, .. .5 Xpn_1).
Indeed, Pu(xo, . . ., Xm_1) S Ps(Xo, . . ., Xn_1) by Lemma 7, §1. On the other hand,

Pﬁl(xo, ce xm—l)‘P__“P"B(xO’ ] xm—l)a
SO
|PQ[(X0, ) xm-l)l g lPQS(xO’ ceey xm-l)l'

Since by Theorem 1, §3, Pu(x,, . . ., X, 1) is finite, we get the equality.
(ii) ¢ is onto.
Let b € B; then b € Py(x,, . . ., X,,_;) for some P € P,(Z). Thus

b EP}B(XO, cees xm—l) = Pm(an cees xm—l)‘P S A(P.
(iii) g is 1-1.
For P’ and P" € P,(2),

(Pu(Xos - - -5 Xn-1) U Pu(Xoy - - s X - 1))p = PB(Xos - - -5 Xm—1) U PB(Xos - - -5 X —1)-

Combining this with (i), we can argue as in the proof of Theorem 2’, §3.

(iv) ¢ is an automorphism of B.

@p is a homomorphism; by (ii) it is 1-1 and onto. Thus to prove that it is an
automorphism it remains to show that

r(aop, . . ., Gm,-19) implies r,ao, ..., @n,-1), for ao,...,an,-1€B.

Let a, e P(xo, ..., Xmn_1), 0=Si<m and set

C=]]P&xo.., Xn-1) |0 Z i< m)
and
D= {<b0’ LS me_1> I <b0’ ey bmy—1> € C and rr(bO" . ',bm,-l)}'

Then by (i)-(iii) and Theorem 1, §3 the map ¢™r: C — C, induced by ¢, is 1-1 and
onto on C, and C is a finite set. Furthermore, ¢ is a homomorphism, thus
Dg™ < D. Since ¢™ is 1-1 and D is finite, we get De™ = D, a statement, equivalent
to the one that is to be proved.

Now(®) let ao,...,a,€B, DX, I<e(Z) and let by, ..., b;_; be all the ®—F
inverses of a, . . ., a, in B (s is finite by the corollary to Theorem 1 of §3). Since
¢p is an automorphism of B, by, . . ., b,_,p are the ® —/ inverses of aep, . . ., ap

(®) The original proof was continued using a rather long argument. This simplified version
is due to G. H. Wenzel.
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in B. But ¢ is a Z-homomorphism, thus by Lemma 1 (iii) of §2, there are s ®—/
inverses cg,...,Cs—1 Of @,...,a, in A such that cop=byep,..., cs_19=b,_19.
We get that {c,,..., ¢;_1}<B, since B is a Z-substructure. Thus (iii) implies
co=by, ..., cs_1=b,_,. This means that every ®—/ inverse in B is also a ®—/
inverse in U, completing the proof of Theorem 1.

THEOREM 2. If Fx(n) exists for all n<w, then Fy(w) also exists. In other words,
if n€ E(Z), for all n< w, then w € E(X).

Outline of proof. Using the usual construction we form a direct limit % of all
Fe(n). Theorem 1 is used to prove that U is a Z-structure and Theorem D is used
to show that it is Z-free. Note that the same proof could be used to show the
existence of direct limits, provided all ¢,; are 1-1 and g, is a slender Z-sub-
structure of %;.

Proof. Let Jx(n) be freely X-generated by x§,...,x%_; (n=1,2,...). We can
assume that Jx(n) is disjoint to F(m) if n#m.

Let ¢, be a 1-1 Z-homomorphism of Fx(n) into Fg(m) with xPe,=xF*1,
i=0,...,n—1. For n<m, set

Prm = Pn* " Pm—1-

Then the Z-algebras Fy(n) and the Z-homomorphisms ¢,, form a direct limit
system. Let % denote its direct limit; if x € 4, x={x,, X, 41, . . . ), then the mapping
o": x, — x is an embedding of Fz(n) into A. Set A, = Fy(n)¢". Then

A=UJU,|n<w), A, S 4,<-

and A, >Fx(n), n=1,2,....
First we prove that % is a 2-structure. We will verify only that if

® = (D)E)W)EA)Y(x, y, u,v) €Z,

then @ holds in .

