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1. Introduction. Let f(z) be an entire function of exponential type t (i.e. a

function of order 1 and type S r, or a function of order less than 1), with |/(x)| S M

on the real axis. It is well known (for references see [2, pp. 82, 206]) that then

(1.1) \f(x + iy)\ S Me^\

(1.2) |/'(x)| S Mr.

Duffin and Schaeffer [8] refined the first of these inequalities for functions that are

real on the real axis by showing that in this case

(1.3) \f(x + iy)\ S Mcoshry.

On the other hand, Boas [3] proved that if/(z) ^0 for y > 0 and hfaß) = 0 (h¡(6) =

lim sup r-,00 (log \f(rew)\/r) denotes the indicator of f(z)), then for y<0

(1.4) \f(x + iy)\S(M/2)(e^ + l),

and for all real x

(1.5) |/'(x)| S Mr 12.

In this paper we develop a unified method for arriving at these inequalities. In

spite of being extremely simple, the method turns out to be very useful and effective.

Not only does it give simpler proofs of the above results but yields interesting

generalizations as well. We use the same idea to prove some other inequalities

later in the paper.

2. The following result is well known (for references see [2, p. 82]).

Lemma 1. If f(z) is regular and of exponential type in the upper half plane,

hf(-¡T¡2)Sc, and \f(x)\SM, -oo<x<co, then \f(x + iy)\SMecy, —oo<x<oo,

0^y<oo.

Lemma 2. Let <f>(z) be an entire function of exponential type t which does not

vanish in the upper half plane and hi,(irl2) = 0. Ififi(z) = eilz<f>(z), then for Im z<0

(2.1) im s \m\

and for all real x

(2.2) \<f>'(x)\ S |f(x)|.
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Proof of Lemma 2. The function <D(z) = <j>(z)e f"'2 has no zeros for v > 0 and

«»(+7r/2) = T/2^«0(-7r/2). By a theorem of Levin [2, p. 129] we have |<D(z)|

S |$(z)| for v< 0. Thus for Im z<0

\<f>(z)\ S \eUzl2\ \<t>(z)e-'"l2\ = |eiI2/2| |#z)e"*/2|

= \toY«\ = \m\.
This is (2.1).

For the proof of (2.2), we may assume that t > 0. In fact, if t = 0 then </<(z) reduces

to $(z) and there is equality in (2.2).

Note that the function >ji(z) has no zeros for Im z<0. Besides, h^( — tt/2) = t and

h^(n/2)S0, i.e. «^(-tt/2) > «^(tt/2). Hence <p(z) is of order 1, type aä t, and belongs

to the class F discussed in [2, p. 129]. Since |0(x)| = |</i(x)| for -co < x <oo, it follows

by another theorem of Levin [2, p. 226] that for all real x, \<f>'(x)\ S \*l>'(x)\.

3.1. Proof of (1.3). If /(z) is a constant there is nothing to prove. So let us

assume that/(z) is not a constant. Let

,. log\f(re'"l2)\
hm sup       '    --' = c S t.

r-*oo r

Since /(z) is assumed to be bounded on the real axis and is real for real z, c must

be positive. Otherwise/(z) will be bounded in the whole plane by Lemma 1 and must

therefore be a constant.

If | A| > 1 then the function F(z) = eiczf(z)/(XM) is an entire function of exponential

type, hF(ir/2)=0 and |F(x)|<l, — co<x<oo. By Lemma 1, it follows that

|F(z)|<l for Imz^O. Hence the function Fi(z)=/(z)-AMe-ic^0 for lmz>0.

The function eic*F1(z) is of exponential type 2c and satisfies the conditions of

Lemma 2. Therefore, for Im z < 0 we have

|eiczF!(z)| S \e2i™e-lc*Fx(z)\

or
|Fx(z)| S \Fx(z)\.

If arg A is so chosen that |/(z)-AMe"icá| = |AMe-'"| - |/(z)| then for Im z<0

\f(z)\-\X\Mecy S \f(z)-XMe-ic*\ S \f(z)-XMe'icl\ = \X\Me-™-\f(z)\.

