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Introduction. The concepts of free semigroups, free groups, free lattices, and

so on, play a central role in algebra. These concepts were unified by G. Birkhoff [1]

who showed that given any class of algebras, defined by a set S of identities, free

algebras can be defined and their existence can be proved. The construction is,

roughly speaking, the following: we start with a set X and from the elements of X

we generate an algebra as freely as possible, that is, elements will be identified

only if they have to be identified because of the identities in 2. The free algebras,

thus constructed, have the property that every algebra satisfying S is a homo-

morphic image of a free algebra.

If we consider, classes of algebras defined by axiom systems more involved than

identities, the situation is not so simple. The case of universal axiom systems 2

shows that free algebras need not exist, but if they do, they can be constructed using

Birkhoff's method.

Arbitrary first order axiom systems raise new problems. If, by introducing new

operations, they can be reduced to universal axiom systems (as in case of groups),

then there is no new problem. But even in this case the question arises whether such

axiom systems can be handled directly. However, it can be shown that most first

order axiom systems cannot be reduced to universal ones if we want the reduction

to preserve the important algebraic properties of the class. Thus arises the necessity

of introducing some new concept of free algebras over arbitrary first order axiom

systems.

The first task is to find a proper definition of subalgebras and homomorphisms.

If an operation is replaced by an axiom requiring the existence of an element, we

immediately see that our subalgebras must be closed under the formation of

"inverses" which are guaranteed by the axioms and that a homomorphism should

have the substitution property for these elements as well.

In this paper a solution to these problems is proposed. For an arbitrary first

order axiom system S we define the concepts of 2-subalgebras and 2-homo-

morphisms. In terms of these concepts we define free 2-algebras.

2-subalgebras and S-homomorphisms are not related to each other the way

subalgebras and homomorphisms are. The injection of a 2-subalgebra of a 2-algebra
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into the 2-algebra need not be a S-homomorphism. Also, a map of a S-generating

set can, in general, be extended to many E-homomorphisms. Thus free S-algebras

cannot be handled using the adjoint functor theorem. Therefore it is somewhat

surprising that we still get the Uniqueness Theorem (Theorem 2 of §3) for free

2-algebras.

The basic idea of the paper is the use of multi-valued functions, called S-poly-

nomials, which are constructed fromS. These will turn out to be uniformly bounded

if free 2-algebras exist. Then these are used to define covering families of finite

sets on certain algebras, and the problems considered are localized on a suitable

finite set.

The basic properties of 2-subalgebras and E-homomorphisms are given in

§§1 and 2. §3 contains the Uniqueness Theorem. In §4 it is proved that for a given

2 either there exists a positive integer n such that the free S-algebra on k generators

exists if and only if k < n, or all free S-algebras exist. In §5 necessary and sufficient

conditions are given for the existence of free S-algebras and some partial results

are given on the problem : when can one construct the free Z-algebras using inverse

limits. The last section (§6) investigates when free S-algebras can be constructed

as free algebras over a richer type.

Most of the results of this paper were announced in [4]. The present approach

is somewhat more general, since we will formulate the results for structures

rather than algebras. This framework is much more natural for the whole theory;

also, it allows us to give some very natural examples (e.g., lattices as partially ordered

sets). Since relations are admitted, this theory subsumes the theory of algebras with

a scheme of operators (Higgins [5]) in a more natural way. As a result of this greater

generality one definition and three proofs become longer but otherwise there is no

essential change.

Notations. A type r is defined as a pair <t0, tx}, where t0 = </j0, ...,«„...>,

y<oQ(r), and rx = {m0,..., my,.. .>, y<ox(r) where o0(r) and ox(t) are arbitrary

ordinals, and my and nr are nonnegative integers. A structure 9Í of type t is a triple

<A;F,R>, where F=</0, ...,/,,...>, y<o0(r), R = (r0,..., ry,.. .>, y<ox(r),

where/, is an nr-ary operation and ry is an m,-ary relation. All structures will be

assumed to be of a fixed type t, unless otherwise specified. We write o(t) for

o0(t) + ox(t).

A homomorphism <p of the structure 91 into the structure 58 is a map of A into F

such that

fy(a0,..., aBy_ x)<p = fy(a0<p,..., any-x<p)

for all a0,..., aBy_ i e A and y < o0(t), and

ry(a0,..., amy_j) implies ry(a0<p,. ..,amy_x<p),

for all aQ,..., amy_ x e A and y < ox(t).

A polynomial p over 91 is a function from An into A, for some n < a>, which we

get from the projections by substituting them into the/,, y < o0(t).
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L(t) is the first order language (with equality) associated with t in the usual

sense. A set 2 of first order sentences is called an axiom system. The class of all

structures satisfying 2 will be denoted by 2*. If 91 e 2* then 91 will be called a

^-structure. In this paper 2 will be kept fixed unless otherwise specified ; we assume

that every $ e 2 is given in prenex normal form.

There are four basic results which will be frequently used.

Theorem A (The Compactness Theorem). If every finite subset of a first order

axiom system 2 has a model, then 2 has a model.

Theorem B (Inverse Limit Theorem). The inverse limit of finite nonvoid sets

is never void.

Let fe n (Ai \ie I) and 3> a dual prime ideal of the Boolean algebra 3ß(7)

of all subsets of 7. FT® (9I¡ | i el) will denote the prime product and/v the equiva-

lence class containing/

Theorem C. Let ^>(x0,..., xn_x) be a formula free at most in x0,..., xn_x.

Then <D(/0V,.. .,/nv _x) if and only z/{z|0(/(z),. ..,fn.x(i))} e 3.

Theorem D. Let % be a relational system with constants and 2 a universal axiom

system which contains the relations of 91 and an additional relation R. If R can be

defined on every finite subset of A so as to satisfy 2, then R can be defined on A so

as to satisfy 2.

References. [3] for Theorems A, C, and D, [2] for Theorem B.

1. Inverses and 2-subalgebras. If 2 is universal then every substructure of a

2-structure satisfies 2, so there is no problem; 2-substructure should mean sub-

structure. As an example of an axiom system which is not universal, let us take the

axiom system 2X of lattices as partially ordered sets:

*i= (x)(y)(z)(x S x a ((x S y a y S x) -> x = y) a ((x S y a y S z) -> x S z)).

02: (x)(y)(3z)(u)(x SzAySzA((xSuAySu)^zS «)).

03: (x)(y)(3z)(u)(z SxAZSyA((uSxAuSy)^uS z)).

Then a sublattice of <F; S > is not any sub-partially ordered set <77; á > satisfying

21( but it has the additional property that if x, y e 77, then the zx required by 02

and the z2 required by <J>3 are also in 77.

In this example x and y uniquely determine z in <D2 and <P3. What should we do

if this is not the case ? Let us consider the axiom system 22 of complemented lattices

with 0 and 1 :

^1: (x)(y)(z)(x VX = XAXAX = XAXVV=J'VXAXA.>>

= J>AXAXV(j>Vz) = (XV.)>)VZAXAO>Az)

= (x A y) A z a x v (x A y) = x a x A (x V y) = x).

<D2: (x)(3y)(x wy = ÍAxAy = 0).
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Set F = {0, l,p0,px,p2}, Pi V Pi=l and p{ A p¡ = 0 if /#/ If <//; V, A, 0, 1>

is a substructure of fl satisfying 22 and p0 e H, then, by <t>2, px or p2 e H.

Thus ({p0,px,0, 1}; v, A,0, 1>, ({p0,p2, 0, 1}; v, A,0, 1> and fl are the sub-

structures of £ satisfying S2 which contain p0.

Now any good substructure concept should have the property that every subset

F is contained in a smallest substructure of that kind. By symmetry, in the above

example, the substructure generated by {p0} has to be fl. That is, along with x,

the substructure has to contain all y required by <S>2. This leads us to the concept

of ^-substructure : 58 is a ¿^-substructure of 91, if 58 is a substructure, and if xl5...,

x„ £ F and there is a $ e S with (xx) ■ ■ ■ (xn)(3y) ■ ■ -, then all y e A satisfying <D

are in B. To illustrate this, take the following two axioms :

(1) (x)(3y)Wx(x,y),

(2)(x)(3y)(u)(3vW2(x,y,u,v),

where ^ and T2 do not contain quantifiers.

For (1) this definition means that if a e B, b e A and ^(a, b) then be B. For (2)

this means that if a e B, b e A and

(3) (u)(3v)Y2(a, b, u, v) in 9X(2),

then be B, and furthermore if for a, ce B and de A there exists abe A such that

(3) holds and ^(a, b, c, d), then de B.

A O sequence for (1) means a, b with ^(a, b); a <t sequence for (2) will be

a, b, c, d satisfying (3) and ^¥2(a, b, c, d).

To give a rigorous definition of S-substructures first we must define the concept

of inverse.

