FUNCTIONS OF EXPONENTIAL TYPE

BY
Q. I. RAHMAN

1. Introduction. Let f(z) be an entire function of exponential type = (i.e. a
function of order 1 and type <, or a function of order less than 1), with |f(x)| =M
on the real axis. It is well known (for references see [2, pp. 82, 206]) that then

(L.1) fCe+ip)| £ Me,
(1.2) F)| < M.

Duffin and Schaeffer [8] refined the first of these inequalities for functions that are
real on the real axis by showing that in this case

(1.3) |[f(x+iy)] £ M cosh 7y.

On the other hand, Boas [3] proved that if f(z) #0 for y >0 and h/(w/2) = 0 (h(6) =
lim sup ,.,», (log | f(re'®)|/r) denotes the indicator of f(z)), then for y<0

1.4 [fGx+iy)| = (M]2)(e"¥' +1),
and for all real x
(1.5) |f'()| £ Mr/2.

In this paper we develop a unified method for arriving at these inequalities. In
spite of being extremely simple, the method turns out to be very useful and effective.
Not only does it give simpler proofs of the above results but yields interesting
generalizations as well. We use the same idea to prove some other inequalities
later in the paper.

2. The following result is well known (for references see [2, p. 82]).

LeMMA 1. If f(2) is regular and of exponential type in the upper half plane,
h(m/2)<c, and |f(x)| M, —co<x<oo, then |f(x+iy)|<Me®”, —oo<x<oo,
0=y<oo.

LEMMA 2. Let ¢(z) be an entire function of exponential type v which does not
vanish in the upper half plane and hy(m/2)=0. If (z)=€""*¢(z), then for Im z<0

@.1) [$(2)| = [¥(2)]
and for all real x
22 [’ = ()]
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Proof of Lemma 2. The function ®(z)=¢(z)e "2 has no zeros for y>0 and
ho(+m/2)=71/2Z hy(—m/2). By a theorem of Levin [2, p. 129] we have |D(z)|
<|®(Z)| for y<0. Thus for Im z<0

| ¢(z)l < | eitz/2| | ¢(Z)e—4ﬁ/2| — | enz/zl | 95(2)8"2/2|
= [§(2)e™| = ().
This is (2.1).

For the proof of (2.2), we may assume that = > 0. In fact, if 7=0 then y(z) reduces
to §(z) and there is equality in (2.2).

Note that the function #(z) has no zeros for Im z <0. Besides, h,(—n/2)=r and
hy(7/2) =0, i.e. hy(—7/2)> h,(7/2). Hence (z) is of order 1, type o= 7, and belongs
to the class P discussed in [2, p. 129]. Since [¢(x)| = |)(x)| for —o0 < x <00, it follows
by another theorem of Levin [2, p. 226] that for all real x, |¢'(x)| < [¢'(x)|.

3.1. Proof of (1.3). If f(z) is a constant there is nothing to prove. So let us
assume that f(z) is not a constant. Let

lim sup M' =c <

7 ©

T.

Since f(z) is assumed to be bounded on the real axis and is real for real z, ¢ must
be positive. Otherwise f(z) will be bounded in the whole plane by Lemma 1 and must
therefore be a constant.

If |A| > 1 then the function F(z) =¢'**f(z)/(AM) is an entire function of exponential
type, hx(7/2)=0 and |F(x)]<1, —oo<x<co. By Lemma 1, it follows that
|F(z)| <1 for Im z=0. Hence the function Fy(z)=f(z)—AMe '*#0 for Im z>0.
The function €**F,(z) is of exponential type 2¢ and satisfies the conditions of
Lemma 2. Therefore, for Im z<0 we have

|eiczF1(z)| § |e24cze—tczF1(z)|
|Fi(@)] = |F(2)].
If arg A is so chosen that |f(Z) — AMe )| = |AMe~'**| — | f(Z)| then for Im z<0
If@)|— A Me™ < |f(2)—AMe™"?*| = |f(2)—AMe™"*| = |A|Me™¥ —|/(2)].

or

Since f(z) is real for real z, we have |f(z)| =|f(Z)| and this gives
|f(2)] £ M|A| cosh cy £ M|A| cosh 7y

for all z. Making |A| — 1 we get the result.
3.2. Proof of (1.4) and (1.5). Let w(z)=¢"*f(z). By Lemma 2 it follows that for
Imz<0