Since/(z) is real for real z, we have |/(z)| = |/(z)| and this gives

|/(z)| S M\X\ cosh cy S M\X\ cosh ry

for all z. Making |A| -> 1 we get the result.

3.2. Proof of (1.4) and (1.5). Let w(z) = etz*f(z). By Lemma 2 it follows that for

lmz<0

(3:1) \f(z)\ S Hz)\,

and for all real x

(3.2) |/'(x)| S \oo'(x)\.
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Since hf(n/2) = 0 and \f(x)\SM we have \f(z)\SM for lmz>0. Hence for

|A|>1 the function F2(z) =f(z) - XM is an entire function of exponential type t

such that hF2(Tr/2) = 0, F2(z)^0 for Im z>0. Applying (2.1) and (2.2) to the func-

tions F2(z) and Q(z) = eitzF2(z) we get

(3.3) |F2(z)| S |£î(z)|

for Im z < 0 and

(3.4) |F2(x)| S |Q'(*)|

for —co<x<co. But

Q(z) = eHzf(z)-MXeUz = w(z)-MXeilz;

therefore

(3.5) \f(z)-XM\ S \co(z)-M~Xehz\

for Im z < 0 and

(3.6) |/'(x)| S \œ'(x)-MXireUx\

for — oo <x<co. With a suitable choice of arg A in each case we shall obtain

(3.7) |/(z)-AM| S M\X\e^-\co(z)\

for _y=lmz<0 and

(3.8) \f'(x)\SM\X\r-\co'(x)\

for -oo<x<oo. Hence, forlmz<0

(3.9) |/(z)| + |o.(z)| S Af|A|e'i»i+Jlf|A|

and for -oo<x<oo

(3.10) \f'(x)\ + \w'(x)\ S M\X\r.

Finally, making |A| -> 1 we get

(3.11) \f(z)\ + \co(z)\SM(e^ + l)

for y < 0 and

(3.12) l/'(*)l + l«'(*)| =Mr

for -oo<x<oo. Note that (3.11) together with (3.1) implies (1.4), whereas (1.5)

follows from (3.2) and (3.12).

Remark 1. Let/(z) be an entire function of order 1 type r such that hf(Trf2)S0

and/(z)#0 for lmz<0. Suppose further that sup_00<A.<(10 \f(x)\ = M on the real

axis. Since then h¡(—Trf2) = r it follows that m(z) = eiizf(z) is an entire function of

order 1 type t and ha(n/2) = 0. Besides, cu(z)^0 for Im z>0. Hence from (1.5) we

have

(3.13) \ÍTeHxf(x) + eHxf'(x)\ S Mr/2,
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for all real x. Now let e>0 be fixed. We can find a real number x0 such that

|/(x0)| >M—e. From (3.13) we get

r(M-*)-\f'(x0)\  S Mr/2

and therefore

SUp       \f'(x)\   ^   |/'(X0)|   ^ Mr/2-er.
- CO  < X < 00

Since e>0 is arbitrary we in fact have sup_ œ <x< K \f'(x)\ ^ A/t/2.

Thus we can state the following:

Theorem 1. Iff(z) is an entire function of exponential type t such that

sup     |/(x)| = M,       «X-77/2) = r,       hfr/2) S 0,    and  /(z)#0
- 00 < X < GO

for v < 0, Z/ze« sup _ «, < * < «, |/'(x) I = Mt/2.

Combining this result with (1.5) we obtain:

Corollary 1. Iff(z) is an entire function of exponential type t with

SUp       |/(X)| = M, hf(-7r/2) = r, h,(rr\2) = 0,
— 00 < X< 00

andf(z) has all its zeros on the real axis, then sup_ „ <*< „ |/'(x)| =Mt/2.

3.3. Let Lp, 1 Sp <°o denote the class of measurable functions / for which

J"oo \f(x)\p dx is finite. Now, if/(z) is an entire function of exponential type t

belonging to Lp, 1 Sp<<x> on the real axis then [2, p. 211],

(3.14)       |/'||, = (£ |/'(*)lp ¿x^'" ^ r(J_°°œ |/(x)|» dx)"' = ri/1,.