Let a€ A; then g€ A, for some n<w. Since YA, is a Z-structure, there exists
a b € A4, such that (#)(v)¥(a, b, u, v) holds in A,. To prove that it also holds in
A, take a ce 4 and an m<w, n<m, with qa, b, ¢ € A,,. Since Fxz(n)p,. is a slender
Z-substructure of Fz(m) by Theorem 1, and A4,=Fy(n)pmep™, Apn=Fs(m)p™, we
get that %, is a slender Z-substructure of A,. Thus (w)(3v)¥(a, b, u, v) in Ay,
hence there exists a d € 4,, with ¥(a, b, ¢, d) in ¥U,,. Therefore, ¥(a, b, ¢, d) in A,
so (w)Av)¥(a, b, u, v) in A, which was to be proved. A similar (but simpler)
argument shows that if a, ¢ € 4 then also a ® — 1 inverse exists.

Set

x; = {xthxite ), fori=0,1,2,...,

then x;€ A, A=[xo, X1,...]y and A,=[xo,..., X,—1]z. Thus A is Z-generated
by w elements.
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It remains to show that U satisfies (iii) of Definition 1, §3. Let B be a Z-structure,
b, by, ... € B. We can assume that A4 is disjoint to B. We want to construct a
Z-homomorphism ¢ of U into B with xip=5;, i=0,1,2,....

Set C=A U B; we define a relational system with constants on C:

(i) for every a € A, there is a constant k, and (k,)s=a;

(ii) for every d € B, there is a constant I, and (I;)s=d;

(iii) for y <o0,(7), r, is defined on 4 and B as it was;

(iv) for o<n<w, Pe P,(2), rp is defined on A and B as it was; (rp was defined
in Lemma 6, §1);

(v) for ¢o,...,¢n_, in A or in B and Pe P,(Z) we define the constants
c(coy ...y Cn1, P,i) for 0Si<kp (of Theorem 1, §3); these are intepreted in €
such that every element of P(c,, . . ., ¢,-;) is the interpretation of one of them. .

Let € denote the relational system defined by (i)—(v), and let =° be the type of €.
We want to define an additional relation R(x, y) on € satisfying the following
universal sentences:

(l) R(kx(’ lb[)’ i= 0, 1, ey

() (rkay, - - ko) A R(kogy 1) A -+ A Rk, 1y ) —>1(lays - 25 1),
where r is some r, or rp;

(3) (R(kags L) A -+ ARko, 1, 1s, ) A R(ko, b)) Arp(lyy, .5 1o, 1) —
R(c(aOa cees oy, Pa 0)9 Ib) V-V R(C(ao, ceesQnoy, Pa kP_l), Ib);

(4) (R(kq, Is) A R(ko, 1g)) = 1y = 1y

(5) rl’(kxos ceey kx,,_p ka) - (R(ka’ c(bO’ ey bn-la P’ O)) Vo
v R(ka, c(bO, ey bn—b Ps kP— l)))

If R can be defined so as to satisfy (1)~(5) then we can define a mapping ¢ of
A into B by setting ap=d (a € A, d € B) if R(a, d).

By (4), ¢ is well defined and by (5), ¢ is defined on the whole of 4; (2) and (3)
mean that ¢ is a Z-homomorphism and by (1), x,p=>b,.

By Theorem D it is sufficient to prove that R can be defined on every finite subset
of C. However, this is trivial, since if H is a finite subset of C, then for some n,

H = [xo,~ . "xn—llz‘.u [bOa-' "bn-l]}.‘.u H"

where H'=H N (B—[by, b, . . .]5). It follows from (4) and (5) that no element
of H' occurs in (1)~(5); thus it suffices to consider H"=H— H'. Since %, is the
free Z-structure on n Z-generators, there is a homomorphism ¢ of %, into B for
which xgy=b,,i=0, ..., n—1. Define R on 4, U Bby R(a, d) if ap=d. Obviously,
R satisfies (1)-(5). This completes the proof of Theorem 2.

The following result is a more complicated version of Theorem 2.

THEOREM 3. Let « be a limit ordinal. If F5(B) exists for all B< «, then also F(a)
exists.
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Sketch of proof. The proof of Theorem 2 started with the construction of a
direct limit system. There we had no problem with ¢,,@..=¢,. (for ISn=m)
since we defined ¢;, as ¢, - -@,_,. However, we cannot do this now. In order to
construct the direct limit system, we set

C=UF®B B <),

where the F3(B8) are assumed to be pairwise disjoint. We want to define on C a
relation R such that ¢;, for B<y <« can be defined by ap;,=b for a € Fy(B) and
b € Fx(y), if R(a, b). As in the proof of Theorem 2, we can do that applying Theorem
D by introducing sufficiently many constants and relations, which satisfy the
analogues of (1)—(5), and

©) (DN(R(x, y) A R(y, 2)) > R(x, 2)).