Definition 1. Let O e S be of the following form :

(4) (*°) ■ ' ' (•*«<> - lX^oX*»,,) • • ■ (xni - i)(3>>i)(xBl) ■ ■ • (3yk)(xnk) ■ ■ ■

(xn-xyr(x0, ..., xBo_!,y0, x„0,..., xBl_1;yx,...,yk, xnit,..., xB_i),

where 0Sn0SnxS ■ ■ ■ SnkSn; 0=n0 means that no universal quantifier precedes

=LVo, n0 = nx means that there is no universal quantifier between 3y0 and

3yx, and so on, nk = n means that no universal quantifier follows 3yk; T contains

no quantifiers. Set e(O) = k + 1. The concepts of O — / inverse and O —/ sequence

are defined for all 0^/<e(í>) by induction on /. Let 9t be a S-structure, a0, ax,...

and b0, bx,... e A.

(i) ¿o is a O — 0 inverse of a0,..., ano _ x in 9t if

(Xn0)- ■ •(*n1-lX3j>l)- • -(^kX*«*)- •   (*n-l)

t(a0,..., ano-1, b0, xn¡¡,..., xBl_x,yx,...,yk, xB(t,..., x„_x)

holds in 91; in this case, a0,..., ano_l5 b0 is a O — 0 sequence;

(2) Note that (3) is not a formula in our language, since a, b are elements of A ; (3), and all

such formulas similarly, should read: {a, b} satisfies (u)(3vf¥(x,y, u, v) in %.
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(ii) b, is a O - / inverse of a0,..., an¡ _ ! in 91 if there exists a O - (/- 1) sequence

a0,..., ano-!, ¿»o, • • -, an,-i, ¡>i-i such that

(*n,)   •(*„, + !- lX^Z +1) • • • i^kX*«J ■    • (*n- 1)^0, . . ., fl„0 - 1, ¿0, • • •,

ani-!-i> ^i-i, öfii-i» • • ■> °ni-i, »j, xnj,..., xni + 1_!,y¡ + i,.. -,yk, xnic,. . ., Xn_j)

holds in 91. Then, a0,..., a„0_i, b0,..., ani_^u *,_i. an¡_v . ..,ani.u b¡ is a $-/

sequence.

^-inverse will mean O —/ inverse for some /<e(<I>) and ^-inverse will mean

3>-inverse for some O 6 2. A complete O sequence is a O —(e(O)—1) sequence.

Remark. Note that e(O) is the number of existential quantifiers in the prefix of

<P. Intuitively, a $-/ inverse is an element whose existence is guaranteed by

(3yi), the /th existential quantifier.

Most proofs of statements on inverses can be carried out only by induction on /

as in Definition 1, which is sometimes technically involved. Therefore, with the

exceptions of Lemma 1 and Theorem 1 we will work out the proofs only for

axioms of the forms (1) and (2) and leave the details of a formal proof to the reader.

The following lemma shows that the two concepts introduced in Definition 1

can be expressed by first order relations.

Lemma 1. For every i> e2 and /<e(4>) there exists a formula Oti](x0,..., y) in

L(t) free in x0,..., y such that for a ^-structure 91 and a0,.. .,be A, b is a O — /

inverse of a0,... if and only if í>[,I(a0,..., b). Furthermore, there exists a formula

4>a)(x0, ...,xno-i,y0,...,xn¡-i,y¡) in L(t) free in x0,..., y0,..., y¡ such that if

91 is a ^-structure and a0,..., ano_u boi..., ani_1; b¡ e A, then «¿,..., fl^-i,

b0,..., an,_i, b¡ is a $-/ sequence in 91 if and only if i>(!)(û0, • • •, «no-ii *o> • • •■

ön,_!, bi)in%.

Proof. If 4> is of the form (1), then <D[0](x, y) = T1(x, y) = <D(0)(x, y). If 4> is of the

form (2), then $>m(x,y) = (u)(3v)Y2(x,y, u, v) and

1>[1I(*o, xx, y) = (3z)(<t[0](xo, z) a T2(x0, z, x1; y)).

Furthermore, i>(0)(x, y) = <ï>[01(x, y) and

4>(1)(xo, y0, xx, yx) = 0)<0,(x0, yQ) a Y2(x0, y0, xx, yx).

The general proof for <I>, as it is given in Definition 1, proceeds by induction on /.

For/=0,

<D[OI(x0,..., xno.x,y0) = (xBo). • (xni_x)(3yx)(xni)- ■ ■

(3j;)c)(xnk)• • • (xn_i)T(x0,..., x„0-x,yo, x„0,...,yk, xnic,..., x„_x),

and

0<o) = (p[0]_
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Suppose that we have already constructed 0(,^1) and (J>[l~1]. Then

<D(,)(xo,..., Xno-i,y0, ■. .,*»,-!,yd = ^'-"(xo, • ..,xno_i,y0,.. .,*Bl.1_1,j»,_1)

a (*»,) •••(*„,+!-1)(3^, +1) • • • (xn?¥(x0, ...,y„ *„„ ...,*„)
and

<ï>m(*o.*n,-i,y,) = (3y0)- ■ (3yi-iWn(x0, ...,y0, xni,..., xnt.u y,).

Remark. We constructed the <t>m and fl>(i> from <!>. It is easy to see that <J> can

be constructed from <J>m and <t><¡).

Definition 2. Let 91 be a S-structure and let 58 be a substructure of 9t. Then 58

is a ^.-substructure of 9Í if whenever a0,.. .,ate B, be A and b is a 2-inverse of

a0,..., at in 91 then be B.

The most important property of ^-substructures is the following :

Theorem 1. Let'übe a ^-structure and let 58 be a ^-substructure o/91; let <S> eS

andl< e(3>). Ifa0,..., b0,... e B and $>U)(a0,..., b0,..., «*,_!, b,) in 9Í, then it also

holds in 58.

Proof. Illustration: Let O be of the form (2) and O(0)(a0, b0) in 9t; that is,

(«)(3i»)T2(a0, b0, u, v) in 91. If c e B there exists a de A with ^(ao, b0, c, d). Now

<J>(0)(a0, b0) implies d is a O— 1 inverse of a and c, whence de B. This proves that

<ï><0)(a0, ¿>o) in 58. í>(1)(a0, b0, ax, bx) can be handled similarly.

To prove Theorem 1 we first note that every O sequence can be extended to a

complete fi sequence, hence it is enough to prove Theorem 1 for complete <1>

sequences.

For e(<$>)=0 Theorem 1 follows from the known (and obvious) theorem that

if a universal sentence holds for the structure 91, it holds for the substructure

58 of 91.

Assume that Theorem 1 is proved for all sentences with less than k + 1 existential

quantifiers, let $ be given as in (4), let a0,..., b0, a„0,..., bk be a complete O

sequence in 91 with a0,..., b0,..., bk e B and let F = r © (n0+ 1) be the type we

get from r by adding the constantsp0,.. .,pno_x, q. Let 9t' and 58' be structures of

type t' which we get from 9Í and 58 by interpreting p, as a¡ and q as b0. Finally, let

V = (xno)- ■ -(x^-Mly,)^)- ■ -(3yk)- ■ ■

(*n-l) * CPo, ■ • -iPno-l' 9' xn0> • • •» J'i» •••»*»-!.)•

Then e(<5') = e(3>) - 1 ; ano,..., bk is a complete O' sequence in 91' (this follows

from the definition of satisfaction), hence by the induction hypothesis, it is a

complete <£' sequence in 58', which, in turn, implies that a0,..., b0, aBo,..., bk

is a complete O sequence in 58. This completes the proof of Theorem 1.

Corollary 1. Under the same conditions as in Theorem 1, z/<tm(a0,..., ani-x, b)

■in 91 then it also holds in 58.

Thus in a S-substructure 3> — 0 inverses exist, and so S is satisfied.

Corollary 2. A "L-substructure of a ^.-structure is again a ^.-structure.
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It should be emphasized that the converse to Theorem 1 does not hold. A trivial

example is the following: let <7?; •> be a two-element commutative idempotent

semigroup, 7i={0, 1}, and A = {0, I, a}, la = al=a, Oa = a, a-0=l, aa = a.

Let <ï) = (3j^)(*o)CVo*o=*o.)'o). Then there is only one <I>-0 inverse in 91, namely 1,

hence S3 is a «^-substructure. But there are two O-O inverses in S3 (0 and 1).

A few elementary properties of 2-substructures follow.

Lemma 2. Let %be a ¿Z-structure and let Se be a ¿^-substructure of 91. Let dbea

¿^-substructure of Se. Then © is a ¿^-substructure of SU.

Remark. By Corollary 2 to Theorem 1, S3 is a 2-structure.

Proof. Let a0,..., at e C and be A and let b be a 2-inverse of aQ,..., at. Then

b e B, since S3 is a 2-substructure. By Corollary 1 to Theorem 1, b is a 2-inverse

of a0,..., at in S3 whence be C since S is a 2-substructure of S3.

Lemma 3. Let % be a IZ-structure and 0 j^H^A. Then there exists a smallest

¿^-substructure S3 with 77^77.

Proof. Obvious, since the intersection of 2-substructures is again a 2-sub-

structure, provided it is not void.

We will set 77= [H]^ and we will say that 77 ¿^-generates S3 or 77 is a ¿^-generating

set of 33.

Lemma 4. Let Si be a ¿^-structure, 0 j=H<^A. Set 770 = 77, Hn_x={a\ae A and

a=p(aQ,..., flk-i), where p is a polynomial and a0,..., ak-x e Hn_x}, Hn=Hn„x

u {a | a e A, and there exist b0,..., bt e Hn-X such that a is a Y-inverse ofb0,...

bt in 91}. Then

[Hh ={J(Ht\0Si< ").

