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Introduction. Let p be a rational prime, Qp the field of p-adic numbers, Q the

completion of the algebraic closure of ßp, and k the finite field with q=p" elements.

Denote by ks the extension field of k of degree s and K the algebraic closure of ks.

By means of Teichmüller representatives, one can represent K multiplicatively in

£2. Specifically, the set of (qs— l)-roots of unity in Q. represent the nonzero elements

of ks. Let Ts be this set of Teichmüller representatives of ks. Suppose now that V

is an irreducible nonsingular O-projective variety defined over QP(TX) which gives

rise by reduction modp to V, an irreducible nonsingular Tf-projective variety

defined over k. Denote by As the number of points of V rational over ks. Then the

zeta function is defined to be

Dwork [3] has shown this to be a rational function of t and it has been further

conjectured by Weil [8] that
2d

t(v,t) = YlP,(ty-»<+1
1 = 0

where d=dim V, P,(t)eZ[t], degP,(t) = B,=jth Betti number of V for / = 0, 1,

..., 2d. The conjecture has been verified for hypersurfaces by Dwork [4] and a

weaker form (in a sense to be explained shortly) of the conjecture has been verified

by Ireland [5] for projective complete intersections and biprojective divisors. It is

these results of Ireland which are here extended to biprojective complete inter-

sections. Throughout the paper we consider only intersections of two divisors but

it will be clear that this is not an essential restriction and all results hold for

arbitrary codimension.

Now a brief outline of the methods and results:

(1) A power series Fe Ci{Z, X, Y} is defined in terms of a splitting function

8(t) and the divisors / and g. We then consider the endomorphism a = i/j o F of

ß{Z, X, Y} where F stands for multiplication by F and t/t is the Dwork operator.

We set yF(z) = det (7— ta) and obtain a formula of the form

xr„+*(,) = (i _,)«».»> rrjvc
4,0
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where xf(0 = Xf(0/Xf(?0» G(n,m) is some binomial function of the rational

integers n and m (PnxPm is the biprojective space in which we are operating),

and the PA¡C are rational functions defined in terms of the zeta functions of all the

varieties obtained from either of the two divisors or from their intersection by

generic cuts.

(2) XFn*m+\t) is a polynomial. More specifically, Xf"*m + 2(t) = det (I-to)

where à is a nonsingular endomorphism of a quotient space of a space of power

series whose coefficients satisfy certain growth conditions.

(3) The space on which ä operates is isomorphic to a finite-dimensional vector

space W whose dimension is computed via a Koszul complex resolution. The

acyclicity of this complex follows from certain ring-theoretical considerations.

(4) The weaker form of the conjecture verified by Ireland and extended here can

be stated as

2d

aF,0 = npX0<-1)'+1
J = 0

where o'=dim V, for /=0, 1,..., d,..., 2d, P¡(t)eZ[t], degPj(t) = B], and Pd(t)

eZ(t) with the degree of Pd(t) as a rational function equal to Bd, the dth Betti

number of V. In all attempts thus far to extend Dwork's methods beyond hyper-

surfaces, no way has been found to isolate Pd(t) and show it is a polynomial.

More specifically, no generalization has been found for [4, Theorem 4.4].

The characteristic series Xf- Let f(X, Y) = 2íi i A¡M, and g(X, Y) = 2í2= i B%M\

bebihomogeneousformsinD[A'1,..., Xn+X, Yx,..., Ym+X] = Q[X, F]ofbidegrees

(dx, ex) and (d2, e2) respectively. Further assume that Aq = Au Bq = Bt. Denote by

V the variety determined in Pn(K) x Pm(K) by the forms f(X, Y), g(X, Y). We

note that Pn(K) x Pm(K) can be embedded under the Segre map as a subvariety of

F(n+1)<m + 1)"1(F) of dimension n + m. We will assume that F is a nonsingular

complete intersection, i.e. the dimension of V under this embedding is n + m —2.

Let Ns be the number of points on V with no coordinate zero and rational over

ks. Let ¿Fs(t) he the nontrivial ü-valued character of ks defined by Dwork [3].