We leave the obvious details to the reader. Then we form the direct limit %, and
we proceed as in the proof of Theorem 2.
Now we are ready to characterize E(X).

THEOREM 4. Either there exists a positive integer n such that (<) exists if and
only if a<n, or Fx(e) exists for every c.

In other words, either E(Z)={« | «<n} or E(Z) is the class of all ordinals.

Proof. Let us assume that there is no n with E(Z)={« | «<n}. Then for every
n there exists an m=n with m € E(Z). By Theorem 1 this implies n € E(Z); therefore
by Theorem 2, w € E(Z). Let us further assume that for some ordinal 8, & ¢ E(Z).
If & is the smallest ordinal with 8 ¢ E(Z), then by the corollary to Theorem 2, §3,
8 is an initial ordinal. Since w<$, & is a limit ordinal and if y <8 then y € E(Z).
Thus by Theorem 3, é € E(Z). This contradiction proves Theorem 4.

5. On the existence of free Z-structures. Let us recall that P € P,(X) is bounded
if for some natural number m

|P(ao’--', an—l)l é m

for any Z-structure % and a,, ..., a,_, € A. The smallest such integer is denoted
by kp.

A necessary and sufficient condition for the existence of free Z-structures is
given in the following result:

THEOREM 1. §x(n) exists if and only if the following two conditions are satisfied:

(B,) every P € P,(2) is bounded,

(C,) let A and B be Z-structures, let a,...,a,.,€A and b,,...,b,_, € B.
If A=lao, . . ., @n_1]5 then there exists a Z-structure €, Z-generated by c,, . . ., C,_1,
and there exist X-homomorphisms ¢: C— A and y: C — B such that cp=a, and
cyp=b, for0<si<n.
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Proof. (B,) is necessary by Theorem 1 of §3. It is obvious that (C,) is also
necessary, since we can always set €= gy(n).

Let us assume that (B,) and (C,) are satisfied. Let P € P,(2); (B,) implies that
there exists a Z-structure €p, Z-generated by ab, .. ., af_,, such that

|P@f,...,a5-)| = ke.

Let Gp. be a Z-structure which corresponds to P’ P,(Z) and let us apply (C,)
for Gp and Gp, obtaining a structure € X-generated by c,, . . ., ¢, ;. It is obvious
that for € both |P(c, . . ., ¢,-1)| and |P'(co, . . ., €,-1)| are maximal.

If Py,...,P._,eP,(X), then we can always find a minimal upper bound
kp,,....p,_, for Py U---U P,_;. An obvious induction, combined with the argu-
ment given above, yields the following result:

Let H be a nonvoid finite subset of P,(X); then there exists a least natural
number k such that for every Z-structure % and ay, . . ., @,-, € A we have

U (P@o, ..., a,-1) | PeH) | £ ky.

Furthermore, there exists a X-structure Ay and af,...,a¥_, € Ay such that
Ay=I[a¥,...,a¥_ s and if H'< H, H' # @, then

lU(P(ag,...,af_l) | PEH’) I = kH"
Set T={H | H is finite, o # H and H< P,(Z)} and for H € T let
Ty ={K|KeT and H < K}.

Then Ty, N Ty, =Ty, on, and Ty# @, and thus there exists a dual prime ideal 9
over T containing all the Ty. Set A=[]o Uy | He T). By Theorem C, A is a
Z-structure. Let f; be the function for which f(H)=a forall He T, i=0,...,n—1.
Then

Ty ={K||U(P@f,...,a51) | Pe H)| = ku} 2 Tu,
so Ty € 2. Since there is a formula in our language which can express that
U (PG, ..., aE-) | Pe H)| = ks,
by Theorem C, we conclude that