Proof. 77ns [77 ]s can be proved by induction on «, so we get

U M I 0 £ / < «) s [Hh-

It is routine to check that <U (77¡ | 0^z"<<u); F, 7?> is a 2-substructure, so we get

equality.

A useful criterion for a e [77]E can be given in terms of 2-polynomials. 2-

polynomial symbols are a new type of expression defined as follows :

Definition 3. Let n be a positive integer. The set P„(2) of n-ary ¿^-polynomial

symbols is defined by rules (i)-(iv) below.

(j) xiePn(2), z = 0,...,«-l;

(ii) if PQ,..., Pny „ x e Pn(2), then fy(P0, ...,Pny.x)e P„(S) ;

(iii) if <!> e 2, l< e(i>), «, universal quantifiers precede the 3y¡ and P0,..., P„,_x

e Pn(2) then <D«>(P0, ...,Pni.x)e P„(2);

(iv) P„(2) is the smallest set satisfying (i)-(iii).

The semantical interpretation of 2-polynomials as multi-valued functions

called ¿^-polynomials is given in the following definition.
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Definition 4. Let PePn(zZ), let 91 be a S-structure, and let a0,.. .,an_xe A.

Then (P)a(a0,.. .,an.x), or simply P(aQ,..., an.x), is a subset of 91 defined as

follows :

(i) if F=x¡, then P(aQ,..., aB_1) = {ai};

(ii) if P=fy(P0, .. -, P„,-i), then P(a0,..., an.x) = {a \ a=fy(b0,. ..,bny.x) for

some bi ePt(a0,. ..,an.x), i=0,. ..,ny-l};

(iii) if P=O«>(P0,..., Pni_x) then P(a0,..., an.x) = {a \ a is a $-/ inverse of

someèo, ...,èB,_i with b, e Pt(a0,.. .,an_x), i=0,.. .,n,-l}.

Lemma 5. Let 91 be a ^-structure, 0 ^H^A. Then a e [//]s if and only if for some

positive integer n, Pe Pn(Z), andh0,.. .,hn-xe H, we have a eP(h0,..., hn_x).

Proof. If a e [//]E then, by Lemma 4, a e H¡ for some í< w and then the proof

of a e P(h0,..., An_i) proceeds by an easy induction on i. Conversely, if

a e P(h0,..., A»_i), then we can prove that a e Ht for some i, by induction on the

"rank" of P.

Corollary. Let % be a ^-structure and let 58 be a ¿^-substructure of 9Í. Let

PePB(S), b0,. ..,bn_xeB. ThenP(b0,.. .,bn.x)çB.

The following two lemmas will be used frequently.

Lemma 6. Let Pe P„(2). Then there exists a formula rp(x0,..., xn_x,y) in L(F)

such that if 9t is a ¿Z-structure and a0,..., aB_!, be A, then b eP(a0,..., an-x)

if and only ifrP(a0,..., a„_i, b).

Lemma 7. Let %bea ^.-structure, let So be a zZ-substructure o/9i and let P e PB(S).

// a0,..., «»-i, b e F and b e (P)w.(a0,..., an^x) then b e (P)<a(a0,. ..,an.x). In

other words, ifrP(a0, ■ ■., a„_i, b) in 91, then rP(a0,..., aB_1; b) in 58.

Lemmas 6 and 7 follow from Lemma 1 by an easy induction.

Lemma 7 states that FaSFss. The example given following Theorem 1 shows

that Fsi^Fsb in general. However, if all sentences in S are either universal, or of

type V3 (that is, no universal quantifier follows an existential quantifier) then

Fsa=Fsa always.

2. X-homomorphisms and slender 2-subalgebras. The example of lattices as

partially ordered sets (see §1) shows that the usual concept of homomorphism

may not preserve algebraic properties, e.g., the homomorphic image of a lattice

may not be a lattice or the homomorphic image of a distributive lattice may be

nondistributive. Therefore, we need a homomorphism concept which preserves

the inverses.

Definition 1. Let 9Í and 58 be 2-structures and let 9 be a mapping of A into B.

Then <p is called a ¿Z-homomorphism if 9 is a homomorphism and if for any positive

integer n, Pe Fn(S), and a0,..., an_x e A we have

P(a0, ...,an.x)<p = P(a0<p,..., an_xcp).
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It should be emphasized that 2-isomorphism is the same as isomorphism. Also,

if we deal with algebras only, then in Definition 1 the clause "<p is a homomorphism "

can be omitted.

Of course, one can give an equivalent definition without the use of 2-polynomials.

Lemma 1. Let 91 and S3 be ¿^-structures and let cp be a mapping of A into B. Then

<p is a ¿Z-homomorphism if and only if the following conditions are satisfied:

(i) cp is a homomorphism ;

(ii) if <I> g2, /<e(<ï>), b, a0,..., at e A andb is a O — / inverse qfa0,.. .,at in 91,

then b<p is aQ — l inverse ofa0cp,..., at<p in S3 ;

(iii) z/í> e2, /<e(<P), a0,.. .,ate A,b e Bandb is a 4> — / inverse ofa0<p,..., at<p

in S3, then there exists abe A such that b is a í> — / inverse ofa0,..., at and b<p = b.

Proof. Let <p be a 2-homomorphism. Then (i) is satisfied by definition, (ii) and

(iii) follow easily by taking P=<P{,,(x0,..., xt) and applying the definition of

2-homomorphism. Conversely, if (i)-(iii) are satisfied then we prove

P(a0,..., an_1)<p=P(a0(p,..., an_x<p) by induction. If P=x¡, the statement is trivial.

If P=fy(P0,. ..,Pn,-i), then it follows from (i). If P=<D«>(P0,..., Pt) it follows

from, (ii) and (iii).

Some important properties of 2-homomorphisms are given in the following

lemmas.

Lemma 2. Let 91 and 93 be ¿^-structures and let cp be a ¿Z-homomorphism of 91 into

S3 ; set C=Ay. Then S is a ¿^-substructure of 33.

Lemma 3. Let 91, 93, and(í be ¿^-structures, let (p be a 'L-homomorphism of SE into

33, and let ^ be a ¿Z-homomorphism of 33 into (£. Then <pib is a ¿Z-homomorphism

of SE into®.

A property of homomorphisms (which is very important in proofs concerning

free algebras) fails to hold for 2-homomorphisms. Namely, if <p is a 2-homo-

morphism of 91 into ß and S3 is a 2-substructure of 91 then <pB (the restriction of cp

to 77) is not necessarily a 2-homomorphism of 33 into S. Let b0,...,bn-xeB,

P e P„(2) ; it follows from the corollary to Lemma 5 in §1 that P%(b0,..., ¿>„_ x) Ç B,

and from Corollary 1 to Theorem 1 that P%(b0,..., bn _ x) £ Pss(b0, ■ ■ ■, bn _ x). When-

ever P%(b0, ...,&„_];)# P<s(b0,... ,bn _ x), we find that <pB is not a 2-homomorphism.

This leads us to the definition of slender 2-substructures.

Definition 2. Let 33 be a 2-substructure of the 2-structure 91. Then S3 is called

a slender ¿^-substructure if for any positive integer n,Pe Pn(2) and a0,..., an _ i e B

we have that P%(a0,.. .,an-1)=P«(a0, ...,an.x).

Lemma 4. Let So be a ¿^-substructure of the ¿^-structure 9Í. Then 33 is slender if

and only if for O e 2, /< e(<I>) and b, a0,..., ate B we have that b is a O — / inverse

of a0,..., at in 33 implies that b is a O — / inverse ofa0,..., at in 9t.

The proof is again a simple induction based on Definition 3 of §1.
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Lemma 5. Let Se be a ¿Z-substructure of the ¿Z-structure 9Í. The following condi-

tions on 58 are equivalent;

(i) 58 is slender;

(ii) //© is any ¿Z-structure and y is a ¿Z-homomorphism of SU into ©, then cpB is a

¿Z-homomorphism of SO into ©;

(iii) i/S is any ¿Z-structure and <p is a ¿Z-homomorphism ofQL into 58, then <p is a

¿Z-homomorphism ofxj into 91;

(iv) ifQ is any ¿Z-structure and <p is a ¿Z-homomorphism ofxj. onto 58, then ¡p is a

¿Z-homomorphism of& into 91.

(v) 9>: x —*■ x is a ¿Z-homomorphism of 58 into 91.

Proof. The following implications are obvious : (i) implies (ii), (iii), (iv), and (v) ;

(iii) implies (iv) ; (iv) implies (v) (58=S) ; (ii) implies (v) (91=GQ. Thus it suffices to prove

that (v) implies (i); indeed (v) implies that,P%(b0,.. .,bn_i)<p=P<n(b0,..., bn-x)

(b0,..., èB_! £ F), that is, 58 is slender.

Lemma 6. Let SQ be a slender ¿^-substructure of the ¿Z-structure 91. Then the follow-

ing conditions hold:

(i) let © be a ¿Z-structure and let <p be a ¿Z-homomorphism of & into 9t with

C<pZB; then <p is a ¿Z-homomorphism o/ß into 58;

(ii) let (£ be a ¿Z-substructure of Sä with CqB; then © is a ¿Z-substructure ofSQ;

(iii) let HQB; then [H]s in 9Í equals [H]s in 58.