E. M. Stein has shown that this inequality is also implied by (1.2). In fact, he

proves the following general [14, Theorem 1].

Theorem A. Let T and S be linear operators, each satisfying the following

conditions :

(1) F is defined on Bx (the set of entire functions of exponential type t bounded

on the real line), and commutes with translations.

(2) There exists a constant At so that \T(f)\ œSAt\f\ „ where

11*11« =     sup     \&(x)\-
— co < x< CO

Now suppose that for some constant AT,

(a) lT(f)Uú^¡S(f)U,  iffeB%;  then   \\T(f)\\pSK\\S(f)\\p,  iffeEznLp
1 Sp <oo, F, being the set of entire functions of exponential type r.

(b) Moreover, if \Tf(x0)\ = Xz\\S(f)\\ x, for some x0 implies that f(z) = aeUz + be~Uz,

then ||r(/,)||, = A,||S,CT)|p implies/=0, iffeEznLp, l£p<co.
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Thus T=d/dx and S=I (where /=identity operator and Ai = t) give (3.14) as a

consequence of (1.2). It would be interesting to obtain the extension of (1.5) to

L", 1 Sp <°o, with the help of Theorem A.

Theorem 2. If f(z) is an entire function of exponential type t belonging to V,

1 Sp«x> on the real axis, hf(-Tr/2) = 0 and f(z)j=0 for y>0, then for pi 1 we have

(3.15) ll/'L S Cllpr\\fl,

where

Cp = 2irI f* \l+eia\» da = 2- V- r(i»+ l)/T(i/> + i).

For another proof of this result see [12].

Proof of Theorem 2. Let f(z) be an entire function of exponential type r

bounded by M on the real axis. If/*(z) = ei%zf(z) then hf.(n/2) S 0. Since |/*(x)| S M

for —oo<x<oo it follows from Lemma 1 that |/*(z)| S M in the upper half plane.

Hence for every A such that |A| > 1 the function f+(z)=f*(z)-XM does not vanish

in the upper half plane. We claim that if

g(z) = e2ixzf*(z)-XMe2Uz = eitzf(z)-XMe2Uz = a>(z)-XMe2hz

then |/+(x)| S \g'(x)\ for -oo<x<oo. This is obvious if t = 0 for then g(x)=f+(x)

— ~XM. So let t > 0. It is clear that g(z) does not have zeros in the lower half plane.

Besides, it is of order 1 and type 2t. That it is of exponential type 2r is obvious. But

for y < 0

|*(i»| i |A|Me2,|!'l-é>,|!"|/(-/y)| i (\X\ - l)Me*M

by (1.1). Hence hg(--nf2)i2r and g(z) is, in fact, of order 1 type 2t. Now since

|/+(x)| = |g(x)| for -co<x<oo it follows from the theorem of Levin [2, p. 226]

which we used for the proof of (2.2) that

I/+C0I ^ \g'(x)\,        -co < X < CO.

But

|/;(x)| = |rV/(x)+/'(x)|,

\g'(x)\ = \irf(x)+f'(x)-2XMiTeUx\ = \-irf(x)+f'(x) + 2iXMe-hx\.

Hence

-co < x < oo.

irf(x)+f'(x)\

— 00  <  X  < 00.

\irf(x)+f'(x)\   S  \-irf(x)+f(x) + 2iXMre-^x\,

Choosing arg A such that

| -irf(x) +f'(x) + 2iXMe~Ux\ =2\X\Mt-

we get

(3.16) |/r/(x)+/'(x)| + | -/r/(x)+/'(x)|  S 2Mr,
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Thus, for every a in [0, 27r), we have

\ñf(x)+f'(x) + eia{-hf(x)+f'(x)}\ S 2Mt,       -oo < x < co.

If D = d/dx then the above inequality can be written as

(3.17) \{(eia+\)D + (l-eia)ir}f(x)\ S 2Mr,       -oo < x < oo.