(3:1) /@) = ()],

and for all real x

(3.2) Gl = |G-
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Since hy(m/2)=0 and |f(x)|SM we have [f(z)|M for Imz>0. Hence for
|A| >1 the function Fy(z)=f(z)—AM is an entire function of exponential type =
such that A, (7/2)=0, Fy(z)#0 for Im z>0. Applying (2.1) and (2.2) to the func-
tions Fy(z) and Q(z)=e""2F,(z) we get

(3.3) |Fy(2)] = |Q(2)|
for Im z<0 and
(3.4 |[Fa(x)| = [Q'(x)|

for —o0 < x<o00. But

Q(z) = €"*f(z) — MAe'* = w(z)— MAe"™?;

therefore

(3.5 |f(2) =AM | £ |w(z)— MAe'|
for Im z<0 and

(3.6) f'@)] < [ (x)— MAire™|
for —oo < x <oo. With a suitable choice of arg A in each case we shall obtain
(3.7 If@)—AM| = MM — |w(z)|
for y=Im z<0 and

(3.8) If®)] = M|A|7— ' (x)]

for —oo < x <o0. Hence, for Im z<0

(3.9 /(@] +|w(2)] = M|[Ae! +M]A|
and for —co<x <o

(3.10) If @)+’ @) = MA|7.
Finally, making |A| — 1 we get

@3.11) /@) +]e(2)] = M(e"¥'+1)
for y<0 and

(3.12) /@) + @) < Mr

for —o0<x<oo. Note that (3.11) together with (3.1) implies (1.4), whereas (1.5)
follows from (3.2) and (3.12).

REMARK 1. Let f(z) be an entire function of order 1 type = such that A(=/2)<0
and f(z)#0 for Im z<0. Suppose further that sup_ . <<« |f(x)|=M on the real
axis. Since then hy(—m/2)=r it follows that w(z)=e"*f(z) is an entire function of
order 1 type = and 4,(n/2)=0. Besides, w(z)#0 for Im z>0. Hence from (1.5) we
have

(3.13) lire'*f(x) + €' (x)| £ M7/2,
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for all real x. Now let ¢>0 be fixed. We can find a real number x, such that
[f(x0)| > M —e. From (3.13) we get

(M—e)—|f"(x0)] £ M7/2
and therefore

_Suw £/ )] 2 |f (x0)| = Mr[2—er.

Since &> 0 is arbitrary we in fact have sup_ o <, <« |f'(x)|2 M7/2.
Thus we can state the following:

THEOREM 1. If f(2) is an entire function of exponential type T such that

sup__ lfx)| = M, h(—=[2) = =, h(m/2) £ 0, and f(z)#0

-0 <x<
Sor y<O, then sup_ o < x < » |f'(x)| 2 M7/2.
Combining this result with (1.5) we obtain:
COROLLARY 1. If f(2) is an entire function of exponential type t with

sup |f(9 = M, h(=n[2) =7, ki) =0,

and f(2) has all its zeros on the real axis, then Sup _ o < x < » | f'(x)| = M/2.

3.3. Let L?, 1=Sp<co denote the class of measurable functions f, for which
{2 |/()|? dx is finite. Now, if f(z) is an entire function of exponential type ~
belonging to L?, 1 £p <o on the real axis then [2, p. 211],

619 1= ([ 1rera)” s o[ rwra)” =,

E. M. Stein has shown that this inequality is also implied by (1.2). In fact, he
proves the following general [14, Theorem 1].

THEOREM A. Let T and S be linear operators, each satisfying the following
conditions:

(1) T is defined on B, (the set of entire functions of exponential type v bounded
on the real line), and commutes with translations.

(2) There exists a constant A, so that |T(f)|~ < 4| f]~ where

I9le = _sup__[8(x)].

Now suppose that for some constant X,

@ [T =AISN s if f€B.; then |T(N|,=X|SU),» if fEE NL?
1 =p<oo, E, being the set of entire functions of exponential type .

(b) Moreover, if |Tf(xo)| = A | S(f)| s for some x, implies that f(z)= ae'™ + be = %2,
then |T(f)|,=A|S(f)|, implies f=0, if fe E, 0 L?, 1 <p<co.
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Thus T=d/dx and S=1I (where I=identity operator and A,=7) give (3.14) as a
consequence of (1.2). It would be interesting to obtain the extension of (1.5) to
L?, 1 £p<oo, with the help of Theorem A.