The proofs are trivial.

3. Free Z-structures and the Uniqueness Theorem. Now we are ready to define

free S-structures.

Definition 1. Let a be an ordinal. 3s(«) is the free¿Z-structure with a ^-generators,

if the following conditions are satisfied :

(i) gs(a) is a S-structure ;

(ii) f5E(a) is S-generated by the elements x0,..., xy,..., y < a ;

(iii) if 91 is a 2-structure and a0,..., ay,... e A for y<a, then the mapping

<p: xy -*■ ay, y<a can be extended to a S-homomorphism, cp.

Remark. The 2-homomorphism <p in (iii) need not be unique. Indeed, let t=0

and let ¿Z consist of the following two axioms:

(x)(y)(z)(u)(x =yvx = zvx = uvy = zvy = uvz = u)

(x)(3y)(3z)(x /va^zai^).

Then a 2-structure is a 3 element set. Let A = {a0, ax, a2}, B={b0,bi,b2}. Then

51 = Se(1), e.g., a0 is a free S-generator. The mapping y: a0 -*■ b0 has two extensions

to S-homomorphisms of 9t onto 58, namely, a0 -*■ b0, ax-+bx,a2^» b2 and a0 -*■ b0,

ax -*• b2, a2 -> bx.

Most of the difficulties in the theory of free S-structures come from this fact.

The following example is a further illustration of the nonuniqueness of f.
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In this example we deal with algebras of the form (A; v, A, 0,1 >, and 2 consists

of the lattice axioms, postulates for 0 and 1 to be the zero and unit, and the

following axiom :

(x)(3y)(3z)(u)((x = 0 ^ >> = z = 1) a (x = 1 ->>> = z = 0)

a((x^0ax^1)->(^^zaxv^ = 1axa^ = 0axvz = 1

axAz = 0a((xvb = 1axah = 0)->u = j>vh = z)))).

In words: every element ^0, 1 has exactly two complements. It was shown in

a paper of C. C. Chen and the author (J. Algebra (1969)) that 5s(a) exists for all a.

If we take Ssi^) and map all x¡ into any one atom of the five element modular

nondistributive lattice, then this map has 2"o extensions to 2-homomorphisms

(this is best possible since |Fs(co)| = X0).

The theory of free 2-structures is based on the following result which, in a

certain sense, is a substitute for the uniqueness of <p.

Theorem 1. Let us assume that fÇs(«) exists. Then every Pe Pm(2) with mSn is

bounded, that is there exists a least positive integer kp such that if SE is a ¿^-structure,

a0,...,am-xeA, then

\P(a0,...,am-i)\ S kp.

Proof. Let us assume that Theorem 1 is not true. Then there exist P e Pm(2)

with m S n, 2-structures SEUSE2,..., and a\¡,..., am-i e At it=l,2,...) such that

|P(4,...,«4-i)Uí     (í = i,2,...).

Statement. Under these conditions, for every cardinal tn, there exists a 2-

structure 91 and there exist aQ,..., am-x e A such that

|P(a0,...,am-i)| ^ m.

Proof. Let a be the initial ordinal of cardinality m and t' = t © (a+m); that

is we get the type F by adjoining the constants koW,.. .,koM + r,..., y<a + m

to t. Set l0=koW+a,.. .,lm-i = koW + a + m-i, and let us write ky for koW + y, y<a.

Let 77 be a finite set of ordinals < a ; we define a sentence Ok of L(t') as follows :

*« = A (rp(lo, ■ ..,/—», ky) | y e 77) a A (*r # ** | y, 8 e 77, y # 8),

where rP is the formula in L(r) which was defined in Lemma 6, §1.

Let Q. be the set of all 0H. We claim that there exists a structure 91' satisfying

2 u D. By the compactness theorem (Theorem A), it suffices to show that 2 u Ç1,

has a model for all finite QjÇQ. Let í2i = {í>Wo,..., O^J and set H=H0 u • • •

u TFi-i. Since <1>H implies <1>H¡, i=0,...,t-l,it is sufficient to show that 2 u {0^}

has a model. Let 77={y0,.. .,ys_x}. Let 91^ be the structure that we get from 9ls

by interpreting /, as a? (z'=0,..., m- 1) and kyo,..., krt_1 as distinct elements of

P(flo,..., am-x); we can do that since \P(as0,.. .,am-x)\^s; let us interpret ky,

y "¿Yo, ■ ■ ■, 7s-i in an arbitrary manner. It is obvious then that 91^ satisfies 2 u {$H}.
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Now let 91' be a model of ¿Z u Í2. Let a0,...,am-x be the interpretations of

/0,..., lm-1 and let b0,..., by,..., be the interpretations of k0,..., ky,..., for

y < a. Then

bo,...,b»... eP(a0,...,am-x)

and by^bdify,8<a and y 7e 8. Thus |F(a0,..., am_x)\im. Therefore the T-reduct

9Í of 91' satisfies the requirements, concluding the proof of the statement.

Let x0,..., xB_! be the 2-generators of \}s(ri). Set |F(x0,..., xm_x)| =n. If 91

is any S-structure and a0,...,am-xeA, then there exists a S-homomorphism <p

of Ssin) into 91 with x0<p=a0> • • ■> xm-x<p=am-x, thus

F(x0,..., xm-x)<p = P(a0,..., am_i)

and therefore

|F(a0,..., am_i)| S \P(x0,..., xn.x)\ = n.

Take any cardinal m with n<tn and apply the Statement with m. The arising

contradiction, m S n, concludes the proof of Theorem 1.

Corollary. Let us assume that $z(n) exists. Let P e Pk(¿Z), let %bea ¿Z-structure,

a0,...., ak-x e A. If there exist b0,..., bm-x e A with mSn such that

a0,...,flfc_i 6 [b0,..., Om-iJs,

then P(a0,..., ak- x) is finite.

Proof. Since a0,...,ak.xe [b0,..., èm_i]a, there exist PQ,...,Pk.xe Pm(¿Z)

such that at ePi(b0,..., bm-x), i=0,..., k— 1. Thus

P(a0,. ..,ak-x) S P(Po(b0, ■ --,bm-x),.. .,Pk-x(b0,. ..,bm.x))

and the right-hand side is finite by Theorem 1.

Theorem 2 (The Uniqueness Theorem). If the free ¿Z-structure on a generators,

3j](oí) exists, then it is unique up to isomorphism.

We will prove the following stronger version of Theorem 2.

Theorem 2'. Let \}s(a) and t}'s(a) be free ¿^-structures, with ¿Z-generators x0,...,

xy,... and x'0,..., x'y,..., y < a, respectively. Let <p be a ¿Z-homomorphism of %-¡,(a)

into \}s(a) with xycp = x'y,for y<a. Then <p is an isomorphism.

Since %-A\a) is free and r}'s(a) is a S-structure, it follows that such a <p exists;

thus Theorem 2' implies Theorem 2.

Proof. Let aeF'z(a); then there exist n<w, y0,.. .,yn_x<a and PePn(¿Z)

such that a e P(x'Vo,..., x'yn_1). Thus

FE(a)<p 2 P(xyo, ...,xyn_1)<p = P(x'yo, ...,x'yK-i)3a,

which means that y is onto.
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Let cp be a 2-homomorphism of \}'z(o) into ¡}s(o) for which x'y<p' = xy (y<o).

Let P' and P" e Pn(2) and y0,..., yn _ x < a. Then

(P'(xyo,..., xy^) u F"(xyo,..., Xy^jto'

= (F'(x;0,.. .,*;„_,)u f"(x;0, ..., x;n_x)v

= 7^(Xy0,..., xynl) U r \xya,..., xVn_1).

Since P'(xyo, ...,Xyn_l)yj P"(xVo,..., xYn _ x) is finite by Theorem 1, this implies

that cp is 1-1 on this set. Since any two elements of 5e(«) belong to a set of this form,

we get that <p (and similarly cp') is a 1-1 and onto homomorphism. To show that cp

is an isomorphism we have to prove that

ry(a0<p,. ..,amy-x<p) implies ry(a0,. ..,amy-X).

(We can use this condition since 95 is 1-1.)

Let a{ e Pt(xYo,..., xYn _ J, 0 S i < my and form the sets

A = Yl(Pi(xyo,...,xyn_1)\0S i<my)
and

A' = Yl(Pi(x'yo,...,x'yn_1)\OSi<my).

Let <pmT. A -> Ä and (<p')m-<: A' -> A be the maps induced by <p and cp', respectively.

Finally, let

B = {<¿>o, ...,¿>mv_i> I (b0,...,bmy-x}eA and ry(60,-. -, *m,-i)}

and

B' = {<60, • ..,¿»,-i> I <b0,. ..,bmy-x}eA' and ryib,.. .,6m,_i)}.

Then A and A' are finite sets, <pmi, i<p')m-< are 1-1 and onto maps. Furthermore,

B<pmi^B' and B'(<p')my^B, thus <pm-< is a 1-1 and onto map between 77 and B',

showing that cp is an isomorphism. This completes the proof of Theorem 2.