Clearly, (eia+l)D + (l— eia)ir is a linear operator F satisfying the conditions of

Theorem A and we can write (3.17) as

\\T(f)U = 2r||i(/)|U

where I is the identity operator. Hence from Theorem A we have

(3.18) i"   \irf(x)+f'(x)-re'a{-irf(x)+f'(x)}\pdxS(2r)p r   \f(x)\»dx,
J — CO J  -  00

for/eFtnLp, 1 ̂ /><oo. If, in particular, hAir¡2)=0 then fx(z) = e~'"l2f(z) is of

exponential type t/2 and on applying (3.18) to/(z) we get

j", i ' íÁ(x)+/[(x)+e'a{ ~ * T2fi{x)+fKx)} rdx

= Tp r \fx(x)\pdx,  (p = o
J — oo

or

p   |e-iIA'2/'W + eia{-zVe-f"/2/(x) + e-iIX/2/'(^)}|p^ ^ rp f"   |/(x)|pi/x
J — CO J—   CO

for /? ̂  1. Consequently

f"   |/'(x) + ei«{-/r/(x)+/'(x)}|píix ^ r" f"   \f(x)\pdx,       (p = 1).
J — 00 J — oo

Integrating both the sides with respect to a from 0 to 27r we get

r2n roo /»oo

da\        \f'(x) + eia{-irf(x)+f'(x)}\pdxS2nrp\        \f(x)\p dx,
ex i o\ J - co J—oo
^iyj (p^ i).

Note that/'(x) can be zero only at a countable number of points. Besides, we can

clearly invert the order of integration in the left-hand side of (3.19). Therefore

da\      \f'(x) + ei"{-iTf(x)+f'(x)}\pdx
JO J - oo

J- oo Jo

(•oo /»2,i I

A*)

dx

i
¿a
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Since hl(nf2)=0 it follows from (3.2) that for all real x

(3.20) \A(x)\ = \f'(x)\ S \-irf(x)+f'(x)\ = |F(x)|,

i.e. \B(x)fA(x)\ i 1. Thus for a fixed real x and every p > 0

r2* I ßCx) p        r2" I       B(x)      p        r2n
l+e'a:77^     da=\        1+    ^   eia     dai   \      | 1 + ëa \ * da.

Jo   I A(x) J0   I A(x) Jo

This follows, for example, by taking G(£)=l + £ and F=|F(x)/^(x)| in the well

known inequality

/»2ji /"2ji

\G(Reia)Y da i        \G(ela)\" da,       (p > 0, F i 1)
Jo Jo

valid for every entire function G(£).

Thus we finally get

f * \l+eia\"da r   \f'(x)\»dx S 27TT* f   \f(x)\'dx,       (p i 1)
JO J — oo J — co

which is the same as (3.15).

Remark 2. If/(z) is real for real z, then

(3.21) |/r/(x)+/'(x)| = |-rV/(x)+/'(x)|.

Thus from (3.16) we get the following inequality of Duffin and Schaeffer [7]

(3.22) {r2\f(x)\2+\f'(x)\2Y'2Sr       SUp       |/(x)|,
— 00 < X < 00

valid for entire functions of exponential type t which are real for real z. The above

method also gives an extension of the above inequality to Lp, lSp<oo. For this,

integrate the two sides of (3.18) with respect to a from 0 to 27r, invert the order of

integration and use (3.21) in the inequality so obtained. We shall get the following:

Theorem 3. If f(z) is an entire function of exponential type t belonging to Lp,

1 Sp <°o on the real axis, and real for real z, then

(3.23) i"   [{T2\f(x)\2 + \f'(x)\2y2rdxSCp(2T)>> T   \f(x)\>dx,
J — OO J — 00

where Cp is the same as defined in Theorem 2.

It may be pointed out that CP2P -> 1 as p ->■ oo.

If the entire function/(z) of exponential type t is periodic on the real axis with

period 2n then/(z) has the form

f(z) =   2   a^'       » = T>
v= -n

i.e. it must be a trigonometric polynomial. Note the analogy between the above

theorem and the following which is certainly best possible [11].
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Theorem B. Iff(z) is an entire function of exponential type r periodic on the real

axis with period 2n, and real for real z, then for 1 Sp <oo

f   [{r2\f(x)\2+\f'(x)\2yi2]pdxSCp(2T)p i"   \f(x)\"dx,
J-n J -n

with the same definition of Cp.