THEOREM 2. If f(z) is an entire function of exponential type v belonging to L?,
1 £ p<oo on the real axis, h/(w/2)=0 and f(z)#0 for y >0, then for p=1 we have

(3.15) Ifls = G327l f s

where
¢, =2/ f " 146 da = 2-24/m Tp+ 1T Gp+3).

For another proof of this result see [12].

Proof of Theorem 2. Let f(z) be an entire function of exponential type =
bounded by M on the real axis. If f*(z) = €'**f(z) then h,.(m/2) < 0. Since |f*(x)| S M
for —oo < x <00 it follows from Lemma 1 that |f*(z)| < M in the upper half plane.
Hence for every A such that |A| > 1 the function f, (z)=/*(z) — AM does not vanish
in the upper half plane. We claim that if

g(z) £ e"""ff*(z) —AMe2tz = e‘”f(z) —A\Me2z = w(z) —A\Me2tz

then | £ (x)| £|g'(x)| for —oo < x <oo. This is obvious if 7=0 for then g(x)=£, (x)
—AM. So let 7>0. It is clear that g(z) does not have zeros in the lower half plane.
Besides, it is of order 1 and type 2r. That it is of exponential type 2+ is obvious. But
for y<0

|gy)| 2 [A|Me*¥ — e[ f(—iy)| = (|]A] — 1) Mexv!

by (1.1). Hence h(—m/2)227 and g(z) is, in fact, of order 1 type 2r. Now since
|f+(x)|=|g(x)| for —oo<x<co it follows from the theorem of Levin [2, p. 226]
which we used for the proof of (2.2) that

/i) = |g'@)l, —00 < X < 0.
But
£+ = lirf()+f )],
g’ = [i7f) +F' ()~ 2AMire™*| = | —irf(x) +/'(x)+2iAMe~+>].
Hence
[irf(xX)+f'(x)| £ |—itf(x)+f"(x)+2iAMre~"*|,  —00 < x < 0.

Choosing arg A such that
| —i7f(x)+f"(x) + 2iAMe™ | = 2|A| M~ | —izf(x) +£'(x)]
we get

(3.16) litf(x)+f'(x)| + | —itf(x)+1'(x)| £ 2M7, —00 < X < 00,
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Thus, for every « in [0, 27), we have
litf(x)+1'(x) +e*{— irf(x)+f'(x)}| < 2MT, — < X < 0.
If D=d/dx then the above inequality can be written as
(3.17) [{(e**+.1)D+ (1 —e'%)it}f(x)| < 2M, —0 < X < 00,

Clearly, (e**+1)D+(1—=¢*)ir is a linear operator T satisfying the conditions of
Theorem A and we can write (3.17) as

1Tl = 2711«

where I is the identity operator. Hence from Theorem A we have

G19) [ |inf )70+ eo(=inf ) +7 M dx < 2oy [ 7P d,

for fe E,N L,, 1=<p<oo. If, in particular, A,(m/2)=0 then f,(z)=e~"*2f(2) is of
exponential type 7/2 and on applying (3.18) to f1(z) we get

J: i%fl(x) +f1'(x)+e‘“{—i % fi(0)+ fl’(x)} " dx

< j " i@ldn (2D

or

[7 e mnryesi—ime-mapoo e s s v [ 1fGP dx

for p=1. Consequently

[* ireres—ig@+roppas » [ 1i@ld @z .

Integrating both the sides with respect to « from 0 to 27 we get

f * da f T )+ e —inf () +f (O dx < 2mrP f * P dx,
3.19) *° - - 2.

Note that f'(x) can be zero only at a countable number of points. Besides, we can
clearly invert the order of integration in the left-hand side of (3.19). Therefore

J'o * da fm /() + €5~ inf(x)+ (P dx

14

_fo d f_wlf(x)[ 1+e =L dx
= ° 1reor o ,ajL(x)+—f'(x)" o
_f_w|f(x)| dxfo 4o =N d

- f: |f'(x)|pdxf:” 1+e‘“%r de.
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Since h,(7/2)=0 it follows from (3.2) that for all real x

(3:20) [A)| = [f')| £ |—itf(x)+f (%) = [B(x)],
i.e. |B(x)/A(x)|z 1. Thus for a fixed real x and every p>0