Corollary. Let a and ß be ordinals with ä=ß. Then z/fyE(a) exists, ¡5s(j9) also

exists and they are isomorphic.

4. On the family of free 2-structures. Let F(2) denote the class of all ordinals

a for which î}s(a) exists. In this section we will characterize F(2). The characteriza-

tion theorem is based on the following result.

Theorem 1. Assume that g s(a) exists ; let x0,..., xy,..., y < a be a free ¿Z-genera-

ting system of \}s(a). Let ß be an ordinal, let y6<a for 8<ß such that if 8j=8'

then y6¥^yó', and set

B = [{xyi I 8 < fi]z.

Then 33 is a slender ¿^-substructure ofU^a). Therefore, 3rs(/3) exists and it is isomorphic

toS8.

Proof. The second statement follows immediately from the first one and from

Lemma 5 (ii) of §2.
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In order to simplify our notations, let a = n<w, ß=m(<a>) and yt=i, i<m.

Thus, we will prove that if 9Í = 5s(n) exists and

B = [Xo,..., xm-x\i,

then 58 is slender (the general proof is similar).

First we make a few observations. Let y he a S-homomorphism of 9Í into 58

with x0<p=x0,..., xm_i99 = xm_j (xmy,..., xn_xy can be arbitrary elements of B).

(i) If P e Pm(¿Z), then Pa(x0,..., xm _ x) = P®(x0, ...,xm.x).

Indeed, Pa(x0,..., xm_ x) £Psb(x0, ..., xm_ x) by Lemma 7, §1. On the other hand,

Fa(x0,..., xm-x)y=P<8(x0,..., xm_i),

so

|Pa(x0, ...,xm_!)| i |Psb(x0, . ..,xm_i)|.

Since by Theorem 1, §3, Pa(x0,..., xm _ x) is finite, we get the equality,

(ii) y is onto.

Let be B; then b e P%(x0,..., xm_ x) for some P e Pm(¿Z). Thus

b ePíb(x0, ..., xm_0 = Psaixo,..., xm.x)y s Ay.

(iii) yB is 1-1.

For P' and P e Pm(¿Z),

(Fa(x0,..., xn.x) U K(x0,. ..,xm.x))y = P'»(x0,..., xm_j) U P^(x0,..., xm_x).

Combining this with (i), we can argue as in the proof of Theorem 2', §3.

(iv) y is an automorphism of 58.

yB is a homomorphism; by (ii) it is 1-1 and onto. Thus to prove that it is an

automorphism it remains to show that

ry(a0cp,. • •, amy -1¥) implies ry(a0,..., amy _ x),   for a0,..., amy _ x e B.

Let a¡ e F¡(x0,..., xm_i), 0S i<m and set

C = Y~[(Pi(x0,...,xm-x)\0S i<m)

and

D = {<¿>o,..., ¿>my_i> | <b0,. ..,bmy_i) e C and ry(b0,.. .,6fflr_i)}.

Then by (i)-(iii) and Theorem 1, §3 the map <pmr: C->C, induced by y, is 1-1 and

onto on C, and C is a finite set. Furthermore, y is a homomorphism, thus

Dymi S F. Since cpmv is 1-1 and D is finite, we get Dym-< = D, a statement, equivalent

to the one that is to be proved.

Now(3) let a0,...,ateB, <D e¿Z, l<e(¿Z) and let b0.bs.x he all the $-r

inverses of a0,..., at in 58 (s is finite by the corollary to Theorem 1 of §3). Since

yB is an automorphism of 58, b0y,.. .,bs_xy are the <P —/ inverses of a0y,..., aty

(3) The original proof was continued using a rather long argument. This simplified version

is due to G. H. Wenzel.
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in 33. But <p is a 2-homomorphism, thus by Lemma 1 (iii) of §2, there ares O — /

inverses c0, ...,cs-x of aQ,...,at in 91 such that c0cp=b0<p,..., cs_x<p = bs_x<p.

We get that {c0,..., cs_x}^B, since 33 is a 2-substructure. Thus (iii) implies

c0=b0,..., cs_1 = os_1. This means that every $-/ inverse in S3 is also a <I> —/

inverse in 91, completing the proof of Theorem 1.

Theorem 2. If 5E(«) exists for all n<w, then t}^(cü) also exists. In other words,

if ne F(2), for all n<w, then <u 6 F(2).

Outline of proof. Using the usual construction we form a direct limit 91 of all

\}-¡,(n). Theorem 1 is used to prove that 91 is a 2-structure and Theorem D is used

to show that it is 2-free. Note that the same proof could be used to show the

existence of direct limits, provided all <pu are 1-1 and 91¡9>w is a slender 2-sub-

structure of 9Í,.

Proof. Let gs(«) be freely 2-generated by xg.*£_i («=* 1,2,...). We can

assume that %jfn) is disjoint to %^(m) if n^m.

Let <pn be a 1-1 2-homomorphism of 5s(") into i}s(m) with xJVn=*? + 1>

z'=0,..., « — 1. For « S m, set

<Pnm = <Pn- ■ ■ <Pm-l-

Then the 2-algebras %^(n) and the 2-homomorphisms <pnm form a direct limit

system. Let 91 denote its direct limit ; if x e A, x = <xn, x„+,,... >, then the mapping

cp": xn -> x is an embedding of 5s(") into 91. Set An = F^(n)<pn. Then

A = {j(A\n < co),   Ai £ At £ • • •

First we prove that 91 is a 2-structure. We will verify only that if

<¡> = (x)(3y)(u)(3t,mx,y,u,v)ei:,

then 3> holds in 91.

Let a e A ; then ae An for some « < tu. Since 9In is a 2-structure, there exists

a b e An such that (u)(3vf¥(a, b, u, v) holds in 9I„. To prove that it also holds in

91, take a ce A and an m < m, « S m, with a,b, ce Am. Since 3s(«)<pnm is a slender

2-substructure of ¡5-Âm) by Theorem 1, and An = F-L(n)cpnwçpm, Am=Fs(m)(pm, we

get that 9In is a slender 2-substructure of 9ím. Thus (u)(3vy¥(a, b, u, v) in 9Im,

hence there exists a de Am with Y(a, o, c, d) in 9lm. Therefore, T(a, Z», c, ¿/) in 91,

so (u)(3vyV(a, b, u, v) in 91, which was to be proved. A similar (but simpler)

argument shows that if a, ce A then also a 3> — 1 inverse exists.

Set

Xi = <xi + 1,xi+2,...>,   for z = 0,1,2,...,

then x-,eA, A = [xt, x,,.. .]z and An=[x0,..., xn_i]E. Thus 91 is 2-generated

by cu elements.
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It remains to show that 91 satisfies (iii) of Definition 1, §3. Let 58 be a Z-structure,

b0, bx,... £ B. We can assume that A is disjoint to B. We want to construct a

Z-homomorphism y of 91 into 58 with x-,y = bu i=0, 1,2,....

Set C=A u B; we define a relational system with constants on C:

(i) for every a e A, there is a constant ka and (fca)g=a;

(ii) for every de B, there is a constant ld and (4)e = d;

(iii) for y <ox(t), ry is defined on A and F as it was;

(iv) for o < n < co, P e P„(Z), rP is defined on A and B as it was ; (rP was defined

in Lemma 6, §1);

(v) for Co,..., c„_i in /I or in B and P £ PB(Z) we define the constants

c(c0,..., cn_x, P, i) for 0Si<kP (of Theorem 1, §3); these are intepreted in (Í

such that every element of P(c0,..., c„_i) is the interpretation of one of them. ,v

Let ® denote the relational system defined by (i)-(v), and let t° be the type of E.

We want to define an additional relation R(x, y) on © satisfying the following

universal sentences :

(1) R(kXi, 4,),       / = 0, 1,... ;

(2) (r(kao,..., tj a R(kao, ld0) a • • • a R(kam, ldJ) -> r(ld0,..., ldJ,

where #• is some ry or rP;

(3) (R(kao, ldo) a • • • a R(Kn_v la^J a F(*a, 4) a rP(ldo,..., 4„_i; 4)) ~>

F(c(a0,..., an_!, P, 0), 4) v • ■ • v F(c(a0,..., aB_1; P, *P-1), 4);

(4) (F(*a, 4) a R(ka, ldJ) -+ 4 = 4,;

(5) rKAXo,..., *xB.„ ka) -> (F(*a, c(è0,..., bn_ 1; P, 0)) v • • ■

v R(ka, c(b0,..., bn-x, P, kP-l))).

If F can be defined so as to satisfy (l)-(5) then we can define a mapping y of

A into F by setting ay = d (ae A, de B) if F(a, d).

By (4), y is well defined and by (5), y is defined on the whole of A ; (2) and (3)

mean that y is a Z-homomorphism and by (1), x¡y=bi.

By Theorem D it is sufficient to prove that F can be defined on every finite subset

of C. However, this is trivial, since if H is a finite subset of C, then for some n,

H S [x0,..., xn_1]L u [b0,. ..,bn-i}z u //',

where //' = // n (F-[Z>0, ¿i, • • -L). It follows from (4) and (5) that no element

of //' occurs in (l)-(5); thus it suffices to consider H" = H—H'. Since 9tn is the

free S-structure on n 2-generators, there is a homomorphism tb of 9i„ into 58 for

which Xji/i = bui=0,..., n — l. Define F on An u F by F(a, d) if ai/> = d. Obviously,

F satisfies (l)-(5). This completes the proof of Theorem 2.