U (PU3,-. o f-) | P H)| = ky
forall HeT.
Let § be the Z-substructure of U, Z-generated by fy', ..., f,"1. It is obvious
that the above equality holds in & as well.
Let B be any Z-structure and by, . . ., b,_, € B. By (C,), there exists a Z-structure
@, Z-generated by cq, .. ., ¢,—1, and there exist Z-homomorphisms ¢: C — F and
¢: C — B with o=/}’ and cgp=b;, 0<i<n.
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The mapping ¢ is obviously onto. Let ¢, d € C and let us choose P’ and P" € P,(Z)
withce P'(cy, ..., cn-1)and d e P"(cy, . . ., ¢,_,) and set H={P’, P"}. By definition,

[P'(co -5 Ca-1) YP(Cop- ..y Camr)| S k.
On the other hand,

(P'(cos - -+ €n-1) Y P'(Co, - - s €non))p = PSS, i) U P'(fSs o, o),
[P'(fo's - - s A=) Y P'(fS, . il )| = ke

Thus ¢ is 1-1. Therefore, if we deal with X-algebras then ¢ is an isomorphism;
then this implies that ¢~y is a Z-homomorphism of § into B with f;Y¢ '¢=b,,
for 0<i<n, establishing that & is the free Z-algebra on n Z-generators. However,
in the general case ¢ need not be an isomorphism since ¢ ~! need not preserve
relations. Let §=<(4; F, R). Using (B,) and (C,) and some transfinite method,
for instance Theorem B, it can be verified that there exists a ““smallest” Z-structure
A={A; F, R}, such that for all Z-polynomial symbols P we have Pg= Py, for all
feF we have (f)g=(f)u and for all re R, (r)u is smallest for all Z-structures
having these properties. For this %, in place of &, it is obvious that ¢! is also a
homomorphism, completing the proof of Theorem 1.

COROLLARY 1. All free Z-algebras exist if and only if the following two conditions
are satisfied:

(B) all Z-polynomials are bounded,;

(C) let A and B be Z-structures, let ay, a,, ..., a,,... € A, by, by,..., b,,... €B
and A=[ay, a;, . .., a,, ...)s; then there exists a Z-structure € with C=|c,, c1, . . .,
Cpy . ..]n and there exist Z-homomorphisms ¢:C —> A and . C— B such that
cp=a, and cyp=b, i=0,1,2,....

Corollary 1 is an obvious combination of Theorem 1 and Theorem 4 of §4.

COROLLARY 2. Let X be universal. Then Jy(n) (that is the free algebra on n
generators over X) exists if and only if (C,) holds. All free algebras exist if and only
if (C) holds.

Indeed, if Z is universal then all Z-polynomials are of bound 1, and thus (B,)
is always satisfied.

DErFINITION 1. X is said to have property (P) if for every ® in X either @ is
universal or ®=(xc)- - - (x,-1)3)¥(xo, . . ., X,_1, ), or D is positive.

Let o/ be a well-ordered inverse limit system of the Z-structures %, y<a; let
A, be Z-generated by af,...,a;_,; let the homomorphisms ¢} (§<y<c) be
Z-homomorphisms and suppose

agpy=al, ford<y<ei=0,...,n-1.

Let % be the inverse limit structure of ..
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LEMMA 1. Let y<a« and a€ A,. If (B,) is satisfied there exists an a€ A with
aly)=a.

Proof. Choose P € P,(X) such thatae P(a}, ..., a;_,). For 8=y, set
Us;=1{b|beP@l,...,ai_,) and bg’ = a}.

Since a € P(a}, . . ., al_1)¢3 and ¢? is a Z-homomorphism, Uj is not void. By (B,)
U, is finite. Furthermore, U@l < U, if y <8’ <8 <. By Theorem B, there exists
a(8) € U, for 8>y such that a(8)p =a(d’) if y<8' <d<ea. Set a(8)=ap} if §=1.
Then for a=<a(y) | y <) we have that a € % and a(y)=a.

THEOREM 2. If we assume (P) and (B,), then W is a Z-structure.

Proof. We first verify that if ®=(x)(3y)@)@v)¥'(x, y, u, v) € Z, and P is positive,
then @ holds in . Let @ € 4 and set

T,={b|be A4, and bis a ®—0 inverse of a(y)}.

It follows from (B,) and from the corollary to Theorem 1, §3, that T, is finite for
all y<a and T,# @. It is obvious that T,p}<=T; if 6 <y <. Thus by Theorem B
there exists a b € 4 with b(y) € T, for all y <«, that is,

(w)@0)¥(a(y), b(y), u, v) in U,
We want to prove that (#)(3v)¥(a, b, u, v) in A. Let c € 4 and set

U, = {d | ¥(a(y), b(y), c(y), d)}, fory < e
Then

U, c {d|disa ®—1 inverse of a(y) and c(y)}.