J‘2n B(x) P = J‘2u B(x)

A®X) A®)

This follows, for example, by taking G({)=1+{ and R=|B(x)/A(x)| in the well
known inequality

1+e 1+ e

4 2n
do 2 J |1+ e'|? da.
0

2n 2n
f G(Re)|? doc 2 f IGE@)|Pdo, (p>0,R2 1)
0

0

valid for every entire function G({).
Thus we finally get

2 @ ©
[Tiseea [ r@pass o [7 wpas ¢z
] - © @

which is the same as (3.15).
REMARK 2. If f(z) is real for real z, then

(3.21) lirf)+f' (%) = |—irf(x)+f(x)].
Thus from (3.16) we get the following inequality of Duffin and Schaeffer [7]
(3.22) P+, S v sup G,

valid for entire functions of exponential type = which are real for real z. The above
method also gives an extension of the above inequality to L,, 1 £p<co. For this,
integrate the two sides of (3.18) with respect to « from 0 to 2, invert the order of
integration and use (3.21) in the inequality so obtained. We shall get the following:

THEOREM 3. If f(2) is an entire function of exponential type T belonging to L,
1 £ p <o on the real axis, and real for real z, then

623) [ H@P @R s e [ Il an

where C, is the same as defined in Theorem 2.

It may be pointed out that C,2? — 1 as p — 0.
If the entire function f(z) of exponential type  is periodic on the real axis with
period 27 then f(z) has the form

n

f&)= 2 ae” nsn,

v=-n

i.e. it must be a trigonometric polynomial. Note the analogy between the above
theorem and the following which is certainly best possible [11].
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THEOREM B. If f(z) is an entire function of exponential type + periodic on the real
axis with period 2m, and real for real z, then for 1 £ p <o

[ wir@p e ir @i d s cenr [ 11wPdx,

with the same definition of C,.

REMARK 3. By applying Theorem 2 to the function w(z)=e"*f(z) we can easily
deduce with the help of Minkowski’s inequality that if f(z) is an entire function
of order 1 type = belonging to L,, ] £p<co on the real axis with h(—=/2)=1,
h(7/2) =0, and f(z)#0 for y <0, then

(3.24) 151> 2 A=CP)rlf 15

If f(z)eL,, 1=p<oo on the real line then it is bounded there and so A,(7/2)<0
implies that h(—m/2) is necessarily 7. Hence we can drop the restriction A,(—/2)
=r. However, this result appears to be far from being precise.

4. Let p,(z) be a polynomial of degree n such that |p,(z)| S M for |z]|=1. It is
easy to verify that p,(e*) is an entire function f(z) of exponential type n such that
h(—=/2)=n and |f(x)| £1 for real x. If p,(z) has no zeros in |z| <1, f(z) has no
zeros in y>0, and moreover (since p,(0)#0) h(w/2)=0. The method of §3 can
therefore be specialized to give simpler proofs of the following results ([1], [9]).

Let p,(z) be a polynomial of degree n not having zeros in |z| < 1. If | p(z)| £ M for
|z| =1 then for |z|=R>1

“4.1) |pa(2)| = M(R*+1))2,
for |z|=1
(4.2) |Pn(2)| = Mnj2.

The best possible estimate for [3" | p(e'®)|® df in terms of (3" |p.(e')|® d6 was
found out by De Bruijn [5, Theorem 13] but such a result is not obtainable from
Theorem 2. Nevertheless, we shall prove the result of De Bruijn in very much the
same way as Theorem 2.

DE BRUIN’S THEOREM. If the polynomial p,(z) of degree n has no zeros for
|z| <1, then for 821

21 21
43) f P90 d6 < Cont f | pa(e)[? dB
o 0

where Cy=2m[[2" |1+ €'|° da.
For our proof we need the following:
LeEMMA 3. Let &, denote the linear space of polynomials

pn(2) = ao+ - - +az"
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of degree <n with complex coefficients, normed by | p,| =max |p,(e®)|. Define the
linear functional L on %, as

L: p,— lLao+ - +la,

where the I; are complex numbers. If the norm of the functional is N then

27 I i lkakeikel 2n
f o\t=2 1149 < f @( )do
0 N 0 \

where ©(t) is a nondecreasing convex function of t.
This result was proved by H. S. Shapiro [13, Theorem 8] for the case O(t)=1.
Proof of Lemma 3. According to a theorem of Shapiro [13, Theorem 3] L
can be represented in the form L[p,(z)]=2%-1 uxpa(zx), for all p, e % where
Z4,. .., Zp are distinct numbers of moduli 1 and >7_, |u,|=N. Let { be any number
of modulus one, and apply this to the polynomial p,({z). We get

