NOETHER-LASKER DECOMPOSITION OF
COHERENT ANALYTIC SUBSHEAVES

BY
YUM-TONG SIU

In this paper we develop the theory of Noether-Lasker decomposition of co-
herent analytic subsheaves as an analogue of the algebraic Noether-Lasker de-
composition of ideals in Noetherian rings. The decomposition can be described
as follows: Suppose & is a coherent analytic subsheaf of a coherent analytic sheaf
J on a complex space (X, 0) in the sense of Grauert. For every point x of X,
&, as an O,-submodule of 7, has a Noether-Lasker decomposition into primary
0.-submodules of 7. The radicals of these primary submodules are prime ideals
of 0, which define subvariety-germs of X at x. These subvariety germs are pieced
together to form global irreducible subvarieties of X which we call associated
subvarieties of & A coherent subsheaf of 7 which has only one associated sub-
variety is called primary. We prove that every coherent analytic subsheaf can be
represented as the intersection of “locally finite” primary subsheaves. This repre-
sentation is what we call the Noether-Lasker decomposition of the coherent
analytic subsheaf. If (X, 0) is Stein, then a coherent analytic proper subsheaf & of a
coherent analytic sheaf .7 is primary if and only if I'(X, %) is a primary submodule
of the I'(X, 0)-module I'(X, 7).

The Noether-Lasker decomposition of subsheaves is derived from the gap-
sheaf theory of Thimm [4]. In part I of this paper we give an exposition of Thimm’s
theory of gap-sheaves by sheaf-theoretical methods. In part II of this paper we
establish the Noether-Lasker decomposition of coherent analytic subsheaves.

Notations. All complex spaces in this paper are in the sense of Grauert
[1, §1]. Suppose (X, 0) is a complex space. A holomorphic function on (X, 0) is an
element of I'(X, 0). A holomorphic function f vanishes at a point x of X if the germ
of fat x is not a unit in 0,. A subvariety in X is a set which locally is the set of
points where a finite number of locally defined holomorphic functions vanish.
The ideal-sheaf of a subvariety Y, denoted by Id Y, is the sheaf of germs of holo-
morphic functions vanishing at every point of Y. A complex space (Z, ) is a
subspace of (X, 0) if Z is a subvariety of X and there exists a coherent ideal-sheaf
J on X such that #=(0/#)|Z and {z|z€ X, £,#0,}=Z. A module-sheaf on
(X, 0) is an analytic subsheaf of @” for some p. If & is an ideal-sheaf on (X, @),
then /7 is the ideal-sheaf defined by (/&)= +/%, where 1/, is the radical
of the ideal < in 0,.
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Suppose that Z and & are analytic subsheaves of an analytic sheaf J and &/
is an ideal-sheaf on a complex space (X, 0). Denote by #: the ideal-sheaf
defined as follows: for x€ X, fe (#:%), if and only if fe 0, and f¥,<Z,.
Denote by (&: %) or simply by #:. the subsheaf of 7 defined as follows:
for xe X, se(¥:), if and only if s€ 7, and Hs<,. If #, &, I, and &
are coherent, then #Z: % and & :& are coherent. If s € I'(X, 7) and fe I'(X, 0),
then Z:s denotes Z:0s and (& :f)s or simply & :f denotes (F:0f ).

Suppose X and Y are two complex spaces, J is an analytic sheaf on X, and
m: X — Y is a holomorphic map (i.e. a morphism of ringed spaces). Then R°#(J")
denotes the zeroth direct image of J under =.

Suppose x=(xy,...,x,)€C" and ry,...,r, are positive numbers. Then
A(x;ry,...,r,) denotes the polydisc {(zy,...,2,)€C"||z;—x|<r, 1Si<n}.
Suppose Z is a sheaf on a topological space E, x € E, U is an open neighborhood
of x in E, and s € T'(U, &). Then s, denotes the germ of s at x and &, denotes the
stalk of & at x. If fis a (complex-valued) function on E, then f, denotes the germ
of fat x.

Suppose R is a Noetherian ring and E is an R-submodule of a finitely generated
R-module F. Then P(E, F) denotes the set of all associated nonunit prime ideals
in the Noether-Lasker decomposition of E as a submodule of F.