Since the right-hand side is finite, U, is. finite for all y<«. Now let de U, and
8 <y <a. Then ¥(a(y), b(y), c(y), d) and since ¥ is positive, ¥'(a(8), b(8), c(8), dp}).
Thus U,p;< U,. So we can choose d € A with d(y) € U,. Therefore, ¥(a(y), b(y),
c(y), d(y)) for all y <, which implies ¥(a, b, c, d). The existence of ®—1 inverses
is proved by a similar argument.

Now let @ be universal, ®=(xg)- - - (Xp_1)¥(xo, ..., Xn_1). Letag, ..., @, _; € YU;
then W(ay(y), . . ., am_1(y)) for all y<«, whence ¥(ay, ..., a,_,).

Finally, let ®=(xy) - - (xn-1)@»)¥(x0, ..., Xp-1,y) and let ao,...,a,_, € A4.
Set

TY = {b | ‘F(ao('}’)’ R am-l()’)’ b)}

By (B,) and from the corollary to Theorem 1, §3, T, is finite. Since T,p3<= T} is
obvious for § <y <a, by Theorem B there exists a b € 4 with b(y) e T, for y<e.
Thus ¥(a(y), . - -, am-1(y), b(y)) for y <«, which implies that ¥(a,, ..., a,_1, b),
completing the proof of Theorem 2.

It is easy to see that the proof of Theorem 2 yields the following result:
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COROLLARY. Fora,,...,a,_,,bc AandPe Pm(Z), if b(y) € P(ao(y),. . - ,am-1(y))
forally<a, thenbe P(ay, ..., ad,_,).

The converse of this corollary is also true.

LEMMA 2. Under the conditions of Theorem 2 and its corollary, if b € P(a,, ...,
a, 1), then b(y) € P(ac(y), - - ., an-1(y)) for all y <e.

Proof. It is sufficient to prove that if b is a ®-inverse of a,,..., a,_;, then
b(y) is a ®-inverse of ay(y), ..., a,_:(y) for all y<a. If ® is universal, there is
nothing to prove, so let ®=(x)3y)w)3Fv)¥(x, y, u, v) € Z, let ® be positive and
let b be a ®—0 inverse of a. We have to prove that

(w)(Fv)¥(a(y), b(y), u,v) forall y < e.

Let c € A,; by Lemma 1 there exists a ¢ € 4 with ¢(y)=c. Since (#)(Jv)¥'(q, b, u, v)
in o, there exists a d € 4 with ¥(a, b, ¢, d). Hence ¥ (a(8), b(8), ¢(8), d(8)) for all
8= 8y, where 8, <c. Since ¥ is positive, we get ¥(a(y), b(y), ¢, d(y)), completing
the proof. The same statement for ® — 1 inverses is even simpler to prove.

Now let &=(xp) - (xp_)FY)¥Y(x0,..., Xn_1,y). Let b be an inverse of
ag,...,d,_;. Then ¥(a,,...,a,_;,b), so ¥(ay(d),..., a,_.(3), b(d)) holds for
all 8= 8,, for some &, <. Choose § such that 8 >max {y, 8,}. Since b(8) is a ®—0
inverse of ay(9), ..., a,_,(3), it follows that b(y)=>b(8)¢? is a ®—0 inverse of
ao(y)=ao(8)¢3, . . ., an-1(y)=an-1(8)¢}; that is ¥(ao(y), . . ., an-1(y), b(y)) for all
y <, which was to be proved.

Set a,=<a}|y<a),...,8,_;=<al_,|y<e)> and let A denote the Z-sub-
structure of A, X-generated by a,, ..., a,_;.

LemMA 3. U is a slender Z-substructure of .

Proof. We should note that the @ of Lemma 1 is in %. Thus, by repeating the
proof of Lemma 2, and restricting a, ¢ to % we get that the conclusion of Lemma
2 holds for %, that is, if b is a ®-inverse of ¢, ..., €,_, in A, then b(y) is a -
inverse of co(y), . . ., €m-1(y) in A, for all y <. Thus the corollary to Theorem 2
implies that b is a ®-inverse of ¢, . . ., €, _; in A, which was to be proved.