Introducing new variables Zx, Z2 we obtain (where kf = ks — {0}) :

a2s(<7s - 1)2AS =        2        ^(zi/t*. y) + z2g(x, y))
3i,22eks;x,yek*

= (qS_l)n+m+2+   2  jes(zxf(x,y))+   2   *&*g(x,y))
Zi.x.yçkl Z2.x,yek'

+     2      ^(zxf(x, y) + z2g(x, y)).
zi,Z2.x,yek*

This formula follows from the fact that an (n + m + 2)-tuple (xi,..., xn + 1, yx,...,

ym + x) which represents a point of V contributes q2s to the sum, whereas it contrib-

utes zero if it is not on V. Also we must count points biprojectively.
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Now let 6(t) be any splitting function as defined by Dwork [4]. Define the

following power series over Q. :
rx    a-1

FX(ZX, X,Y) = YIYI OiiZiAiMd*'),
( = 1  1 = 0

F2(z2, x,Y) = firi WZißMY),
(=1   1=0

F(Z, X, Y) = FX(ZX, X, Y)-F2(Z2, X, Y).

We recall the definition of the Dwork operator </>. For any monomial

ZfiZ&Xïi ■ ■ ■ XÏW1 Y{h ■ ■ ■ YlW1 = ZWXUY\

4>(ZWXU Y") = ZwlqXulq Yvlq   if q divides every exponent,

= 0 otherwise.

Following [3, Lemma 2], we see that

q2s(qs-l)Ns = (qs-l)n + m + 2 + (qs-iy + m + * Tr (x/, ° Fx)s

+ iqs-1)" + » + 3 Tr (>/- o F2)s + (qs-1)»+"»+« Tr (<p ° F)s,

q2sNs = (4s-l)n + m + (</s-l)n + m + 1Tr(</<°F1)s

+ rgs_ !)» + « + ! Tr (^ 0 F2)S + (çS_ 1)n + m + 2 Tr (0 0 F)S

Denote by V— V the subset of V consisting of those points with no coordinate

zero. Let 8 be the operator h(t)ô = h(t)/h(qt). Let YFl(/) = det (I-t(>/> ° Fx)),

Xf2(t) = det (7- t(t/) o F2)), Xí(0 = det (7- t(i/i o F)). Each of these is an entire

function on £L

Finally we obtain the following formula:

(i)  i(v-v',q2t) = (i-o-(-í)B+V1(-d>B+M+1(Oxíl(-a)B+",+1(Ox/c-í,s+m+!'(0.

Next we define the integers B0, B2, F4,..., F2(n+m) by

(ti        \ / m        \ n + m2*' 2*1 = 2^fc
i = 0      / \i = 0      / fc = 0

and set
7i2)( V) = B2, for 2j < n + m-2,

B2j(V) = 52(n + m_2)_2j    for 2(n + «z-l) > 2/ > n + m-2,

•02(71 + 771-1)(F)   =   Ä2(n + m)(F)   =    1.

Finally we define a rational function P(t) by

_ p(Q<-^"-1(i-g^"-ifXi-gB+wO

where
71 + 171

N = ^ B2j(VW   if« + «zisodd,
1 = 0

n + m

52;.(F)f + Fn+m.2^+m-2"2   if« + «ziseven.
1 = 0; )' 5s (7i + m - 2)/2

Also <¿ denotes the operator h(ty = h(qt). Note that 8 = 1 -(/>.
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The basis for these conventions is the Lefschetz theorem which states that the

Betti numbers of V agree with those of the ambient space except possibly for

FB+m-2(F). Note that when n + m-2 is even, P(t) is not the "Weil polynomial"

but differs from it in degree by FB+m_2 of PnxPm.

We now proceed to generalize the above. Let SX = {XX,..., Xn+X}, S2 =

{Yx,..., Ym + X}. Suppose Ax^Si, A2<^S2, nonempty. Let A = AxxA2, l+m(A¡)

= number of elements in Ah m(A) = m(Ai) + m(A2). For each subset A of Sx x S2,

consider the variety VA (resp. VA) in />mul,xpmM2> (resp. PmiAx\K) x PmiA2\K))

obtained by equating to zero in f(X, Y) and g(X, Y) (resp. f(X, Y) and g(X, Y))

all those variables not in A. We assume that all of the resulting varieties are

nonsingular.