I. Gap-sheaves.

DEFINITION 1. Suppose & is an analytic subsheaf of an analytic sheaf I~ on a
complex space (X, @) and p is a nonnegative integer. The pth gap-sheaf of & in 7,
denoted by 5 or simply i, is the analytic subsheaf of 7~ defined as follows:
for x € X, s € (%), if and only if there exist an open neighborhood U of x in X,
a subvariety 4 in U of dimension =<p, and 1 € I'(U, 7) such that t,=sand ¢, € &
for ye U—A. Denote by E(#,7) the set {x|xe X, #,#7,} and E (S T)
denotes E(S, A,)-

DEFINITION 2. Suppose & is an analytic subsheaf of an analytic sheaf J on a
complex space (X, ) and A is a subvariety of X. Then the gap-sheaf of & in T
with respect to A, denoted by &[A]s or simply &#[A4], is the analytic subsheaf of
T defined as follows: for x € X, s € #[A4], if and only if there exist an open neigh-
borhood U of x in X and ¢ € I'(U, ) such that ¢t,=s and t, € &, for ye U—A4.

THEOREM 1. Suppose & is a coherent analytic subsheaf of a coherent analytic
sheaf 7 on a complex space (X, 0) and A is a subvariety of X. Then

«©

FAl = U (£,

n=1
where <7 is the ideal-sheaf of A, and hence is coherent.

Proof. Let F=\J2., (¥ : ™)y <T. F is coherent, because it is the union of
an increasing sequence of coherent subsheaves of a coherent sheaf [1, Satz 8, §2].
Suppose s € [A], for some x € X. Then there exist an open neighborhood U of
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xin Xand t e I'(U, 7)) such thatt,=sand t, € %, for ye U—A4. Let Z=(¥|U):¢.
E(#, 0|U)< A n U. By Hilbert Nullstellensatz [2, III.A.7] /3<%, for some n.
srCsB . <. s€F

Suppose s € Z,. se (¥ :4"), for some n. There is an open neighborhood U
of x and ¢t € (U, ) such that ¢, =s and 1(&"*|U)= &L |U. For ye U— 4, &2=0,.
Hence t, € %, # =%[4]. Q.E.D.

The following lemma is a particular case of [1, Hauptsatz I, §6] and it can be
proved in a very elementary way.

LEMMA 1. Suppose X and Y are complex spaces, F is a coherent sheaf on X, and
w: X — Y is a proper nowhere degenerate holomorphic map, then R=(F) is coherent.

THEOREM 2. Suppose & is a coherent analytic subsheaf of a coherent analytic
sheaf I on a complex space (X, ) and p is a nonnegative integer. Then E°(¥, T)
is locally contained in a subvariety of dimension < p, i.e. for every x € X there exist
an open neighborhood U of x in X and a subvariety A in U of dimension =p such
that E°(¥, )N U< A.

Proof. Since the theorem is local in nature, we can suppose without loss of
generality that (X, ) is a subspace of an open subset G of C*. Let @ be the structure
sheaf of Gand & and .7 be the trivial extensions of % and 7 on G respectively. We
can further suppose without loss of generality that we have a sheaf-epimorphism
A:0° >3 on G. Let M =\"Y(F). Then E(¥, T )=E"(M, O"). Hence we need
only prove that

for every coherent module-sheaf .# <@” on an open
1) subset G of C", E°(#, 07) is locally contained in a
subvariety of dimension <p.

We fix p and prove (1) by induction on n. For n<p, (1) is trivially true. Now
suppose (1) is true when 7 is replaced by n— 1. We are going to prove by induction
on p that (1) is true when n is unreplaced.

(a) p=1. Because of the local nature of (1) we can suppose that G is connected.
If A =0, then (1) is trivial. So we can suppose # #0. E(#, 0) is a proper sub-
variety of G. Take x € G. We want to prove that E°(#, 0) is locally contained in
a subvariety of dimension =<p at x. If x ¢ E(#, ©), then it is obviously true. So
we suppose x € E(#, 0). There is a nonzero holomorphic function ¢ on some
open neighborhood U of x such that ¢ vanishes on E(#, 0) N U. Without loss of
generality we can suppose that U is a polydisc A(x; r, ..., r,) and the projection
w: Y — A(m(x); ry,...,7,-,) defined by =(zy,...,2z,)=(z4,...,2,-1), Where
Y={y|ye U, ¢(y)=0}, makes Y an analytic cover over A(m(x);ry,..., 1)
[2, II1.B.3].