Zo ha L Z uepn(zil) | £ kz |ui| | (20
k= =1

k=1
Hence if O(¢) is a nondecreasing convex function of ¢ then by Jensen’s inequality
[15, Vol. I, p. 21},

n

Z akeiks

k=0

(| 3 lkakzk) Sl @0l 3 (w0 paad)l
@ k=0 < @ k=1 — § k=1 —
k§=:1 |ukI kgl Iuk,

N
Setting {=¢' and integrating both the sides with respect to 6 from 0 to 27 we get
the result.
Proof of DeBruijn’s theorem. If |p,(z)]SM for |z|<1 then for [A|>1 the
polynomial P(z)=p,(z)— AM does not vanish in |z| < 1. Let
0(2) = z"P(1/2) = z'p,(1/2)—z"AM = q,(z)—z"AM.
The polynomial Q(z) has all its zeros in |z| <1 and |Q(z)| =|P(z)| for |z|=1. By
another theorem of De Bruijn [5, Theorem 2] it follows that |P'(z)| £ |Q'(z)| for
|z|=1. Thus for 0= §<2n
|dpa(e)/d] < |dgu(e)/dd— ineoAM|.
By choosing arg A suitably we shall obtain
|dpn(e¥*)/db] < n|A| M — |dg,(e*)/db).
Since the above inequality is true for every A such that [A| > 1 we get
|dp,(€*)/d0| + |dgn(e”)/db| < Mn.
But clearly
|dg.(e*)db| = |d{e™"p.(e°)}/db],
and therefore
|dpn(e'®)/db| + | — inpa(€*®) + dp,(e)/db| < Mn.
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Hence for every o« such that 0 <« <27, we have
|dp.(€")/d6 + '{ — inp,(e) + dp,(e*)/df}| = Mn,
or
(e + 1)dpn(¢**)/db6— ine*“p,(e*)| = Mn.
Thus the norm of the bounded linear functional
L: p,— [(€" + 1)dp.(e)/df — ine'pn(€®)]s -

is n and it follows from Lemma 3 that for every 6= 1,

J‘zn
0

The polynomial p,(z) of De Bruijn’s theorem has no zeros in |z| <1 and therefore
[5, Theorem 2]

|dpa(e°)/db| < |dgn(e”)/db| = | —inp.(e'®)+ dp(e?)/dO|.

4 271
e +e{ im0+ G pet | a0 < [ ey do
0

The proof can now be completed in the same way as for Theorem 2.
5. An operator preserving inequalities between polynomials. Consider the

operator B which carries

p2) = 2 a2
. v=0
into

B[pa(2)] = Aopn(2)+ M(nz/2) pr(2)/ 1!+ Ay(nz/2)?p1(2)/2!
where Ay, A;, and A, are such that all the zeros of
u(z) = Ao + nCIAIZ"l"nCzAzzz

lie in the half plane |z| £ |z—n/2|.
We start with the following observation.

THEOREM 4. If p,(2) is a polynomial of degree n then
P2 = M, |z =1,
implies
(5.1) [Blpu(2)]| = M[B[z"]|, |z| 2 1.
For this we need the following lemma [10, p. 65, see Corollary (18.3)].

LEMMA 4. If all the zeros of a polynomial P(z) of degree n lie in the circle |z| =1
then all the zeros of the polynomial B[P(2)] also lie in the circle |z| £ 1.

Proof of Theorem 4. If A is a complex number such that [A|>1 then |p,(z)| <
|AMz"| for |z]=1. Since the function AMz" has all its zeros inside the unit circle,
it follows from Rouché’s theorem that the function p,(z)— AMz" has all its zeros
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inside the unit circle. Now let us apply Lemma 4 to the polynomial P(z)=p,(z)
— AM:z", The operator B is linear, therefore

B[pn(2)] - AMB[z"] = B[p.(z)—AMz"]

has all its zeros inside the unit circle, i.e. it does not vanish for |z|=1. Now if
(5.1) is false then there exists z, such that |zo| = 1 and | B[pn(2)]|.= 2, > M | Blz"]| . - 2,
It is clear that (B[z"]),-.,=u(r/2)z§#0. We can therefore choose A such that
[A|>1 and (B[pn(2)]).=2,— AM (B[z"]),-.,=0. But this contradicts the fact that
B[p.(z)]— AMB[z"] does not vanish for |z| =1, |A| > 1. Hence

|Blpn(2)]| = M|B[z"]|

for |z|= 1 and Theorem 4 is proved.