Remark 3. By applying Theorem 2 to the function co(z) = eixzf(z) we can easily

deduce with the help of Minkowski's inequality that if/(z) is an entire function

of order 1 type t belonging to Lp, lSp<co on the real axis with «/(-7r/2) = r,

hf(n/2) S 0, and f(z) # 0 for y < 0, then

(3.24) ll/'Lè(l-Cp'>||/||,

If/(z) eLp, 1 Sp«x> on the real line then it is bounded there and so hr(7r/2)S0

implies that hf( — ir/2) is necessarily t. Hence we can drop the restriction hf( — 7r/2)

= t. However, this result appears to be far from being precise.

4. Let pn(z) be a polynomial of degree « such that |pn(z)| S M for |z| = 1. It is

easy to verify that pn(eu) is an entire function/(z) of exponential type « such that

«/(-7r/2) = « and |/(x)| S 1 for real x. If pn(z) has no zeros in |z| < l,/(z) has no

zeros in y > 0, and moreover (since pn(0) / 0) «/(tt/2) = 0. The method of §3 can

therefore be specialized to give simpler proofs of the following results ([1], [9]).

Let pn(z) be a polynomial of degree « not having zeros in \z\ < 1. If\pn(z)\ SMfor

|z| = l then for |z|=i?> 1

(4.1) \pn(z)\ è M(B»+1)¡2,

for \z\ = 1

(4.2) \p'n(z)\ S Mn/2.

The best possible estimate for f2* \p'n(eie)\ô dd in terms of ¡f \pn(ew)\ô dB was

found out by De Bruijn [5, Theorem 13] but such a result is not obtainable from

Theorem 2. Nevertheless, we shall prove the result of De Bruijn in very much the

same way as Theorem 2.

De Bruijn's theorem. If the polynomial pn(z) of degree « has no zeros for

\z\ < 1, then for 8^ 1

/•2)I f2n

(4.3) \p'n(e">)\6 d6 S Cy \     |pn(e'T¿0
Jo Jo

H>«ereCó = 27r/J2',|l+eia|'sí/a.

For our proof we need the following :

Lemma 3. Let 3Pn denote the linear space of polynomials

pn(z) = a0+---+anzn
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of degree Sn with complex coefficients, normed by ¡pn||=max \pn(ei0)\. Define the

linear functional L on ^ as

L: pn^ l0a0+ ■ ■ ■ +lnan

where the /¡ are complex numbers. If the norm of the functional is N then

f2n       j     2   lkake'k6   I fin       /I     n \

J. «v*1*—/**/. e(l ,?/""')•*'
where 0(0 is o nondecreasing convex function oft.

This result was proved by H. S. Shapiro [13, Theorem 8] for the case 0(0=*.

Proof of Lemma 3. According to a theorem of Shapiro [13, Theorem 3] F

can be represented in the form L[pn(z)] = Jj¡=i ukpn(zk), for all pne¿Pn where

Zj,..., zm are distinct numbers of moduli 1 and 2i?-i k| = A. Let ¿I be any number

of modulus one, and apply this to the polynomial pn(tz). We get

U m m

2   4ûfcifc     =       2   UkPn(Zkt)     S    2   N   \PÁZkQ\-
k=0 k=X k=X

Hence if 0(0 is a nondecreasing convex function of t then by Jensen's inequality

[15, Vol. I, p. 21],

0
I kakik

k = o

N
S ©

I    kl   \Pn(Zkl)\
k = X

2 kl

2 k|0{|/>n(A9|}
fe = l_

m

2 kl

Setting £ = ei9 and integrating both the sides with respect to 0 from 0 to 2v we get

the result.

Proof of DeBruijn's theorem. If  \pn(z)\SM for   \z\ S1   then   for   |A|>1   the

polynomial P(z) =pn(z) — XM does not vanish in \z\ S 1. Let

Q(z) = znF(l/z) = znpn(l/z)-znXM = an(z)-z"AM.