By Hilbert Nullstellensatz, after shrinking U we can suppose without loss of
generality that ¢™ € I'(U, #) for some m. 2=(#|0p™)|Y is a coherent analytic
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sheaf on the complex space (Y, "), where X =(0/0p™)|Y. UnN E*(M,0O)
=E*(2, X). Let o/ = R°n(2) and # = R°=(X').

By Lemma 1, &/ is a coherent analytic subsheaf of the coherent analytic sheaf
B onA(m(x);ry, ..., rpoq).

If y e E°(2, X'), then there exist a subvariety A4 of dimension =<p in an open
neighborhood B of y in Y and ¢ e I'(B, X") such that t,€ 2, for ze B— A and
t, ¢ 2, Let n~Y(w(y))={)" ..., "}, where y°=y, and B' be disjoint open neigh-
borhoods of y!, 0=i</, in Y, such that B°< B. Since ¢ is proper, there is an open
neighborhood C of =(y) in A(w(x); ry,...,r,_;) such that ==}(C)<|Y!_, B".
Define t* e I'(n~Y(C), X’) as follows: t*|#=}(C) N B°=t|=~*(C)N B® and
t*|l7~1(C) N B'=0 for 1<5i<l t* induces t' € I(C, B). t,e &, for ze C—n(A)
and t,, ¢ &, Since C N n(A4) is a subvariety of dimension <p in C,n(y)e
E*(<4 %). Since y is an arbitrary point in E*(2, X), E*(2, X)) <=~ Y(E*(«,%)). Let
O<si<r, 1Sisn—1, and £ be the structure sheaf of D=A(n(x);sy,...,8,-1)
Then there is a sheaf-epimorphism 5: £? — #|D.

Eo(A, B) N D=E*(n~ (| D), #%. By induction hypothesis E*(y~ (/| D), %#9)
is locally contained in a subvariety of dimension =< p. There exists a subvariety Z
of dimension =<p in a polydisc W=A(m(x); t,..., t,_1) < D such that E*(«, %)
NWcZ.

Ep(‘”: 0) N A(X, tla RS ] tn—l, rn)
= EN, X)NAX; 1y, B, 1) S 7 HEXA, B) N W) < 77 Y(2).

7~Y(Z) is a subvariety of dimension <p in A(x; t,,...,t,_4, r,). The case p=1is
proved.

(b) Thecaseofageneralp=1.0?=0?"1 @ 0. Leta: O* — 0P~ be the projection
onto the first summand and B: @ — @ be the injection from the second summand.
Let /" =o(A) and =4 N B(0). Take x € G. Then by induction hypothesis and
by (a) there exist subvarieties Z; and Z, of dimensions = p in an open neighborhood
U of x such that UN E°(A, 0P-Y)<Z, and UN E* (P 0)<Z,. 1t is readily
checked that U N E°(A, 0P)<Z, U Z,. Q.E.D.

THEOREM 3. Suppose & is a coherent analytic subsheaf of a coherent sheaf I
on a complex space (X, 0) and p is a nonnegative integer. Then S, is coherent and
E*(Y, T) is a subvariety of dimension <p in X.

Proof. First we prove the coherence of #,. Coherence is a local property.
Take x € X. By Theorem 2 there exists a subvariety 4 of dimension =<p in an open
neighborhood U of x in X such that U N E*(¥, T)< A.

Since dim A< p, S| U=(F|U)[A]. Hence H,)|U is coherent by Theorem 1.
A, is coherent.

ES T)=E(S: %), 0) is a subvariety, because ¥ :4,, is coherent. Since
E(¥, T) is locally contained in a subvariety of dimension <p, EA(¥, J) is a
subvariety of dimension <pin X. Q.E.D.
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COROLLARY. S,,=F[E(S, T)].

II. Noether-Lasker decomposition of subsheaves. Suppose & is a coherent
analytic subsheaf of a coherent analytic sheaf J on a complex space. Let
E (S, T)=Uer, Y¥ be the decomposition into irreducible branches. Then we
call each nonempty Y¢, p=0, i€ I(p), an associated subvariety of & in J and
denote the set of all associated subvarieties of ¥ in 4 by Z(¥, J). From the
definition we see readily that Z(<, 7) is locally finite. % is called a primary sub-
sheaf of J if & has only one associated subvariety.