The following result is a more complicated version of Theorem 2.

Theorem 3. Let a be a limit ordinal. If%z(ß) exists for all ß<a, then also l}x,(a)

exists.
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Sketch of proof. The proof of Theorem 2 started with the construction of a

direct limit system. There we had no problem with ylnynm = <Pim (for iSnSm)

since we defined yln as yt- ■ -yn-x. However, we cannot do this now. In order to

construct the direct limit system, we set

C = U (FAß) \ß<«),

where the FA[ß) are assumed to be pairwise disjoint. We want to define on C a

relation F such that ySy for ßSy<a can be defined by ayßy = b for a e Fz(ß) and

b £ F%(y), if R(a, b). As in the proof of Theorem 2, we can do that applying Theorem

D by introducing sufficiently many constants and relations, which satisfy the

analogues of (l)-(5), and

(6) (x)(y)(z)((R(x, y) a R(y, z)) -» R(x, z)).

We leave the obvious details to the reader. Then we form the direct limit 91, and

we proceed as in the proof of Theorem 2.

Now we are ready to characterize F(Z).

Theorem 4. Either there exists a positive integer n such that \}z(a) exists if and

only ifa<n, or 3fE(a) exists for every a.

In other words, either F(Z) = {a \ a < n} or F(Z) is the class of all ordinals.

Proof. Let us assume that there is no n with F(Z) = {a | a<n}. Then for every

n there exists an min with m e F(Z). By Theorem 1 this implies n e F(Z); therefore

by Theorem 2, w e F(Z). Let us further assume that for some ordinal 8, S $ F(Z).

If 8 is the smallest ordinal with 8 <£ F(Z), then by the corollary to Theorem 2, §3,

8 is an initial ordinal. Since co < 8, 8 is a limit ordinal and if y < 8 then y e F(Z).

Thus by Theorem 3, S e F(Z). This contradiction proves Theorem 4.

5. On the existence of free Z-structures. Let us recall that P e P„(Z) is bounded

if for some natural number m

|P(a0, ...,flB_i)| S m

for any Z-structure 91 and a0,.. .,an.xe A. The smallest such integer is denoted

by kP.

A necessary and sufficient condition for the existence of free Z-structures is

given in the following result :

Theorem 1. f5s(n) exists if and only if the following two conditions are satisfied:

(Bn) every P e PB(Z) is bounded;

(Cn) let 91 and 58 be ¿Z-structures, let a0,..., an^xe A and b0,..., bn-x e B.

IfA = [a0,..., ûn-Js then there exists a ¿Z-structure (£, ¿Z-generatedby c0,.. .,cB-i,

and there exist ¿Z-homomorphisms y. C-»- A and >b: C -» B such that ciy = ai and

cl<p = blforOSi<n.
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Proof. (Bn) is necessary by Theorem 1 of §3. It is obvious that (Cn) is also

necessary, since we can always set ß = 3z(«).

Let us assume that (Bn) and (Cn) are satisfied. Let PePn(2); (Bn) implies that

there exists a 2-structure @/>, 2-generated by a£,..., a£_ x, such that

\P(ap0,...,apn_x)\ =kP.

Let ©/>. be a 2-structure which corresponds to P' e Pn(2) and let us apply (Cn)

for &p and ©/>-, obtaining a structure (£ 2-generated by c0,..., cn-i- It is obvious

that for S both |F(c0,..., cn-i)| and \P'(c0,..., cn_x)\ are maximal.

If P0,..., Pk-i e P„(2), then we can always find a minimal upper bound

kp0.plc_1 for F0 u ■ ■ ■ u Pk-X. An obvious induction, combined with the argu-

ment given above, yields the following result:

Let 77 be a nonvoid finite subset of P„(2); then there exists a least natural

number kH such that for every 2-structure 91 and a0,..., an-x e A we have

|U(F(fl0,...,an-i)|F£77)| S kH.

Furthermore, there exists a 2-structure 9lH and a",..., af/_x e AH such that

AH = [a$,...,àS-i]z and if H'^H, 77V 0, then

\(J(P(a^,...,a^x)\PeH')\ = kw.

Set F= {77177 is finite, 0 / 77 and 77 £ Pn(2)} and for 77 e F let

TH = {K\KeT and 77 s K}.

Then THi n TH2 = THlU„2 and FH/ 0, and thus there exists a dual prime ideal 9¡

over F containing all the TH. Set 91 = T\3 (SEH \HeT). By Theorem C, 91 is a

2-structure. Let/ be the function for which/(77) = a" for all 77 e T, i = 0,..., « — 1.

Then

T'H = {K | | U (P(aK0, -. -af-i) | Pe 77)| = £„} 2 F„,

so F¿ e ®. Since there is a formula in our language which can express that

|U(F«...,<tf_i)|Pe77)| =kH,

by Theorem C, we conclude that

IUWoV- .,/.v-i) I PeH)\ =kH

for all HeT.

Let 3 be the 2-substructure of 91, 2-generated by /0V,.. .,/„v-i. It is obvious

that the above equality holds in g as well.

Let 33 be any 2-structure and b0,..., bn _ x e B. By (Cn), there exists a 2-structure

(£, 2-generated by c0,..., en_1; and there exist 2-homomorphisms <p: C^- F arid

i/i: C^-B with c¡<p=/v and cii/i=èi, 0^z'<«.
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The mapping y is obviously onto. Let c,deC and let us choose P' and P" e Pn(Z)

with c e P'(c0,..., cn _ i) and d e P"(c0,..., cn _ x) and set H={P', P"}. By definition,

|F'(c0,...,cB_1)uF"(c0,...,cB_1)| ^ fea.

On the other hand,

(P'(c0, ...,cn.x)U P"(c0,. ..,cn.x))y = F'(/ov,. ..,//_!) U F"(/0V,. . .,/nv ,),

\P'(fo\ - - -X-l) U F"(/0V, . . .,AV.x)|   = kH.

Thus <p is 1-1. Therefore, if we deal with Z-algebras then y is an isomorphism;

then this implies that <p_1i/r is a Z-homomorphism of g into 58 with fivy~1>(i=bi,

for 0^/<n, establishing that g is the free Z-algebra on n Z-generators. However,

in the general case y need not be an isomorphism since y'1 need not preserve

relations. Let ^ = <[A; F, R). Using (Bn) and (Cn) and some transfinite method,

for instance Theorem B, it can be verified that there exists a "smallest" Z-structure

9l = <yi; F, F>, such that for all Z-polynomial symbols P we have P%=P<&, for all

feF we have (/)g = (/)a and for all reR, (r)a is smallest for all Z-structures

having these properties. For this 91, in place of U, it is obvious that y'1 is also a

homomorphism, completing the proof of Theorem 1.

Corollary 1. All free ¿Z-algebras exist if and only if the following two conditions

are satisfied:

(B) all ¿Z-polynomials are bounded;

(C) let 91 and 58 be ¿Z-structures, let a0, ax,..., an,... e A, b0, bx,..., bn,... e B

and A = [a0, au ..., an,... ]E; then there exists a ¿Z-structure S with C= [c0, cx,...,

cn,...]s and there exist ¿Z-homomorphisms y:C^> A and xp:C->B such that

cly = ai andcii/> = bl, i = 0, 1,2,....

Corollary 1 is an obvious combination of Theorem 1 and Theorem 4 of §4.

Corollary 2. Let Z be universal. Then i}s(n) (that is the free algebra on n

generators over Z) exists if and only if(Ca) holds. All free algebras exist if and only

//(C) holds.

Indeed, if Z is universal then all Z-polynomials are of bound 1, and thus (Bn)

is always satisfied.

Definition 1. Z is said to have property (F) if for every <P in Z either $ is

universal or O = (x0)- ■ ■(xn-x)(3yy¥(x0,..., xn.x,y), or <b is positive.

Let stf be a well-ordered inverse limit system of the Z-structures 91,, y < a ; let

9ty be Z-generated by al,...,al-x; let the homomorphisms y\ (8Sy<<¿) he

Z-homomorphisms and suppose

a\y\ = a\,   for 8 S y < u,i = 0,.. .,n-l.

Let 91 be the inverse limit structure of ¿tf.
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Lemma 1. Let y<a and aeAy. If (Bn) is satisfied there exists an a e A with

a(y) = a.

Proof. Choose Pe P„(2) such that a eP(ay0,..., an_x). For Say, set

U» = {b | b e F« ...,aôn.x) and btf = a}.

Since a eP(a60,..., an_x)<p6y and <póy is a 2-homomorphism, Uô is not void. By (Bn)

U6 is finite. Furthermore, (/^.si/j., if y^S'^8<a. By Theorem B, there exists

a(8)e U6 for 8>y such that a(8)<pôô, = a(8') if yS8'S8<a. Set a(S) = a^ if 8Sy.

Then for a = (a(y) \ y < a> we have that a e 91 and a(y) = a.

Theorem 2. If we assume (P) and (Bn), then 91 « a ¿^-structure.