If m(A)i 2, we define a rational function PA(t) by

uV   rt      PA(tT^-\l-q^-H)(l-q^t)
Wa> l> = -(! _ tyu)-'

where

m(A)

2
J = 0

N(A) = 2 B2j(VAW   if m(A) is odd,

nía)

2 B2À VaW + Bmw . J™" -2»2   if m(A) is even.
m(A)-     2

j = 0;i#(mG4)-2)/2

The Betti numbers are given by

/mMi)     \   m(A2)      -. m(A)

2 *     2 *'   =  2 B^k(A)xk,
¡ = 0        /  \i = 0        / k = 0

and

B2i(VA) = B2j(A) for 2j < m(A)- 2,

B2i(VA) = F2ÄM)_2)_2,   for 2(m(A)- 1) > 2/ > m(A)-2,

B2(m(.A)-x)(VA) = B2(m(A))(VA) = 1.

\fm(A)Sl, setPA(t) = t(VA,t) = l.

\fA<^SxxS2 with^^O, A2^<i>, then

i(vA,t)=   n   ^B-n,t)

where B=BxxB2 and VB— V'B has the obvious meaning.

This formula can be inverted by an analogue of the Möbius Inversion Formula

to yield

(2) i(vA-vA,t)=   n  t(pB, ,)(-!)»«>-»«>.
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Now letting A = Sxx S2 and plugging (2) into (1), we see that

/j _iN_(_|S)n + m    _(-i)n + m + l    -(-«n + m + J     _(-|))i. + m + 2/-^\

=    n    i(vA,q2tri)n*m-miA\
A1<=S1;A2<=S2

Thus

xF(tyn+m+2 = (i-o-an+"WOdn+m+WOán+m+1-   n    ur+W1"™.
Ai<zS1-,A2<=S2

But Ireland has shown [5] that

xrr+\t) = (i-o2f..G%»>*'.     n      ^.i(fO,
.4). c Si; ¿2 = S2; mM) è 1

xra+*+V) = d -/)2J--.o)(T)*'.    n    ru*),

where F^ and F,4,2 are the rational functions corresponding to the divisors

f(X, Y) and g(X, Y) respectively. Now substituting in our definitions of PA(t),

we obtain after lengthy computation

Theorem 1.

Xrm + 2(0 = (1 -0 fl (1 -<F0G<n,m-i>-       J!       PA.i(qt)PAÁqt)PA(q2t)
1 = 1 J1cS1Us=S2

where

^-(i7Hm
The vector space W. Consider the following graded ring 7? = 2*°= 0 7?" • 7?° = Í20,

a finite extension field of ßp to be specified later (Tx c Q0) ; Rk = Q0-vector space

generated by all monomials of the form

Za-7b yu, Y^n + l\rv, v»mtl
xZ;2Axi • • ■ An + X   I xl ■ • ■   lm + x

with a + b = k, dxa + d2b = 21t = i «i, e1a + e2/3 = 2?=+i1 v,. Let m = 2"=i Rk, the unique

homogeneous maximal ideal of R.

We will later investigate this graded ring in great detail but for the time being,

we will assume that F is a homogeneously Macauley ring, i.e. Rm is a Macauley

local ring of dimension « + «? + 2.

Consider the ideal

where h(Z, X, Y)=Zxf(X, Y)+Z2g(X, Y), generated by these n+m + 4 elements

of degree 1 in R. We recall now our earlier assumption that all the varieties VA

are nonsingular. We now assume additionally that both Vx and F2 are nonsingular

where these are the divisors corresponding to f(X, Y) and g(X, Y), respectively.
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Proposition 1. 91 is an m-primary ideal in R.