The following lemma is a well-known algebraic fact [5, Appendix, Chapter IV]:

LEMMA 2. Suppose R is a Noetherian ring and N is an R-submodule of a finitely
generated R-module M. A prime ideal P in R is an associated prime ideal in the
Noether-Lasker decomposition of N as a submodule of M if and only if P=+/(N:f)
for some fe M.

THEOREM 4. Suppose & is a coherent analytic subsheaf of a coherent analytic
sheaf I on a complex space (X, 0) and x € X. Let {X{ | p20, i € J(p)} be the set
of all associated subvarieties of & passing through x, where dim X{=p, i€ J(p),
and suppose (Id X).= ek, Pfj is the decomposition into prime ideals. Then
{Pfi| p20, i€ J(p), j € K(p, )} =P(%, T,).

Proof. Suppose Pe P(¥,, 7,) and dim P=p. Then P=+/(¥%:f) for some
f€ 7, by Lemma 2. P defines a subvariety ¥ of dimension p in an open neighbor-
hood D of x in X. We can suppose after a shrinking of D that there exists
geI'(D, 7) such that g, =f and Id V'=+/((|D):g). This implies that

{r|yeD,g,e S} =D-V.

Hence V<E*(¥ 7). Since dim V=p and dim E/(¥, T)<p, P=P}, for some
ieJ(p) and some j € K(p, i).

Fix p20 and i € J(p). By definition X¢ is an irreducible branch of E°(¥, J)
for some o2 p. Let U be a Stein open neighborhood of x in X such that U N X7
=Ujekew,» X¥ is the decomposition into irreducible branches and P§=(Id X¥),,
JE€K(p,i). Fix jeK(p,i). Let Z' be the union of irreducible branches of
E°(¥, 7)) N U other than X§ and let

Z=Z'"V(E""Y L T)n ).

Take y € X—Z.
(ZI0)XE)y = Soww # S

Since (L|U)[X{] is generated by global sections [1, Satz 4, §2], there exists
te T(U, (L|U)[XF]) such that ¢, ¢ &,

Let Y=E(Z|U, (£|U)+(0|U)t). Since X§ is irreducible, if Y# X#, then
dim Y<p and t,e,_,,,=, (contradiction). Hence Y=X§ Pi=(Id Xf),
=(d Y),=+/(%1,). By Lemma 2, P}, € P(¥,, 7). Q.E.D.
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This theorem gives us a characterization of associated subvarieties and tells us
that the subvariety-germs defined by associated prime ideals in the Noether-Lasker
decomposition of the stalks of & can be pieced together to form global
subvarieties.

COROLLARY 1. If Ye X (¥, T), then E(¥, L[Y]) =Y.

Proof. Obviously E(¥, £[Y])<Y. Suppose x€Y and PeP((d Y),, 0,).
Then by Theorem 4, P € P(¥%,, Z,). By Lemma 2, P=+/(%,:s) for some s€ J,.
se L[Y],—~%. Q.E.D.

COROLLARY 2. Suppose % is a coherent analytic subsheaf of 7 and S <R<T
and 2(¥, T)={X"|iel}. Then (¥, R)<% (¥, T). Hence there is a subset J
of I such that E(&, )=\ {X*!|ieJ}.

Proof. Suppose Y € Z(¥, #). Takey € Yand P € P((Id Y),, 0,). By Theorem 4,
PeP(¥,%#,). By Lemma 2, P=+/(¥,:s) for some seZ%,. Since seJ,, by
Lemma 2, P e P(¥,, 7).

By Theorem 4, P € P((Id XY),, 0,) for some i € I such that y € X*. Since the two
irreducible subvarieties X! and Y have a branch-germ in common at y, X*=1Y.
Hence (¥, Z) <% (¥, ). The existence of J follows from

E&R) = U {Y| YeX(Z R). Q.E.D.

THEOREM 5. Suppose & is a coherent analytic subsheaf of a coherent analytic
sheaf I on a complex space (X, 0) and A is a subvariety of X. Suppose (¥, )
={X'|iel},xeA,and I'={ieI| x € X'}. Suppose

P(Id X9, 0) = {Py | jed}, i€l

Let $,=N{Qy|iel',jeJ} be a Noether-Lasker decomposition of <,, where
the radical of Q; is Py, icl’,jeJ, andlet K={i|iel', X'¢ A}. Then

(ZL[ADx = N{Qy | i€ K, je i}
Proof. Let &/ =1Id A. By Theorem 1

Sl = ) Gt = N {(Qu:2|icl,jel)

= N{U @uapier,jesl
Foriel' —K, P;> s, and hence Q,,:&%=7, for n sufficiently large. For i € K,
P>, and hence Q,;: %= Q,; for every n. Therefore
LlAl. = N{Qy | ieK, jel}. Q.E.D.
COROLLARY. Z(L[A], 7)={X*| X'¢ A} and
E(F[A, 7)) =U{Y| YeZ(#T), Y ¢ 4}.
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Proof. The first assertion follows from Theorems 4 and 5 and the second asser-
tion follows from the first. Q.E.D.