If g.(2)=z"p,(1/2) then |g,(z)| =|pa(z)| for |z|=1. Hence if p,(z)#0 in |z| <1
then ¢,(z)/ pa(z) is analytic on and inside the unit circle and |g,(z)/p.(z)| =1 on the
boundary. By the maximum modulus principle |g,(z)| = |pa(z)| for |z]<1 or
|2"q.(1/z)| £ |2"Px(1/2)| for |z|Zz1. Noting that z'g,(1/z)=p.(2) we get |pu(2)|
<|gn(2)| for |z|Z1. From this it follows that for every A such that |A|>1 the
polynomial p,(z)— Ag,(z) has all its zeros in |z| 1. By Lemma 4 the polynomial
B[p,(2)]— AB[q,(2)] has no zeros in |z| > 1. This implies that

(.2) |Blpn(2)]| = |Blgu(2)]| for |z| 2 1.

If p,(z) is a polynomial of degree n such that |p,(z)| S M for |z| <1 then for
0= &< 2n the polynomial p,(z) — Me'* does not vanish inside the unit circle. Hence
from (5.2) applied to the polynomial p,(z) — Me'* we get

|B[pn(2)] — MAoe'| = |Blgn(z)]— Me™"“B[z"]|
for |z|= 1. Now choose « such that
| Blgn(2)]— Me="“B[z"]| = M|B[z"]| - |Blg.(2)]|-
(From Theorem 4 we know that M |B[z"]| — | B[g.(z)]|20.) We get

|Bpu(2)]| — [2o| M = M|B[z"]| - |Blg.()l, |z| 2 1,
or

{Blpu(2)]| +|BlgaD]| £ [Ao|M+M|B[z"]], |z] 2 1.
Substituting for | B[z"]| we get
(5.3) |B[pa(2)]| + [Blgu(2)]| = M{|Ao| + |20+ Ain%/2+ An®(n—1)/8]}

for |z|= 1.
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Suppose that S(6)=>"__,a,€"® is a trigonometric polynomial of degree n
such that |S(6)| =1 for 0= 6<2m. Then €™S(0)=p(e'), where ps,(2) is a poly-
nomial of degree 2n. It is clear that | ps,(z)| £1 for |z| £1. For z=e"

Bpes(2)] = Aopis(2)+ A1(2n2/2) pisy(2)/ 1!+ Aa(2nz/2)%p(s(2)/2!

d do
Xoe™0S (8) + (W/11)(ne) 5 pese®) 72

+ (/20 ey & ( d d") a9

i 10y 27) &7
6 \%7 I Z) &
= 1,e™S(0) — i n{ine'*®S (0) + " S’ (6)}

—(A5/2N)n2ie® jd_ ne'm-195(6) — je!™ - 105’ (6)}
db

= X,e™S(0)—iA,n{ine™®S (6) + ™S’ (8)}

—i(Ag/2N)n2e{in(n — 1)e'™ ~ V0 S (8) + ne'™~ 16 S'(6)
+ (n _ l)ei(n - I)GS’(O) — iel(n - 1)95"(0)}

_ e(ne{(ho+ An? 4 Ag ﬂ’zll—))sw)— i (A1n+ Ag ”—Z%)S’(O)
W Zso)

Thus if S(6) is a trigonometric polynomial of degree n such that |S(6)| =1 for
0= 60 =2 then from Theorem 4

3, — 2, - 2
’ {Ao+ A4 (”2 ”}S(O)—i{AIn 2 %1—)}5'(0)— R i

é | )\0 + 2/\]_”2 + )\2”3(2’1 - l)l

if the zeros of the polynomial A,+2"C;Az+2"CyAyz% lie in the half plane
|z| |z —n.
Let us put
— %2 = a,
—i{An+An?(2n—1)/2} = b,
Ao+ A2+ An3(n—1)/2 = ¢,

and solve for Ay, A;, and A,. We get Ao= —an®?—ibn+c, A, ={ib+a(2n—1)}/n and
Ay= —2a/n?, so that

Ao+2M0 124+ AnP2n—1) = —an®+ibn+c.