Proof. We first show that 91 has no nontrivial zero in F1 x(PnxPm). Suppose

(z, x, y) is a zero of 9Í. If zx = 0, then z2#0 which implies

,      x 8g dg dg dg

s{x>y) = x^x=---=x^c^r^Wx=---=ym+icwt+-x = 0-

But this implies that (x,y) is a singular point of V2 which is a contradiction.

Similarly, if z2=0, then zx^0 and we contradict Vx being nonsingular. Thus, we

can assume zx ̂  0, z2 =£ 0. Then f(x, y)=g(x, y)=0 so (x, y) is a point of V. But then

xidf/8xl=-(z2/zx)xi8g/8xi and y, df/dy,= -(z2/zx)yj dg/dy¡ so again (x,y) is a

singular point of V. Thus 91 has no nontrivial zero in F1 x (PnxPm). The desired

result now follows as a simple application of the Nullstellensatz.

Let gx,..., gn+m+2 be any subset of the given set of generators of 9Í. By the

Euler relations 91 = (g1,.. .,gB+m+2). Hence by our assumption on F, gu...,

gB+m+2 is a system of parameters for R. By Nagata [6], gx,..., gn+m+2 is an R-

sequence as well.

Let 91* = 91 n Rk and let Wk^Rk he defined by the relation Rk= Wk[+]ñk.

(For the definition of />-adic direct sums, see Dwork [4].) Define ^=2"= o rVk.

We wish to compute dimno Wk.

Consider the Koszul complex generated over F by gx, ■ ■ .,gn+m + 2 which is

exact by Auslander-Buchsbaum [1]. Looking at the following piece of the complex:

_>-^(^fc-/)(" + 7 + 2)_^-^(#c-2)(" + S + 2)^(^fc-l)n + m + 2_^Ä,c_> Wk ^0,

we see

dim Wk = J (-iy(" + W1 + 2) dimF*-'.

After lengthy computation we obtain

Theorem 2.

dimH/= J ("1 + !;i)(VV2 + t'2)^^ï1^.

Wl+U)2=«:»'l + '>2='" \      wx      /\      w2      /

The differential operators and the endomorphism a. Again we consider the

m-primary ideal 91 generated by homogeneous elements of degree one in F and

select a subset gx,..., gn + m+2 of the given generating set of 91. Then 9t =

(gx, ...,gn+m + 2),andgx,...,gn+m + 2isan F-sequence.

Now consider D.0{Z, X, Y} = Q.0{ZX, Z2, Xx,...,Xn+x, Yx,..., Ym + X}, the power

series ring over ü0. Let

F = {£ = 2 Aa,btUwVZîZlX*Yv I dxa + d2b = 2 Uu exa+e2b = 2 v,}

c Í20{Z, X, Y}.



1969] BIPROJECTIVE COMPLETE INTERSECTIONS 453

If £ £ L, write £ = 2¡í°= o ak(Z, X, Y) where ak(Z, X, Y) is the sum of those terms

of f for which a + b = k. If afc^0 and a¡ = 0, i<k, then define v(i;) = k.

Let L(b, c) = {f = 2ic=o a/c(Z> X, Y) e L | ord Aktbk + c for any nonzero coeffi-

cient Ak appearing in ak(Z, X, Y)}.

Let L(b) = UceaF(/3, c). If | e L(/>, c), then £ converges for ord Zx> —b, ord Z2

>-¿, ord Xi>0, ord F;>0.

Choose an integer iteQ0 such that ord tt= l/p— I. Suppose He Q.0{Z, X, Y}

has the following properties :

(i) HeL(l/p-l).

(ii) If we write 77= 2^= o ̂ (Z,^, Y), then«0 = 0and ax(Z, X, Y) = ir(Zxf+Z2g).

E,H = X,(dH/dX,)eL(plp-l, - 1),      /= 1,...,«+ 1,

(iii) En + X+,H= Y,(8H/8Y,)eL(plp-l,-l),     j=l,...,m + l,

En + m + 2+,H = Z,(8H/8Z,) eL(p/p-l, -1),       j - 1, 2.