LeMMA 3. Suppose & < are coherent analytic subsheaves of a coherent analytic
sheaf I on a complex space (X, 0). Suppose £ is the ideal-sheaf of E(Y, %) and
x € E(¥, R). Then there is a natural number k such that (F*T + L) N\ B) =1

Proof. E(0, #/¥)=E(¥, #). By Hilbert Nullstellensatz there is a natural
number / such that £, <(0:%/%),. By the Lemma of Artin-Rees [5, Theorem 4’;
§2, Chapter VIII] there exists a natural number k such that (F*(7 /%) N (Z|S))x
<(F(R| L))« Hence (F*T + )N R),.=S,. Q.E.D.

LEMMA 4. Suppose ¥ <2 are coherent analytic subsheaves of a coherent analytic
sheaf I on a complex space (X, 0). Then there exists a coherent analytic subsheaf
2 of T such that E(2, 9 )=E(%, %) and 2 N A=,

Proof. Suppose Z(, Z)={X*|ieI}. Let #, be the ideal-sheaf of X*. Take
x' € X'. By Lemma 3 and Corollary 1 to Theorem 4, there exists a natural number
k(i) such that

@ (FFOT + ) N X a)w = L, i€l

Since (& &) is locally finite, 2= ("; (F¥PT + &) is a coherent analytic sub-
sheaf of 7. Obviously E(2, )< E(¥, %). We are going to prove that 2 N #=%.
From Corollaries 1 and 2 to Theorem 4 and (2) we conclude that

@) EEUIOT+F)n LXg) < UX! |jel, XIS XY, iel

Obviously S<2nNZX. Let Y=E(¥, 2N Z%). By Corollary 2 to Theorem 4
there exists a subset of J of I such that Y=\ {X* | ieJ}. Suppose Y# @. Then
take y € Y. Take a relatively compact open neighborhood of U of y in X. Let
F={i|ieJ, XN U# @}. Fis a finite set. Take i € F such that

dim X! = max {dim X’ | je F}.
Take an open neighborhood W of a point z of X*in U such that
Wn(U{X’|jelL, X' 3 X%}) = 2.

YO W=X'nW. (2N R)\|W<ZL[X'|a|W. By 3) (ST +F) N L[X'|a| W=
&|W. Hence

SIWS2 N RWS(IOT +F) N L[X |a| W= |W.

z ¢ Y (contradiction). Hence Y=g and =2 N £.

Suppose E(2, 7)#E(S, %#). Take x€ E(¥,Z)—E(2,7). Then 2,=7,.
S=2,N%,=A,, contradicting that x € E(& %#). Hence E(2, 7)=E(% Z).
Q.E.D.
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LEMMA 5. Suppose & is a coherent analytic subsheaf of a coherent analytic sheaf
I on a complex space (X, 0) and Z(&, T )={X"|iel}. Let J={i|iel, X' is
maximal in 2(Z, T")}. Then there exist a coherent analytic subsheaf ® of I and
primary subsheaves 2, of I, i € J, such that (i) E(Z, 7)=Uicx X', where K=1—J,
(i) E(2, 7)=X'Y ieJ, and (iii)) (e 2) N 2=

Proof. ForieJlet Yi=\J {X’|jeIandj+#i} and define 2,= Z[Y"].

Then by Corollary to Theorem 5, {X*}=%(2,, 7), i e J. Hence E(2, I)=X"
and 2, is a primary subsheaf of ,ieJ. Take y'e X'~ Y! ieJ. Then (2),:=%,
ielJ. Since 2,29, ie J, we have
(4) (’re) Qj)yi = %‘, iEJ.

Since (&, 7) is locally finite, (\,c; 2, is a coherent analytic subsheaf of 7.
By (4) and Corollary 2 to Theorem 4 E(¥, Nies 2)<Uiex X*.