Proof. We first verify that if <t = (x)(3,v)(h)(3k)T(x, j>, h, t>) e 2, and <t> is positive,

then $ holds in 91. Let a e A and set

Ty = {b \ b e Ay and ¿> is a í> — 0 inverse of a(y)}.

It follows from (Bn) and from the corollary to Theorem 1, §3, that Ty is finite for

all y < a and Ty =£ 0 ■ It is obvious that Ty<pyö £ T6 if 8 S y < a. Thus by Theorem B

there exists abe A with b(y) e Ty for all y < a, that is,

(u)(3vyVia(y), b(y), u, v)   in %.

We want to prove that («)(3i>)4/,(o, b, u, t>) in 91. Let ce A and set

f/y = {d | T(a(y), %), c(y), d)},    for y < a.

Then

C/y s {d | rf is a 3> — 1 inverse of a(y) and c(y)}.

Since the right-hand side is finite, Uy is finite for all y<a. Now let de Uy and

8<y<«. Then xV(a(y), b(y), c(y), d) and since Y is positive, T(a(S), z3(8), c(8), i/<pj).

Thus Uycpl^ U6. So we can choose de A with i/(y) e Uy. Therefore, x¥(a(y), b(y),

c(y), d(y)) for all y<a, which implies T(o, b, c, d). The existence of $- 1 inverses

is proved by a similar argument.

Now let <D be universal, i> = (x0) ■ • ■ (xm _ ̂ (xq, ..., xm _ x). Let o0,..., am _ j e 91 ;

then TMy),..., am-x(y)) for all y < a, whence Y(o0,..., om_ j).

Finally, let <l> = (x0)-■ (x^^jO^o, • •-, ^m-i,.^ and let a0,..., am_x e A.

Set

Ty = {b\nao(y),-..,am-x(y),b)}.

By (Bn) and from the corollary to Theorem 1, §3, Ty is finite. Since Ty(pvô^T0 is

obvious for S S y < a, by Theorem B there exists a b e A with b(y) e Ty for y < a.

Thus TMy),.. .,am-x(y), b(y)) for y<a, which implies that Tía,,,..., am_x, b),

completing the proof of Theorem 2.

It is easy to see that the proof of Theorem 2 yields the following result:
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Corollary. Fora0,.. .,am_x,be A and P e Pm(Z), ifb(y) e P(a0(y),... ,am„x(y))

for all y<a, then b e P(a0,..., am _ x).

The converse of this corollary is also true.

Lemma 2. Under the conditions of Theorem 2 and its corollary, if be P(a0,...,

om_x), then b(y) eP(a0(y),..., am_x(y)) for all y<a.

Proof. It is sufficient to prove that if b is a O-inverse of o0,..., am_x, then

b(y) is a O-inverse of a0(y),..., am _ x(y) for all y < a. If 0 is universal, there is

nothing to prove, so let Q> = (x)(3y)(u)(3v)y¥(x, y, u, t>)£Z, let O be positive and

let b be a <£ - 0 inverse of a. We have to prove that

(u)(3v)xV(a(y), b(y), u, v)   for all y < a.

Let c e Ay ; by Lemma 1 there exists ace A with c(y) = c. Since (u)(3v)xV(a, b, u, v)

in 91, there exists a d e A with W(a, b, c, d). Hence W(a(8), b(8), c(8), d(8)) for all

8i80, where 80<a. Since Y is positive, we get W(a(y), b(y), c, d(y)), completing

the proof. The same statement for O — 1 inverses is even simpler to prove.

Now let <t> = (x0)-■ (xm.x)(3y)xV(x0,.. .,xm.x,y). Let b be an inverse of

o0,..., om_j. Then T(o0, ...,am_x,b), so T(a0(8),. ..,am.x(8), b(8)) holds for

all S i S0, for some 80 < a. Choose 8 such that 8 > max {y, 80}. Since b(8) is a O — 0

inverse of a0(8),..., am_x(8), it follows that b(y) = b(8)y6y is a O — 0 inverse of

ao(y) = a0(S)<Py, • • -, am_i(y) = am-i(8)^; that is x¥(a0(y),. ..,am.x(y), b(y)) for all

y<a, which was to be proved.

Set o0 = <aj | y<a>,..., oB_1 = <aB_1 | y<c£> and let 91 denote the Z-sub-

structure of 91, Z-generated by o0,..., oB_i.

Lemma 3. 91 is a slender ¿Z-substructure of SU.

Proof. We should note that the a of Lemma 1 is in 9Í. Thus, by repeating the

proof of Lemma 2, and restricting a, c to 9Í we get that the conclusion of Lemma

2 holds for 9Í, that is, if b is a O-inverse of c0,..., cm_x in 91, then b(y) is a 3>-

inverse of c0(y),..., cm _ x(y) in 91, for all y < a. Thus the corollary to Theorem 2

implies that b is a O-inverse of €0,..., em_x in 9Í, which was to be proved.

Corollary. The mapping \/>y: c -> c(y) is a ¿Z-homomorphism o/9t cmio 9ty.

Now we are ready to prove the main result:

Theorem 3. Let us assume (P) and (Bn). Let 9i7 ¿e ¿Z-structures and

Ay = [a?.aj-jj,   for y < a.

Fe? 2« assume for all yS8<a that there exists a ¿Z-homomorphism yy such that

afyy = a\, 0Si<n. Then there exists a ¿Z-structure 91 and there exist a0,..., an_x e A

such that A = [a0,.. .,aB_i]s and for each y<a there exists a ¿Z-homomorphism <fiy

of SU onto 9tr, with ax\\iy = a\, 0Si<n.
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Proof. If we have that 9*9$ = 9$, whenever ßSyS8<a, then the 9iy form an

inverse system and we can take the 91 as in Lemma 3 and then by the corollary

to Lemma 3, we have the i/>y for y<a. However, cp6ycpl = cpaß need not hold. We are

going to prove that the <p6y can be replaced by <py m such a way that we still have

at<pdy = aj and also </#g = 0g, for ß S y S 8 < a.

Let us assume that Ay and Aô are disjoint if y# 8 and let us form

C = U (Ay I y < a).

We will think of the required family of <\>\ as a single binary relation R(x, y) on C,

where x<pày=y means x e Aô, y e Ay and 7?(x, y). Using the same tricks as in the

second part of the proof of Theorem 2, §4, we can introduce unary relations

Ry(x) for xeAy and we can introduce sufficiently many relations and constants

such that a system of universal sentences Q. will express that R(x, y) a Rô(x)

a Ry(y) defines a 2-homomorphism 4>6y of A6 onto Ay with aï>/iôy = ay, Oáz'<«.

Let Q* be Q to which we add the sentence

(x)(y)(z)((R(x, y) a R(y, z)) -> R(x, z)).

Let us observe that on every finite subset of C we can define R so as to satisfy £2*.

Indeed, if 77 is finite, 77eC, then there exist yQ<yx< ■ ■ ■ <yk-x<a such that

H^\J(Ayi\0Si<k). Now set tä\=Vn-x9n~-l-•-V?,*1 for iSl and let R(x,y)

mean that xeAy¡, y e Ayt and xipvy\=y for some 0SiSl<k. Then 7? obviously

satisfies Í2*. Thus by Theorem D, R can be defined on C so as to satisfy D*, com-

pleting the proof of Theorem 3.

Definition 2. Let 91 bé'a 2-structure, 2-generated by a0,...,ay,..., y<a.

Then 91 is called a maximally free ¿^-structure, in notation, MFz(a), with respect

to the 2-generating system {ay\y< a} if whenever S3 is a 2-structure 2-generated by

b0,..., by,.. .,y<a and 9p is a 2-homomorphism of S3 into 91 with bycp = ay, for

y<a, then <p is an isomorphism.

Definition 3. Let a' be a set of maximally free 2-structures on a 2-generators.

K is called a (2, à)-covering system if for any 2-structure 33, 2-generated by

b0,...,by,...,y<a, there exists an 91 e K (with the 2-generating system a0,...,

ay,..., y < a) and a 2-homomorphism 9 of 91 onto 33 with ay<p = by, for y < a.

Corollary 1. Let us assume (P) and (Bn). Then there exists a (2, n)-covering

system.

Proof. Let 91 be a 2-structure, A = [h0, ■.., «„-Je- Consider the class of all

pairs (tix, Hx), where SEX is a 2-structure, Hx = (hl, ...,h\-x)>, A = [h\,..., âJ-iLî

with the property that there exists a 2-homomorphism 90 of SEX into 91 with

hl<p = h0,..., «J_19> = /zn_1. Let us say that <yLx, Hi} is isomorphic to <9I2, 772> if

there exists an isomorphism 95 of 91 ! with 9I2 satisfying h\<p = h2, for z'=0,...,«— 1,

where Hx = (hl,..., «J_i> and 772 = <«o,..., «£-!>• Let P be a class of such pairs,

such that every pair has an isomorphic copy in F and there are no two isomorphic



1969] FREE S-STRUCTURES 539

pairs in F. Using (B„) it is easy to give an upper bound for the cardinality of F,

so F is a set. We introduce a binary relation S on F: <9tx, //1>¿<9l2, H2) if

there exists a Z-homomorphism y of 9i2 into S&x such that hfy = h¡ for /' = 0,...,

n — 1. Then <F; ^ > is a partially ordered set. The only nontrivial part in checking

this is to prove that S is antisymmetric; this is an easy modification of the argument

of Theorem 2' of §3 (the freeness of the algebras involved was used there only to

prove (Bn); now we have (Bn) by assumption). Theorem 3 states that Zorn's lemma

can be applied to <F; <>. Any maximal element of <F; S} will be maximally

free (again use (Bn) and the argument of Theorem 2' of §3).