We introduce the differential operators D,(Ç) = E,(t;) + t;-E,H, for j=l,...,

n+m + 4. We have immediately the following relations:

71 + 1

2^ 7)( = o17)n + m + 3 + a27Jn + m + 4,

(3)
rn + l

/,  "n + i+i — exDn + m + 3 + e2Dn + m + i.
1 = 1

Furthermore, 7J, ° D, = D, ° 7), and A : L(/3) -» L(b) for bSp/p-l.

Following the proofs of [4, Lemmas 3.4-3.11], we obtain

Theorem 3. For l/p -1 < b Sp/p - 1, L(b) = W © 2"=T + 2 AF(/3).

Again following [4, Theorem 3.1 and Corollary], we have

Proposition 2. The Koszul complex

■ - - ->L(¿>)("+? + 2) -> ■ ■ • -> F(/3)("+" + 2) -^L(A)n + "- + 2 ̂ F(¿)

/n+m+22    AF(/3)->0,
i = i

generated over L(b) by the operators Dx,..., Dn + m + 2 is acyclic.

Proposition 3. det (7-Za) = Yf+m + 2(z).

Proof. Since a o Di=qDi ° a, we have the following exact commutative diagram.

.. L(b)C+r2)^ L(b)n+m+2^ L(è) _^ L,b) j% J    DtL(b) -> 0

\qaq2a a

'71 +m+ 2

...L(bf+*+2^L(by + m + 2->L(b)-+L(b)     2    DMb)-+0
I   i=i

The result follows now from [7, Proposition 9].
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Finally [4, Theorem 4.3] yields

Theorem 4. ä is nonsingular for b=p/p— 1.

The degree of P(t) as a rational function and the Betti numbers. The following

formula, due to Ireland, yields the Euler characteristic of V. Consider the expression

(l+uy^d+v)^ y
(l+dxu + exv)(l+d2u + e2v)     ¿-  u

Then

2(m+n-2)

X(V) =      2     (-l)JBj(V) = dxd2cn-2im + (dxe2 + d2ex)cn_Xtm-x + exe2cnim-2.
i = o

After a lengthy computation involving the formula of Theorem 1 and the Möbius

Inversion Principle, we arrive at

Theorem 5. The degree as a rational function ofP(t) is Bn + m _ 2( V) when n + m —2

is odd and Bn + m _ 2( V) + Bn + m_2(Fn x Fm) when n + m —2 is even.

The graded ring F. We now return to the graded ring defined earlier to verify

the assertion made there, namely,

Theorem 6. F is a homogeneously Macauley ring of dimension n + m+ 2.

It should be pointed out that the corresponding result in the case of a hyper-

surface is a triviality. It is not until one considers complete intersections-thai this

problem occurs and it becomes even more complicated in the biprojective situation

we are considering. The theorem follows as we will show from a result of Chow [2]

and some technical lemmas developed to permit an iterative construction of R.

We begin with a summary of the terminology and results of Chow.

Proposition 4. Let A be a local ring of dimension d with maximal ideal m. Then

the following statements are equivalent:

(i) There exists a system of parameters for A which is an A-sequence.

(ii) Every system of parameters for A is an A-sequence.

(iii) Any ideal in A generated by r elements and of rank r is unmixed.

Definition. A local ring satisfying any (hence all) of the above conditions is

called Macauley.

Now let A = 2"= o A4 be a graded Noetherian ring with A0 a field. Let m = 2i™ i A¡

be the unique homogeneous maximal ideal of A.

Definition. We say that A satisfies H-unmixedness if every homogeneous ideal

in A generated by r elements and of rank r is unmixed.

Proposition 5. A satisfies H-unmixedness if and only if Am is Macauley.

.Definition. A graded Noetherian ring A with a unique homogeneous maximal

ideal m will be called an H-local ring. We define dim A = rank m.
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Definition.- Let A be an //-local ring of dimension d. Then a set of homo-

geneous elements xx,..., xde A is said to be an H-system of parameters if

A(xi,..., xd) is an m-primary ideal.

Definition. An //-local ring is said to be H-Macauley if it contains an H-

system of parameters which is an ^-sequence.