Suppose x€ Uiex X'—E(S (ies 2)- Then xe X’ for some jeK and

Fe=ies (L) Let L={i | i€ J, x € X*}. Since

P((2)x 72) = P(d X),, 0,), i€l
P T = U P X9, 0.

Since
P((Id Xi)x’ 0,‘) N (H P((Id X{)xa wx)) = g,

Theorem 4, which asserts that P((Id X7),, 0,)<P(%, 7,), is contradicted. Hence
E( Nies 2)=Uiex X'. By Lemma 4 there exists a coherent analytic subsheaf
2 of T such that (ie; 2) N #= and E(Z, T)=U,x X'. Q.E.D.

THEOREM 6 (NOETHER-LASKER DECOMPOSITION OF COHERENT SUBHEAVES). Suppose
& is a coherent analytic subsheaf of a coherent analytic sheaf I on a complex space
(X, 0) and Z(&, T)={X*|icl}. Then for every i€l, there exists a primary
subsheaf 2, of 7 such that E(2,, )= X" and (\ie1 2:=.

Proof. For Y e (¥, ) define the depth of Y in (&, ) to be sup {/ | there
exist Y,€Z(# J), 05j=1, such that Yo=Y and Y; & Y,,; for 0<5j</}. If
Y;€e2(#9),05jsl,and Y; £ Y,,,,0=j<], then for x € Yo, dim, ¥;<dim, Y,,,
(because Y is irreducible) and /< dim, X. So the depth of Y in (¥, 7) is finite
for Ye Z(¥, 7). For i € I denote the depth of X* by dj, and, for any nonnegative
integer d, let I;={i | ie I di=d}, Jo=\U,sq4 I, and K;=1—J,.

We are going to prove by induction on d the following:

(5) For every d=0 there exist primary subsheaves 2, of J for iel; and
a coherent analytic subsheaf %, of J such that (i) E(2,9)=X'iel,,
(i) E(Rs, 7)=Uhex, X', and (iii) (Miesy 2) N #a=.
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Jo={X*| X'is maximal in (¥, J)}. By Lemma 5, (5) is true for d=0. Suppose
(5) is proved for 0=d<e. Since E(%., 7)=Jicx, X' and

E@,7) = U{Y| YeZ@, T,

{Xtiel,,}={Ye%(X.,7)| Y is maximal in £(%,, 7)}. By Lemma 5 there
exist primary subsheaves 2; of J, i€l,,,, and a coherent analytic subsheaf %
of J such that (i) E(2,, 7)=X', i€ l,., (ii) E(%#, 7) is thin in J,e,,, X*, and
(i) (Mier, ., 2) N #B=2R,. Hence ((Nies,,, 2) N B=S Let

Z= {Yl Ye‘%‘(g9 '7), Y ¢ UiEK“.l X‘}'
By Corollary to Theorem 5, E(Z[Z]s, 7)< Uex,,, X*. Let
V=EZ (N 2)n2Zly).

€Je+1

Then V<Z. Since Z is thin in |, ,, X', by Corollary 2 to Theorem 4,

VC UiEK.+1 X‘.
By Lemma 4 there exists a coherent analytic subsheaf 5 of J such that
E, )=V and ((ies,,, 2) NB[Z)y N H# = Let R,,.,=B[Z]s N 3 Then

(Mieres: 2) N Re1= and ERe1, 7)< Uiex,,, X'. Suppose E(Z..,, T)
#Ulerys, X' Take x € Uiek,,, X'—E(%.11, T ). x€ X’ for some jeK,,, and
Fe=ieses1 (). Let L={i| i€ J,,,, x € X*}. Since P((2)., T)=P((ld X*),,0,),
ieL, (%, T)< Ui P(Ad X),, 0,). However,

P(d X)), 0:) 0 (\) P(Ud XY),, 0)) = 2,

contradicting Theorem 4, which asserts P((Id X’),, 0,)<P(%,, J,). Hence
E(Z..1,7)=Uiexk,,, X' The induction process is complete and (5) is proved.
We claim that & =("),; 2;. Obviously & <[ yes .@, Take x € X.

F={iliel, xe X%
is a finite set. Take d>max {d, | i € F}. Then x ¢ Uk, X'. (Z2)x=T.
Fe= () @ R)) =) (2):> () (D) Q.E.D.
ieJq x ielg iel

ReMARK. The decomposition & =("),; 2, is irredundant, i.e. ¥ #(Ner-n 2
for any j € I; for otherwise by Theorem 4 we have

TET) < | T3, T) = X'|icI-(.