It follows from (Bn) that a maximal class of nonisomorphic pairs <91, //> is a

set. Using the above construction, we choose for each <9Í, H) an MF-Aji) containing

<9l, //> in <F; ^> and thus we have a (Z, n)-covering system.

6. Strong free Z-structures and the inverse preserving property. If K is the class

of all groups (G; -, 1> defined in the usual way by a Z, then all free Z-structures

exist and they are the free groups in the usual sense. However, nobody would use

the theory of free Z-structures to prove the existence of free groups. The most

convenient way of proving the existence of free groups is the introduction of

x"1 as an operation because then in Z the existential quantifiers are eliminated,

and in this richer language Z is equivalent to a universal Z, to which the simple

known methods apply. In this section we will discuss the problem of when it is

possible to eliminate the existential quantifiers in Z such that the resulting Z can be

used to construct free Z-structures.

First, we introduce a property of first order axiom systems.

Definition 1. Z is said to have the Inverse Preserving Property (IP) if every

Z-substructure is slender.

Theorem 1. The following conditions on ¿Z are equivalent:

(i) Z has IP;

(ii) // 91, 58, © are ¿Z-structures, 58 is a ¿Z-substructure of 91 and y is a ¿Z-homo-

morphism of SU into (£, then yB is a ¿Z-homomorphism ofS& into ©;

(iii) // 91, 58, (£ are ¿Z-structures, 58 is a ¿Z-substructure of 91 and y is a ¿Z-homo-

morphism ofd into 58, then y is a ¿Z-homomorphism ofd into 91;

(iv) z/58 is a ¿Z-substructure o/9l, then y. x —^ xisa ¿Z-homomorphism ofS8 into 9t.

Corollary. If¿Z has IP, then every ¿Z-homomorphism y can be written in the

form y = i/)x where i/i is an onto ¿Z-homomorphism and y/jal-l ¿Z-homomorphism.

Thus we see that IP is equivalent to the condition that in the category of Z-

structures with the Z-homomorphisms, the usual definition of a subobject in

terms of the underlying set functor agrees with the definition of a Z-substructure.

The proofs are trivial consequences of Lemmas 5 and 6 of §2.

We will also need a property of free Z-structures.
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Definition 2. A free 2-structure is strong if the y of Definition 1, §3 is always

unique.

That is, any mapping of the 2-generators into a 2-structure, can be uniquely

extended to a 2-homomorphism.

Corollary. Let 9t be a free ¿^-structure on a ¿^.-generators and let 93 zje a free

¿^-structure on ß generators. Ifä = ß, then 9t is strong if and only z/33 is strong.

This is trivial from the Uniqueness Theorem.

Theorem 2. If the free ¿^-structure \}s(co) exists and it is strong, then all free

¿^-structures exist and all are strong.

Proof. The existence of free 2-structures follows from Theorem 4, §4. It is

obvious that if a = lim ft and each 5s(ft) is strong, then so is 5s(«). It remains to

prove that if %-z(a) is strong and ß<a, then 2rs(ft) is strong. Let xQ,..., xy,...,

y<a be the 2-generators of %z(a). By Theorem 1 of §4 and the corollary to Defini-

tion 2, we can assume that 3is(/3) = [x0,..., xy,... ]s, y < ß. Let x be a 2-homo-

morphism of 3rE(a) onto 3fs(j8) with xyx = xy for y<ß and xyx = x0 for ßSy- If

5s(/3) is not strong then there exists a 2-structure 93 and there exist b0,..., by,...,

y<ß elements of 33 such that xy -*■ by (y<ß) has two extensions to 2-homomor-

phisms <p and i/i. Then the mapping xy-^-by for y<ß and xy^b0 for y^ß has two

extensions to 2-homomorphisms, namely x<p and x*A, contradicting that gsO*) is

strong.

Now we are ready to state and to prove the main result.

Theorem 3. Let us assume that 2 has IP and that î?s(">) exists and is strong.

Then there exists a set of operations F, containing F, such that on every ¿^-structure

9I = <y4;F, 7v> we can define the additional operations fe F—F, such that the

correspondence

% = (A;F,R~)->% = (A;F,R)

has the following properties:

(i) 91 is a ¿^-substructure of So if and only z/9I is a substructure o/33;

(ii) let <fi map A into B; then </> is a ¿^-homomorphism of SE into 93 if and only

ifi/j is a homomorphism of SE into 93;

(iii) let K denote the class o/9I; then fJK(a) exists for all a.

Remark. Essentially, what is stated here is a condition under which the category-

of 2-algebras and 2-homomorphisms is isomorphic to a category of structures

with homomorphisms, and the underlying set functor of the latter has an adjoint.

Proof. For every 1 S n < w and P e P„(2) we introduce kP n-ary operations,

fo,--,fkp-i as follows:
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Take 3fs(n) with the Z-generators x0,..., xB_i; define ./f(x0,..., x„_i), i<kP

such that F(x0,..., xB_1) = {//>(x0,..., xn-x) \ i<kP}; let 91 be an arbitrary Z-

structure, a0,..., an-x e A and y a Z-homomorphism of fCz(n) into 91 with

x0y=a0,..., xB_1«p=aB_1. Set

ff(a0, ...,an-x)= fp(x0, ...,xn-.x)y,   for i < kP.
Set

F=FKj{J({ff\ PePn(¿Z), i<kP}\lSn< oo);
and

K = {(A; F, R) | (A; F, F> is a Z-structure}.

It is obvious that (A ; F, F> is well defined, since by Theorem 2, y is unique.

Now we will verify (i)-(iii).

Ad (i). Let 9Í be a Z-substructure of 58, a0,..., an_i e A and let fe F be an

n-ary operation. If fe F, then f(a0,..., an_x) e A. If/^ F, then f=fp for some

P e P„(Z) and i < kP. Then

/ (x0,..., xn~i) eP(x0,..., xB_i)

in fys(n), so

//"(Co,. ..,an_i) =fiP(x0,..., xn_1)<p£F(x0,..., xB_!)<p = F(a0,..., an.x) £ ,4,

since y is an Z-homomorphism. Thus 91 is a substructure of 58.

Let 9Í be a substructure of 58 ; then 91 is a substructure of 58. To prove that it is

a Z-substructure, let a0,.. .,an_xe A and Pe P„(Z). If b eP¡s(a0,..., an_i) then

b=f(a0,..., an_!) for some fe F. Thus be A.

Ad (ii). Let ifi be a Z-homomorphism of 91 into 58, a0,..., an_x e A, and feF.

We want to prove that

f(a0, ...,an^x)i(>= f(a0ib,..., an _ ̂ ).

This is obvious if/6 F Let/<£ F, that isf=fp for some Pe PB(Z) and /<A>.

Let cp and x be the Z-homomorphisms of ¡}s(n) into 9Í and 58, respectively with

xiy = al and xix = aii/j, for /<n. Since y and x are unique (Theorem 2) we get

X=y<l>- Thus

/(a0,..., a„_i)0 = /(x0,..., xn.x)y>/> = /(x0,..., xn_i)x = /(<*<>& ■ ■ •, an-i0),

which was to be proved.

Let ib he a homomorphism of 9Í into 58; then ib is a homomorphism of 91 into 58.

To prove that </r is a Z-homomorphism, take PePb(Z) and a0,..., aB_! £ A.

Let us define y and x as above. Let b e P(a0,..., an _ x). Since y is a Z-homo-

morphism, there exists au eP(x0,..., xB_x) with uy = b. Then u=fp(x0,...,xB_i)

for some /<&/>. By the definition of/*", we have that b=fp(a0,..., an-x). Since i/>

is a homomorphism, we get that bib=f[(a0ib,..., an-xif). Again, by the definition

of fp, there exists a v e F-An) with v=fp(xQ,..., xn.x) and vx=bi/¡. Since

v e P(x0,..., xn_j) and x is a Z-homomorphism, we get that

b eP(a0,..., an.x) implies that bifi eP(a0ib,..., an-xi/j).
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The converse of this statement can be proved similarly; thus P(a0,..., an-.x)<p

=P(a0<p,..., an-x</>), which was to be proved.

Ad (iii). It follows from the assumption that 3s(«) exists for all a. (i) and

(ii) imply that 5s(°0 is SkW- This completes the proof of Theorem 3.

Theorem 3 is the best possible result, since the following holds :

Theorem 4. Let us assume that the conclusions of Theorem 3 hold for 2. Then

2 has IP, and ¡}x(a>) exists and is strong.

Proof. t}K(<") exists by (iii), so by (i) and (ii) gsO") exists. Since a free algebra

over K is always strong, i}x(co) is also strong by (ii). Using (i) and (ii), condition

(iv) of Theorem 1 can easily be verified; thus by Theorem 1, 2 has IP.
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