Proposition 6. Let A be an H-local ring with A0 a field. Then A satisfies H-

unmixedness if and only if A is H-Macauley.

Definition. Let A = Jf=aAu F=2f=oF; be //-local rings with A0 = B0 = K,

a field. For any pair of positive integers (d, e), we define the Segre product of A

and F of order (d, e) to be the //-local ring

00

C = 2 ck   where ck = Akd <S>k Bke.
fc = 0

We next pose the following question : If A and F are //-Macauley, under what

conditions is the Segre product of A and F of order (d, e) again FT-Macauley ? In

order to answer this question we must introduce the notion of "d-properness".

From now on we will mean by an //-system of parameters for an //-local ring A

a system of parameters consisting of homogeneous elements all of the same

degree, called the degree of the system.

Definition. Let xu..., xm be an //-system of parameters for an //-local ring A

(dim A = m) of degree fd. We shall say that this system of parameters has the d-

exponent e if e is the least positive integer with the property that every homogen-

eous element of A of degree kd with kief is contained in A(xu ..., xm).

Proposition 1. If A is H-Macauley, then every H-system of parameters of

degree fd has the same d-exponent.

Proposition 8. IfA is H-Macauley and if one (hence every) H-system of param-

eters of degree fd has d-exponent less than or equal to m, then the same is true for

every H-system of parameters of degree fd for anyf.

Combining the two preceding propositions, we see that the property of having

d-exponent less than or equal to the dimension of the ring is independent of the

choice of an //-system of parameters in an //-Macauley ring. Thus we make the

following definition.

Definition. An //-Macauley ring A of dimension m is said to be d-proper (or

just proper for d= 1) if there exists an //-system of parameters in A of «/-exponent

less than or equal to m.

We note that d-proper implies d'-proper for any d' a multiple of d. In particular,

proper implies d-proper for all d.

Theorem 7. Let A and B be H-Macauley rings of dimensions m andn, respectively,

A0 = B0 = K, afield. Let C denote the Segre product of A and B of order (d, e). Then:
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(i) If A is d-proper (unless «= 1) and B is e-proper (unless m=l), then C is 77-

Macauley of dimension m + n—1.

(ii) If A and B contain nonzero homogeneous elements of all degrees which are

multiples of d and e, respectively, and C is H-Macauley, then A is d-proper (unless

« = 1 ) and B is e-proper (unless m = 1).

(iii) If A is d-proper and B is e-proper, then C is proper.

This concludes the summary of [2] and we now proceed to the proof of Theorem

6.

Let A = n0[Zx,Z2] graded by degZx = dx, degZ2 = d2; B=Q0[XX,..., Xn+X]

graded by deg Xt= 1 ; F=Q0[I'i»..., Ym + X] graded by deg Y,-l. It can be seen

that each of these is a proper 77-Macauley ring of dimension 2, «+1, m+ 1, re-

spectively. Let S" = 2"=o S'k De the Segre product of order (1, 1) of A and B which,

by the previous theorem, is a proper 77-Macauley ring of dimension « + 2. S'0 = Q.0

and S'k = the i)0-vector space generated by

z\z\x» ¿ w¡ = dxa+dj> = k>'
i = l )

Let »z' = 2fc>=i S'k. Now consider the graded ring S=2"= o Sk where S0 = ù0 an^

Sk = the Q0-vector space generated by

\ Z\Z\XU   2 "i = dxa + d2b, k = exa + e2b l-

Let m = 2 ™= i Sk. Since dxa + d2b > 0 if and only if exa + e2¿ > 0, we see that Sm = S'm,

which is Macauley by Proposition 7 and Proposition 8. Hence S is 77-Macauley by

the same two propositions. Let us assume for the moment that S is also proper.

Then denote by 7?'= 2"= o R'k the Segre product of order (1, 1) of S and F; we see

that R' is a proper 77-Macauley ring of dimension n + m + 2. R'0 = Q0, R'k = the

O0-vector space generated by

f n+l m+1 >

< Z\Z\XU Yv   2 M¡ = dxa + d2b, 2 »i = exa + e2b = k \-
I i=i i=i )

We can now obtain our ring R from R in the same way that S was obtained from

S', yielding R as an 77-Macauley ring of dimension n + m + 2. It remains only to

show that the ring S is proper.