COROLLARY. The mapping ,: ¢ — c(y) is a -homomorphism of % onto %,.
Now we are ready to prove the main result:
THEOREM 3. Let us assume (P) and (B,). Let W, be Z-structures and

A, =1a},...,a,_ 1]y for y < a.

Let us assume for all y<8 <« that there exists a Z-homomorphism ¢ such that
abpl=a}, 0<i<n. Then there exists a Z-structure % and there exist ay, . .., G, -, € A
such that A=|ay, ..., a,_,]s and for each y <o there exists a Z-homomorphism i,
of A onto N,, with agp,=al,0<i<n.
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Proof. If we have that @ip}=¢j, whenever B<y <8 <a, then the A, form an
inverse system and we can take the % as in Lemma 3 and then by the corollary
to Lemma 3, we have the ¢, for y <«. However, plp; =95 need not hold. We are
going to prove that the ¢ can be replaced by ¢ in such a way that we still have
afyS=a} and also Y%} =y4, for B<y<é<a.

Let us assume that A, and A, are disjoint if y# 8 and let us form

C=UM,|ry <.

We will think of the required family of ¥¢ as a single binary relation R(x, y) on C,
where xpl=y means x € 4,, y € 4, and R(x, y). Using the same tricks as in the
second part of the proof of Theorem 2, §4, we can introduce unary relations
R,(x) for x € A, and we can introduce sufficiently many relations and constants
such that a system of universal sentences  will express that R(x, y) A Rs(x)
A R(p) defines a Z-homomorphism ¢ of A; onto 4, with afyS=a}, 0<i<n.
Let Q* be Q to which we add the sentence

(DE)(R(x, y) A R(p, 2)) > R(x, 2)).

Let us observe that on every finite subset of C we can define R so as to satisfy Q*.
Indeed, if H is finite, HSC, then there exist yo<y;<--- <y,_;<a such that
HclJ (4,,]02i<k). Now set ¢li=g)l @)i-1---@li+t for i</ and let R(x,y)
mean that x € 4,, y€ 4,, and xyJJi=y for some 0<i</<k. Then R obviously
satisfies Q*. Thus by Theorem D, R can be defined on C so as to satisfy Q¥, com-
pleting the proof of Theorem 3.

DEFINITION 2. Let % be"a Z-structure, Z-generated by ao,...,a,,..., y<eo.
Then U is called a maximally free Z-structure, in notation, MFy(«), with respect
to the -generating system {a, | ¥ < o} if whenever B is a Z-structure X-generated by
boy..., b, ...,y<e and ¢ is a Z-homomorphism of B into A with b,p=a,, for
y <, then ¢ is an isomorphism.

DEerINITION 3. Let K be a set of maximally free Z-structures on « Z-generators.
K is called a (Z, «)-covering system if for any Z-structure B, Z-generated by
by, ..., b,,...,y<a, there exists an A € K (with the Z-generating system a,, .. .,
a,, ..., y<c)and a Z-homomorphism ¢ of % onto B with a,p=>5,, for y <e.

COROLLARY 1. Let us assume (P) and (B,). Then there exists a (I, n)-covering
system.

Proof. Let % be a Z-structure, 4=[h, ..., h,_;]z. Consider the class of all
pairs <¥,, H,>, where %, is a Z-structure, H,=<{h}, ..., hy_,>, A=[h}, ..., hi_1]»
with- the property that there exists a Z-homomorphism ¢ of %, into U with
hip=ho, ..., ht_1p=h,_,. Let us say that <, H,) is isomorphic to (A, Hy) if
there exists an isomorphism ¢ of %, with 2, satisfying hlp=~Ah?, for i=0,...,n—1,
where Hy=<hd, ..., hi_ > and Hy=<hZ,..., h2_,)>. Let P be a class of such pairs,
such that every pair has an isomorphic copy in P and there are no two isomorphic
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pairs in P. Using (B,) it is easy to give an upper bound for the cardinality of P,
so P is a set. We introduce a binary relation < on P: (N, H,> =<{U,, Hy) if
there exists a Z-homomorphism ¢ of U, into A, such that h2p=~h} for i=0,...,
n—1. Then {(P; £} is a partially ordered set. The only nontrivial part in checking
this is to prove that < is antisymmetric; this is an easy modification of the argument
of Theorem 2’ of §3 (the freeness of the algebras involved was used there only to
prove (B,); now we have (B,) by assumption). Theorem 3 states that Zorn’s lemma
can be applied to <P; <). Any maximal element of (P; <) will be maximally
free (again use (B,) and the argument of Theorem 2’ of §3).