The polynomial Q(z) has all its zeros in |z| < 1 and |Q(z)| = |F(z)| for |z| = l. By

another theorem of De Bruijn [5, Theorem 2] it follows that |F'(z)| S \Q'(z)\ for

|z| = l. Thus for O^0<2t7

\dPn(eie)fdd\ S \dqn(eie)/d6-ine,neXM\.

By choosing arg A suitably we shall obtain

\dpn(é")ldO\ S n\X\M-\dqn(ei!))/de\.

Since the above inequality is true for every A such that [A| > 1 we get

\dpn(é«)ld6\ + \dqn(é»)ld0\ SMn.
But clearly

\dqn(e«>)de\ = \d{e-^Pn(e^)}/de\,

and therefore

\dpn(eie)ldO\ + \-inpn(e") + dpn(eill)/de\ S Mn.



304 Q. I. RAHMAN [January

Hence for every a such that 0 S a < 2n, we have

\dPn(eie)lde + eia{-inpn(eie) + dpn(eie)ldd}\ S Mn,

or

\(eia+l)dpn(eie)ldd-ineiapn(eie)\ S Mn.

Thus the norm of the bounded linear functional

L : Pn -> [(é" +1 )dpn(eie)ldO - inë"pn(e")]B_ 0

is « and it follows from Lemma 3 that for every 8= 1,

C2" I d ( d 1   ö f2n
Jo   \TePn(eie) + eia[-inpÁew) + ^-ePn(eie)j    dO S n* ^   |pn(eie)|ä ¿0.

The polynomial pn(z) of De Bruijn's theorem has no zeros in |z| < 1 and therefore

[5, Theorem 2]

\dpn(e>°)/de\ S \dqn(e«)/d9\ = \-inpn(é°) + dpn(e»)ldd\.

The proof can now be completed in the same way as for Theorem 2.

5. An operator preserving inequalities between polynomials. Consider the

operator B which carries

n

Pn(z) =   2 a^
v = 0

into

B[Pn(z)] = A0p„(z) + Xx(nz/2)p'n(z)ll ! + A2(«z/2)2X(z)/2 !

where A0, A1( and A2 are such that all the zeros of

u(z) = X0 + nCxXxz+nC2X2z2

lie in the half plane |z| S \z—n/2\.

We start with the following observation.

Theorem 4. Ifpn(z) is a polynomial of degree « then

\Pn(z)\ S M,       \z\ = 1,

implies

(5.1) \B[Pn(z)]\ S M\B[z%       \z\ g 1.

For this we need the following lemma [10, p. 65, see Corollary (18.3)].

Lemma 4. If all the zeros of a polynomial P(z) of degree « lie in the circle \z\ á>l

then all the zeros of the polynomial B[P(z)] also lie in the circle \z\ S 1.

Proof of Theorem 4. If A is a complex number such that |A| > 1 then |p„(z)| <

|AMzn| for |z| = 1. Since the function XMz" has all its zeros inside the unit circle,

it follows from Rouché's theorem that the function pn(z) — XMzn has all its zeros
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inside the unit circle. Now let us apply Lemma 4 to the polynomial P(z)=pn(z)

— XMzn. The operator B is linear, therefore

B[pn(z)]-XMB[z"] = B[pn(z)-XMz«)

has all its zeros inside the unit circle, i.e. it does not vanish for |z| = l. Now if

(5.1) is false then there exists z0 such that |z0|^l and \B[pn(z)]\z=2o> M\B[zn]\s=Zo.

It is clear that (B[zn])z=Zo = u(n/2)zô^O. We can therefore choose A such that

|A|>1 and (F[/>n(z)])2=2o- XM(B[zn])z=Zo=0. But this contradicts the fact that

B[pn(z)]- XMB[zn] does not vanish for |z| i 1, |A| > 1. Hence

\B[pn(z)]\ â M\B[z"]\

for \z\i I and Theorem 4 is proved.