Hence we conclude the following:
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THEOREM 5. If S(0) is a trigonometric polynomial of degree n such that |S(6)| =1
for 0= 0< 2w and the zeros of the polynomial
u,(z) = 2a(2n—1)z2/n—2{a(2n— 1)+ ib}z+an®*+inb—c
lie in the half plane

(54 lz| < |z—n],

then

(5.5) |aS"(6)+bS'(6) +cS(8)| < |—an®+ibn+c|.
If f(z)=az?+ bz + c then (5.5) can be written as

56) 1(5)5® | = .

The zeros of the polynomial u,(z) are given by

_n,n [y, 2, C1\2_ _ 1/2}_
z = 2+ 3aon=D) {2zbi 7n (nb?+n(2n—1)a®?—2ac(2n—1))
If the constants a, b, and ¢ are real and
(5.7 nb%+n(2n—1)a®?—2ac(2n—1) = 0,

then the zeros have the form z=n/2 + if where 8 is purely real, i.e. they lie in the
half plane defined by (5.4).

It can be easily verified that if az2+ bz + ¢ is a real quadratic polynomial (linear
if a=0) whose zeros lie in the region H bounded by the two branches of the
hyperbola
(5.8) y2—x2%/2n—1) = n/2,
then the coefficients a, b, and c satisfy (5.7). Thus if f(z) is a real polynomial whose
zeros lie in the region H then it can be expressed as the product of linear and
quadratic factors with real coefficients satisfying (5.7). Hence as a particular case
of Theorem 5 we get the following:

COROLLARY 2 [6]. If f(2) is a real polynomial whose zeros lie in the region H and
S(0) is a trigonometric polynomial of degree n with arbitrary complex coefficients,
then for every real 6 we have the inequality

£(%)s®| s max_Is®] 11t

Taking Ag=An?, A\, = —2/n, A;,= —8/n? in Theorem 4 we get:
COROLLARY 3. If p,(2) is a polynomial of degree n>1 and |p,(z)| =1 for |z| <1
then

(5.9) |An®pu(2) — zpi(z) — 2°pu(2)| < n?|1—AL
if |A[=3(1+1/n).
For if |A| £4(1 + 1/n) then the zeros of the polynomial
% —2z—4(n—1)z%/n
lie in the half plane defined by |z| £ |z—n/2|.
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Since in Corollary 3 A is allowed to be complex it is a partial generalization
of the following result of Boas [4, see Corollary 2].
If p(2) is a polynomial of degree n>1 and |p,(z)| 1 for |z| <1, then
[An®p(2) — 2p(z) — 2%pa(2))]
does not exceed (1—N)n? if A<1/3+1/(6n?), and does not exceed the maximum of
|An? cos n@—1n cot (6/2) sin nf|, 0< 8 <=, if A>1/3+1/(6n%).
If, in particular, p(z)#0 for |z| <1 or p(z) is a symmetric polynomial in the sense

that | p(z)| = |g(z)| then with the help of (5.2) it follows from (5.3) that the expression
on the right-hand side of (5.9) can be replaced by

Hr2(|Al+ 1= AD}
which is equal to n?/2 if 0<A=<4(1+1/n). Let S(6) be a real trigonometric poly-

nomial of degree n and let us apply our conclusion to the symmetric polynomial
P\ (e®)=e'"S(0) of degree 2n. We get

|4AnP s)(2) — 2P(s(2) — 2°P(s(2)| < 2n® ogﬁ"zn NG 0= A= i(1+1/n).

Thus for 0= A<}(1+1/n)
|(4X— 1)n2S(6) +2inS'(8) + S"(6)| < 2n? max |S(6),
0=6<2n

a (A= Dr2S(0)+ S"(O) +4n*(S ()" S 4n'{ max |S()]).

By choosing A=4(1+1/n) or A=3(1—1/n) as the need may be, we can make
{@A-1n*S(6)+S"() = (n|S(O)| +|S"(O))*

and then conclude that for a real trigonometric polynomial S(6) of degree n,

(5.10) {n|SO)] +|S"(0)]}>+4n?|S'(6)? £ 4"4{023%,, |S(0)[}"’.
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