In general, 2, i € I, is not uniquely determined. For example, when (X, 0) is C?
with coordinate-functions z, and z,, then (0z,) N (022 + 0z,)=(0z,) N (Oz, + Oz,)?
are two different irredundant Noether-Lasker decompositions.
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However, corresponding to the uniqueness of isolated ideal components in the
usual Noether-Lasker decomposition in rings, we have the following:

A subset L of Z(¥, .7) is called an isolated system of associated subvarieties if
Y,<Y,, Y,eZ(¥,T),i=1,2,and Y, € Limply Y, € L. If L is an isolated system
of associated subvarieties, then () {2; | X' € L} is unique, because it is equal to
U {X*| X* ¢ L}] by Corollary to Theorem 5.

THEOREM 7. Suppose & is a coherent analytic subsheaf of a coherent analytic
sheaf I on a complex space (X, 0). If & is primary, then I'(X, &) is a primary
I'(X, O)-submodule of I'(X, ). The converse is true if (X, 0) is Stein and T'(X, &)
#0(X, T).

Proof. (i) Suppose % is primary. Let { Y}=2(<, 7). We are going to prove that
I'(X, &) is a primary I'(X, 0)-submodule of I'(X, 7°) with I'(X, Id Y) as its radical.
TakefeI'(X, Id Y). Fix y € Y. Since E(¥:7, 0)=Y, by Hilbert Nullstellensatz
*7,=, for some natural number k. (¥, f*T + F)<{Y} by Corollary 2 to
Theorem 4. y ¢ E(S, f*7 + &) implies E(¥, f*T + )= @. f*I'(X, T)<I(X, &).
Suppose g € I'(X, 0)—T'(X, Id Y) and s € I'(X, ) such that gs e I'(X, &). For
some y € Y g does not vanish at y. Then s, € &,. Z(Z, Os+ &) <{Y} by Corollary 2
to Theorem 4. y ¢ E(¥, Os+ &%) implies E(¥, Os+T )= o.se I'(X, T).

(ii) Suppose I'(X, &) is a primary I'(X, @)-submodule of I'(X,-7"). Suppose
I'(X, £)#I(X, 7) and (X, 0) is Stein. Let P<T'(X, 0) be the radical of I'(X, &).

“P defines a subvariety Y in X. Clearly E(, #)<Y and E(¥, #)# 2.

We claim P=T'(X,Id Y). Take fe I'(X,Id Y). Fix y€ Y. By Hilbert Null-
stellensatz f¥ e (3!, Og,), for some natural number k and some g,,..., g, €P.
y ¢ E((Cl-1 0g):f, ). By Cartan Theorem A there exists & e I'(X, (G-, Og):f)
such that 4 does not vanish at y. hif e I'(X, >!., Og)and h ¢ P. Letp: @' — >!_, Og,
be the sheaf-epimorphism defined by ¢(f,..., t)=>!_, t(g). for xe X and
(t1,..., 1) e O, Since H(X, Ker ¢)=0 by Cartan Theorem B, hf=3!_, ¢;g; for
some ¢, ..., ¢ € I'(X, O). hf € P. h ¢ P implies f€ P. Hence P=TI'(X, Id Y).

Y is irreducible, for otherwise Y=Y, U Y, for some subvarieties Y,;# Y
and Y,#Y and P=T(X,Id Y)=T'(X,1d Y,) n I'(X, Id Y,) with I'(X,Id Y,) #
'X,1d Y),i=1,2.

Suppose Z € (¥, 7). Z< Y. Suppose Y#Z. Then take y € Y—Z. By Corollary
1 to Theorem 4, E(¥:¥[Z], O)=Z. By Cartan Theorem A there exists f €
I'(X, &: £[Z]) such that f does not vanish at y and there exists s € I'(X, L[Z])—
I'(X, &). Hence f ¢ P, s ¢ I'(X, &), and fs € I'(X, &). Contradiction. (¥, 9
={Y}. & is primary. Q.E.D.

REMARKS. (i) Theorem 7 justifies the term primary subsheaf.

(ii) Theorem ’ of [3] follows from Theorems 6 and 7.

The author wishes to thank Professor Robert C. Gunning for his suggestions and
encouragements.
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