If an(z)=znpn(l/z) then \qn(z)\ = \pn(z)\ for |z| = l. Hence if pn(z)^0 in |z|<l

then qn(z)/pn(z) is analytic on and inside the unit circle and \qn(z)fpn(z)\ = 1 on the

boundary. By the maximum modulus principle |an(z)| S \pn(z)\ for \z\Sl or

\znqn(l/z)\S\znpn(l/z)\ for |z| = l. Noting that znqn(l/z)=Pn(z) we get \Pn(z)\

¿|on(z)| for |z|àl. From this it follows that for every A such that |A[>1 the

polynomial pn(z) — Xqn(z) has all its zeros in \z\ S 1. By Lemma 4 the polynomial

B[pn(z)]- XB[qn(z)] has no zeros in |z| > 1. This implies that

(5.2) \B[pn(z)]\ S \B[qn(z)]\    for \z\ i 1.

If pn(z) is a polynomial of degree n such that \pn(z)\ S M for |z| S I then for

0 S a < 2ir the polynomial pn(z) — Meia does not vanish inside the unit circle. Hence

from (5.2) applied to the polynomial pn(z) - Meicc we get

\B[pn(z)]-MX0eia\ S \B[qn(z)]-Me'^B[zn]\

for |z| i 1. Now choose a such that

|F[an(z)]-Me-'°F[z"]| = M\B[z"]\-\B[qn(z)]\.

(From Theorem 4 we know that M\B[zn]\ - |F[a„(z)]| ^0.) We get

\B[pn(z)]\-\X0\M S M\B[z»]\-\B[qn{z)]\,        \z\ i 1,

or

|F[nn(z)]| + |F[an(z)]| S |A0|M+M|F[zn]|,        |z| i 1.

Substituting for |F[zn]| we get

(5.3) \B[pn(z)]\ + \B[qn(z)]\ S Af{[A0| -+ |A0 + AlM2/2 + A2/z3(«-1)/8|}

for \z\il.
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Suppose that 5(0) = 2"=-n aveive is a trigonometric polynomial of degree «

such that 15(0)| S 1 for OS 0<2tt. Then e<neS(0)=p(S)(ei9), where /?(S)(z) is a poly-

nomial of degree 2«. It is clear that |/?(S)(z)| S 1 for |z| S 1. For z = eie

5[/5(,,(z)] = AoAs)(z) + A1(2«z/2)p;s)(z)/l ! + Àa(2#iz/2)%,(z)/2 !

= Aoe^S(0)+ ÍAJ1 !)(«ei9) ̂ p(S)(e») ̂

+ (WO^i^M^SS

Di7l6\

= Aoeine5(0) - i\1n{inétnaS(e) + iW(0)}

-(A2/2!)«2zei9 ^ {«ei(n-1)eS(0)-zei<',-1>95"(0)}
ÍZ0

= Aoei,,e5(0) - iXxn{inénBS(6) + einBS'(d)}

- i(X2/2 \)n2eie{in(n - 1 )ei(n - 1)9S(0) + «ei<n " 1)9S'(0)

+ («- l)e«n- 1)e5'(0)-z'ei<n- 1)eS"(6)}

(x0+x1n2 + x2^^)s(e)-i(x1n+x2n^^)sxe)

-*2¿¡S'((f)

Thus if S(6) is a trigonometric polynomial of degree « such that |5(0)| S 1 for

0 5¡ 0 5¡ 2it then from Theorem 4

Ao + A^ + A, ̂ ^^(^-zJA^ + A, "2(2^~ [)}S'(6)-X2 j S"(6)

S |A0 + 2A1«2 + A2«3(2«-1)|

if the zeros of the polynomial  A0 + 2'IC1A1z + 2nC2A2Z2 lie in the half plane

|z| S \z — n\.

Let us put

- A2«2/2 = a,

-i{Xxn + X2n2(2n-l)l2} = b,

XQ + Xxn2 + X2nXn-l)¡2 = c,

and solve for A0, Xx, and A2. We get A0= —an2-ibn + c, Xx = {ib + a(2n—l)}/n and

A2= -2a/«2, so that

A0 + 2A1«2 + A2«3(2«-1) = -an2 + ibn + c.