It follows from (B,) that a maximal class of nonisomorphic pairs (%, H) is a
set. Using the above construction, we choose for each (¥, H) an M Fy(n) containing
N, H) in (P; <) and thus we have a (Z, n)-covering system.

6. Strong free Z-structures and the inverse preserving property. If K is the class
of all groups {(G; -, 1> defined in the usual way by a X, then all free Z-structures
exist and they are the free groups in the usual sense. However, nobody would use
the theory of free Z-structures to prove the existence of free groups. The most
convenient way of proving the existence of free groups is the introduction of
x~! as an operation because then in X the existential quantifiers are eliminated,
and in this richer language X is equivalent to a universal Z, to which the simple
known methods apply. In this section we will discuss the problem of when it is
possible to eliminate the existential quantifiers in = such that the resulting = can be
used to construct free Z-structures.

First, we introduce a property of first order axiom systems.

DEFINITION 1. X is said to have the Inverse Preserving Property (IP) if every
Z-substructure is slender.

THEOREM 1. The following conditions on X are equivalent:
(i) Z has IP;
(ii) if A, B, € are Z-structures, B is a Z-substructure of N and ¢ is a Z-homo-
morphism of W into €, then g is a Z-homomorphism of B into €;
(iii) if A, B, € are Z-structures, B is a Z-substructure of N and ¢ is a T-homo-
morphism of € into B, then ¢ is a Z-homomorphism of € into U;
(iv) if B is a Z-substructure of U, then ¢: x — x is a Z-homomorphism of B into .

COROLLARY. If X has IP, then every Z-homomorphism ¢ can be written in the
Jorm @=1ix where  is an onto Z-homomorphism and y is a 1-1 Z-homomorphism.

Thus we see that IP is equivalent to the condition that in the category of Z-
structures with the Z-homomorphisms, the usual definition of a subobject in
terms of the underlying set functor agrees with the definition of a Z-substructure.

The proofs are trivial consequences of Lemmas 5 and 6 of §2.

We will also need a property of free Z-structures.
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DEFINITION 2. A free Z-structure is strong if the ¢ of Definition 1, §3 is always
unique.

That is, any mapping of the Z-generators into a Z-structure, can be uniguely
extended to a -homomorphism.

COROLLARY. Let U be a free Z-structure on o Z-generators and let B be a free
S-structure on B generators. If a=p, then W is strong if and only if B is strong.

This is trivial from the Uniqueness Theorem.

THEOREM 2. If the free Z-structure Fg(w) exists and it is strong, then all free
Z-structures exist and all are strong.

Proof. The existence of free Z-structures follows from Theorem 4, §4. It is
obvious that if «=1lim B; and each Fz(B;) is strong, then so is Fx(«). It remains to
prove that if §g(e) is strong and B<e, then Fy(B) is strong. Let xq, ..., Xy .. .,
y < « be the Z-generators of (). By Theorem 1 of §4 and the corollary to Defini-
tion 2, we can assume that Fy(B)=[xo,..., X,,...]s, ¥<B. Let x be a Z-homo-
morphism of Fg(ex) onto Fx(B) with x,x=x, for y<B and x,x=x, for B<y. If
Fx(B) is not strong then there exists a Z-structure B and there exist by, ..., b,, .. .,
y <P elements of B such that x, — b, (y <B) has two extensions to Z-homomor-
phisms ¢ and . Then the mapping x, — b, for y <8 and x, — b, for y=B has two
extensions to Z-homomorphisms, namely xp and xi, contradicting that Fx(«) is
strong.

Now we are ready to state and to prove the main result.

THEOREM 3. Let us assume that T has 1P and that ¥y(w) exists and is strong.
Then there exists a set of operations F, containing F, such that on every Z-structure
A=<A; F, R) we can define the additional operations fe F—F, such that the
correspondence

A=<A;F,R>—>UA={A4;F, R

has the following properties:
(i) U is a S-substructure of B if and only if N is a substructure of B;
(ii) let ¥ map A into B; then ¢ is a Z-homomorphism of U into B if and only
if ¥ is a homomorphism of U into B;
(iii) let K denote the class of U ; then Fx() exists for all .