Suppose that dxe2^d2ex. Consider the following set of homogeneous elements

of S:

wx = Zi*Xii<*,       w, = Ze^Xt^-Ze2iXfrx\   i = 2,..., n+ 1,

wn + 2 = ZfrXSn.

We note that the degree of each of these elements is exe2. Let 'ät = 5(H'1,..., wn + 2).

In order to show that S is proper it suffices to prove that ^i^>m^n + 2)eie2. This would

in particular prove that wx,.. .,wn + 2 form an 7/-system of parameters for S.
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Lemma. Let a=ZaZ\Xu eS. Suppose that for some lSi<jSn+l, we have

(i) u{id2ex and (ii) b-(j-i)exiO. Then a=ß(W) where ß = Zt + u-i)e2Z^a-1)exXu'

andu't = u¡ — d2ex,u'¡ = u¡ + dxe2,u'k = ukfor lSk<i,j<kSn+l,u'k = uk + (dxe2 — d2ex)

fori<k<j.

Proof. Successively reduce a modulo wi + x, wi + 2,..., w¡ in order to obtain ß.

Proposition 9. S is proper, i.e. 9í=>m(,l + 2)eie2.

Proof. Let a = ZfZb2Xu e min + 2)exe2. Thus 2?=+i" u{ = dxa + d2b and exa + e2b

i(n + 2)exe2. Consider the statement P(k): If (k—l)e2Sa<ke2, then a e 9Í. We

will verify P(k) for all k, thereby showing a e 9Í.

Suppose 0Sa<e2. Then ¿>>(n+l)e1. Hence 2?=i1 Ui = dxa + d2b>(n + l)d2ex so

some ut>d2ex. If un + x>d2ex, then nv^a and we are done. So we can assume

i<n+l. Now by the preceding lemma,

a = ß = Zí + (n + 1"í)e2Z|-(n + 1-i)eiZfi • • • XfrXZiY + ̂ Cñ).

But b-(n+l—i)ex>ex and un + x + dxe2id2ex so that wn + 2\ß. Hence cce9Í,

verifying F(l).

Now suppose P(l),P(2),...,P(m) to be true and assume me2Sa<(m+l)e2.

Then (m+l)exe2 + e2b>exa + e2bi(n + 2)exe2 gives b>(n — m+l)ex. We can also

assume ui<dxe2 for /'= 1,...,/?+ 1. For if uxidxe2, then wx\a and we are done. If

Uiidxe2 for some ;'=2,..., n+1, then a=Zf~e2Z2+eiXu' mod w¡ where «i=«(

-d^a, «¡.^i/i-^dae!, «; = «, for j^i- 1, /'. But Zre^-eiA'u' e 9Í by F(m).

Next we can assume mSn. For if man+ 1, then since ux<dxe2, we have

n + l

2 "i > dxa+d2b — dxe2 i (m — l)dxe2 i ndxe2
1 = 2

in which case some w¡ > dxe2 which we have shown cannot happen. Now

71 + 1

2 w> > dxa + d2b — dxe2 i (m-l)dxe2 + (n-m+l)d2ex
¡ = 2

and since 2™=2 u,<(m- l)dxe2, we get 2f=m + i Ui>(n-m+l)d2ex. But this implies

some Uj>d2ex for m+lSjSn+l. Now applying the preceding lemma, we see

that

a = ß = ZJ+<n + l-#«„£»-<»+ l-fle1^«'

where u'n + l = un + x + dxe2id2ex. Since ¿-(n+l -j)exib-(n-m)ex>ex, we have

that H'n + 2|(8 so a £ 91. We have now shown that P(m+ 1) is also valid and so P(k)

is true for all k, completing the proof of the proposition.

Thus we have shown that S is proper for the case dxe2id2ex. But the case d2ex

i dxe2 can clearly be handled in a similar manner, thus completing the proof of

Theorem 6.
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