Hence we conclude the following:
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Theorem 5. If S(6) is a trigonometric polynomial of degree n such that \S(9)\ S 1

for 0 S 0 < 27T and the zeros of the polynomial

Ui(z) = 2a(2n — 1 )z2fn — 2{a(2n — 1 ) + ib}z + an2 + inb — c

lie in the half plane

(5.4) |z| S \z-n\,

then

(5.5) \aS"(e) + bS\e) + cS(6)\ S \-an2 + ibn + c\.

lff(z) = az2 + bz+c then (5.5) can be written as

(5.6) f{lê)S^ = \f(in)\.

The zeros of the polynomial ux(z) are given by

z - \ + Aa{2n-X) {2ib±^-n(nb2 + n(2n-l)a2-2ac(2n- l)f'2

If the constants a, b, and c are real and

(5.7) nb2 + n(2n -1 )a2 - 2ac(2« -1)H,

then the zeros have the form z = n/2±iß where ß is purely real, i.e. they lie in the

half plane defined by (5.4).

It can be easily verified that if az2 + bz + c is a real quadratic polynomial (linear

if a=0) whose zeros lie in the region H bounded by the two branches of the

hyperbola

(5.8) j2-x2/(2n-l) = n/2,

then the coefficients a, b, and c satisfy (5.7). Thus if/(z) is a real polynomial whose

zeros lie in the region H then it can be expressed as the product of linear and

quadratic factors with real coefficients satisfying (5.7). Hence as a particular case

of Theorem 5 we get the following:

Corollary 2 [6]. Iff(z) is a real polynomial whose zeros lie in the region H and

S(9) is a trigonometric polynomial of degree n with arbitrary complex coefficients,

then for every real 0 we have the inequality

\do)f^m S   max   \S(6)\ \f(in)\.
0S¡e<2n

Taking A0 = An2, Xx= — 2/n, X2 = - 8/n2 in Theorem 4 we get :

Corollary 3. If pn(z) is a polynomial of degree n > 1 and \pn(z)\ S 1 for \z\ S 1

then

(5.9) | Xn2pn(z) - zp'n(z) - z2p'n(z)| S n211 - Af

r/|A|gi(l + l/n).

For if |A[ ¿¿(1 + Ifri) then the zeros of the polynomial

An2-2z-4(«-l)z2/n

lie in the half plane defined by \z\ S \z-n/2\.
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Since in Corollary 3 A is allowed to be complex it is a partial generalization

of the following result of Boas [4, see Corollary 2].

Ifpn(z) is a polynomial of degree « > 1 and \pn(z)\ S 1 for \z\ < 1, then

\Xn2pn(z)-zp'n(z)-zyn(z)\

does not exceed (1 — A)«2 if XS 1/3+ l/(6«2), and does not exceed the maximum of

\Xn2 cos «0-^« cot (0/2) sin «0|, 0< 0<tt, if X> 1/3 +1/(6«2).

If, in particular, p(z) ^0 for |z| < 1 or p(z) is a symmetric polynomial in the sense

that |p(z)| = \q(z)\ then with the help of (5.2) it follows from (5.3) that the expression

on the right-hand side of (5.9) can be replaced by

i{«2(|A| + |l-A|)}

which is equal to n2/2 if OS AS^(1 + 1/n). Let 5(0) be a real trigonometric poly-

nomial of degree « and let us apply our conclusion to the symmetric polynomial

P(S)(ei9) = ein95(0) of degree 2«. We get

|4A«2F(S)(z)-zF('S)(z)-z2F("S)(z)| S 2«2  max   |5(0)|,       0 S A S i(l + l/n).
ose<2u

Thus for 0 = A<.±(1 + 1/n)

|(4A-l)«25(0) + 2z«5'(0) + 5"(0)| S 2«2  max   |5(0)|,
0á9<2n

i.e.
{(4A-l)«25(0) + 5"(0)}2+4«2{5'(0)}2 S 4«4| max   |5(0)||2.

By choosing A=¿(1 + 1/n) or A=^(l - 1/n) as the need may be, we can make

{(4A-l)n25(0) + 5"(0)}2 = (n|5(0)|+ |5"(0)|)2

and then conclude that for a real trigonometric polynomial 5(0) of degree n,

(5.10) {«|5(0)| + |5"(0)|}2 + 4n2|5'(0)|2 S 4n4| max   |5(0)||2.
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