REeMARK. Essentially, what is stated here is a condition under which the category:
of Z-algebras and X-homomorphisms is isomorphic to a category of structures
with homomorphisms, and the underlying set functor of the latter has an adjoint.

Proof. For every 1Sn<w and Pe P,(Z) we introduce kp n-ary operations,

$s -+ s fitp-1 as follows:
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Take Jy(n) with the Z-generators X, ..., X,_,; define fF(xo, ..., Xn_1), i<kp
such that P(xq, ..., Xp_1)={fF(x0,..., Xo_1) | i<kp}; let A be an arbitrary -
structure, ao,...,d,-1€ A and ¢ a X-homomorphism of $g(n) into A with
Xo®P=0oy -+ .y Xn_19=0p_1. Set

< fl@o, ..., an-1) = fF(x0, . .., Xa—)p, for i < kp.
et

F=FUU({ff|PeP(Z),i<kp}|]l Sn<w);
and
K = {<A4; F, R) | {A4; F, R) is a S-structure}.

It is obvious that {4; F, R)> is well defined, since by Theorem 2, ¢ is unique.

Now we will verify (i)—(iii).

Ad (i). Let %A be a S-substructure of B, aq,...,a,., €A and let fe F be an
n-ary operation. If f€ F, then f(ay, ..., a,-.) € A. If f¢ F, then f=fF for some
Pe P,(2) and i<kp. Then

. fiP(xo’---9xn—1)eP(x0"-~’ xn—l)
in Fy(n), so

ﬁp(ao, ey an_l) =ﬁp(xo, ey xn_l)(P EP(xo, ey x,,_l)tp = P(ao, ooy a,‘_l) < A,
since ¢ is an Z-homomorphism. Thus U is a substructure of B.

Let % be a substructure of B; then % is a substructure of 8. To prove that it is
a X-substructure, let ay,...,a,_, € 4 and Pe P,(2). If b e Py(ay, . . ., a,_;) then
b=f(ao,...,a,_,) for some f € F. Thus b € 4.

Ad (ii). Let ¢ be a E-homomorphism of % into B, a,,...,a,_, € 4, and fe F.
We want to prove that

f(aO’ Y] an—l)‘/’ =f(a0l/’9 e an—l'/')'

This is obvious if f € F. Let f ¢ F, that is f=fF for some P € P,(Z) and i < kp.

Let ¢ and y be the Z-homomorphisms of Fx(n) into A and B, respectively with
xp=a, and x;y=ayp, for i<n. Since ¢ and x are unique (Theorem 2) we get
x=e. Thus

S@os - s an_ ) = f(xo05 - s X))@ = f(Xo, .., Xn_1)x = flao¥, . . ., An_1¥),
which was to be proved.

Let ¢ be a homomorphism of ¥ into B; then ¢ is a homomorphism of % into B.
To prove that ¢ is a XZ-homomorphism, take Pe P,(X) and ao,...,a,_, € A.
Let us define ¢ and x as above. Let b e P(ay,...,a,_;). Since ¢ is a Z-homo-
morphism, there exists a u € P(x,, . . ., X,_,) With up=>b. Then u=f(xo, ..., Xo_1)
for some i < kp. By the definition of fF, we have that b=f"(a,, . .., a,_,). Since ¢
is a homomorphism, we get that by =fF(a, . . ., a,_ ). Again, by the definition
of fF, there exists a ve Fy(n) with v=fF(x,,..., X,_,) and vxy=by. Since
veE P(xg, ..., X,_1) and yx is a Z-homomorphism, we get that

beP(ay,...,a,_,) implies that by € P(agy, . . ., a,_1).
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The converse of this statement can be proved similarly; thus P(aq, ..., a,_ )¢
=P(agp, . .., a,_1¥), which was to be proved.

Ad (iii). It follows from the assumption that $g(«) exists for all «. (i) and
(ii) imply that Fx(e) is Fg(e). This completes the proof of Theorem 3.

Theorem 3 is the best possible result, since the following holds:

THEOREM 4. Let us assume that the conclusions of Theorem 3 hold for Z. Then
Z has IP, and Fs(w) exists and is strong. .

Proof. $x(w) exists by (iii), so by (i) and (ii) Fx(w) exists. Since a free algebra
over K is always strong, §s(w) is also strong by (ii). Using (i) and (ii), condition
(iv) of Theorem 1 can easily be verified; thus by Theorem 1, 2 has IP.
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