NOETHER-LASKER DECOMPOSITION OF COHERENT ANALYTIC SUBSHEAVES

BY YUM-TONG SIU

In this paper we develop the theory of Noether-Lasker decomposition of coherent analytic subsheaves as an analogue of the algebraic Noether-Lasker decomposition of ideals in Noetherian rings. The decomposition can be described as follows: Suppose $\mathcal S$ is a coherent analytic subsheaf of a coherent analytic sheaf \mathcal{F} on a complex space (X, \emptyset) in the sense of Grauert. For every point x of X, \mathscr{S}_x as an \mathscr{O}_x -submodule of \mathscr{T}_x has a Noether-Lasker decomposition into primary \mathcal{O}_x -submodules of \mathcal{F}_x . The radicals of these primary submodules are prime ideals of \mathcal{O}_x which define subvariety-germs of X at x. These subvariety germs are pieced together to form global irreducible subvarieties of X which we call associated subvarieties of \mathcal{S} . A coherent subsheaf of \mathcal{T} which has only one associated subvariety is called *primary*. We prove that every coherent analytic subsheaf can be represented as the intersection of "locally finite" primary subsheaves. This representation is what we call the Noether-Lasker decomposition of the coherent analytic subsheaf. If (X, \mathcal{O}) is Stein, then a coherent analytic proper subsheaf \mathcal{S} of a coherent analytic sheaf \mathcal{F} is primary if and only if $\Gamma(X, \mathcal{S})$ is a primary submodule of the $\Gamma(X, \mathcal{O})$ -module $\Gamma(X, \mathcal{F})$.

The Noether-Lasker decomposition of subsheaves is derived from the gap-sheaf theory of Thimm [4]. In part I of this paper we give an exposition of Thimm's theory of gap-sheaves by sheaf-theoretical methods. In part II of this paper we establish the Noether-Lasker decomposition of coherent analytic subsheaves.

Notations. All complex spaces in this paper are in the sense of Grauert [1, §1]. Suppose (X, \mathcal{O}) is a complex space. A holomorphic function on (X, \mathcal{O}) is an element of $\Gamma(X, \mathcal{O})$. A holomorphic function f vanishes at a point x of X if the germ of f at x is not a unit in \mathcal{O}_x . A subvariety in X is a set which locally is the set of points where a finite number of locally defined holomorphic functions vanish. The ideal-sheaf of a subvariety Y, denoted by Id Y, is the sheaf of germs of holomorphic functions vanishing at every point of Y. A complex space (Z, \mathcal{H}) is a subspace of (X, \mathcal{O}) if Z is a subvariety of X and there exists a coherent ideal-sheaf \mathcal{I} on X such that $\mathcal{H} = (\mathcal{O}/\mathcal{I})|Z$ and $\{z \mid z \in X, \mathcal{I}_z \neq \mathcal{O}_z\} = Z$. A module-sheaf on (X, \mathcal{O}) is an analytic subsheaf of \mathcal{O}^p for some p. If \mathcal{I} is an ideal-sheaf on (X, \mathcal{O}) , then \mathcal{I} is the ideal-sheaf defined by $(\mathcal{I}, \mathcal{I})_x = \mathcal{I}_x$, where \mathcal{I}_x is the radical of the ideal \mathcal{I}_x in \mathcal{O}_x .

Suppose that \mathcal{R} and \mathcal{S} are analytic subsheaves of an analytic sheaf \mathcal{T} and \mathcal{A} is an ideal-sheaf on a complex space (X, \mathcal{O}) . Denote by $\mathcal{R}: \mathcal{S}$ the ideal-sheaf defined as follows: for $x \in X$, $f \in (\mathcal{R}: \mathcal{S})_x$ if and only if $f \in \mathcal{O}_x$ and $f\mathcal{S}_x \subset \mathcal{R}_x$. Denote by $(\mathcal{S}: \mathcal{A})_{\mathcal{F}}$ or simply by $\mathcal{S}: \mathcal{A}$ the subsheaf of \mathcal{T} defined as follows: for $x \in X$, $s \in (\mathcal{S}: \mathcal{A})_x$ if and only if $s \in \mathcal{T}_x$ and $\mathcal{A}_x s \subset \mathcal{S}_x$. If \mathcal{R} , \mathcal{S} , \mathcal{T} , and \mathcal{A} are coherent, then $\mathcal{R}: \mathcal{S}$ and $\mathcal{S}: \mathcal{S}$ are coherent. If $s \in \Gamma(X, \mathcal{T})$ and $f \in \Gamma(X, \mathcal{O})$, then $\mathcal{R}: s$ denotes $\mathcal{R}: \mathcal{O}s$ and $(\mathcal{S}: f)_{\mathcal{F}}$ or simply $\mathcal{S}: f$ denotes $(\mathcal{S}: \mathcal{O}f)_{\mathcal{F}}$.

Suppose X and Y are two complex spaces, \mathcal{F} is an analytic sheaf on X, and $\pi: X \to Y$ is a holomorphic map (i.e. a morphism of ringed spaces). Then $R^0\pi(\mathcal{F})$ denotes the zeroth direct image of \mathcal{F} under π .

Suppose $x = (x_1, \ldots, x_n) \in \mathbb{C}^n$ and r_1, \ldots, r_n are positive numbers. Then $\Delta(x; r_1, \ldots, r_n)$ denotes the polydisc $\{(z_1, \ldots, z_n) \in \mathbb{C}^n \mid |z_i - x_i| < r_i, 1 \le i \le n\}$. Suppose \mathscr{F} is a sheaf on a topological space $E, x \in E, U$ is an open neighborhood of x in E, and $s \in \Gamma(U, \mathscr{F})$. Then s_x denotes the germ of s at x and \mathscr{F}_x denotes the stalk of \mathscr{F} at x. If f is a (complex-valued) function on E, then f_x denotes the germ of f at x.

Suppose R is a Noetherian ring and E is an R-submodule of a finitely generated R-module F. Then P(E, F) denotes the set of all associated nonunit prime ideals in the Noether-Lasker decomposition of E as a submodule of F.

I. Gap-sheaves.

DEFINITION 1. Suppose $\mathscr S$ is an analytic subsheaf of an analytic sheaf $\mathscr T$ on a complex space $(X,\, \mathscr O)$ and ρ is a nonnegative integer. The ρ th gap-sheaf of $\mathscr S$ in $\mathscr T$, denoted by $\mathscr S_{\{\rho\}}$ or simply $\mathscr S_{\{\rho\}}$, is the analytic subsheaf of $\mathscr T$ defined as follows: for $x\in X$, $s\in (\mathscr S_{\{\rho\}})_x$ if and only if there exist an open neighborhood U of x in X, a subvariety A in U of dimension $\leq \rho$, and $t\in \Gamma(U,\mathscr T)$ such that $t_x=s$ and $t_y\in \mathscr S_y$ for $y\in U-A$. Denote by $E(\mathscr S,\mathscr T)$ the set $\{x\mid x\in X,\, \mathscr S_x\neq \mathscr T_x\}$ and $E^\rho(\mathscr S,\mathscr T)$ denotes $E(\mathscr S,\mathscr S_{\{\rho\}})$.

DEFINITION 2. Suppose $\mathscr S$ is an analytic subsheaf of an analytic sheaf $\mathscr T$ on a complex space $(X, \mathscr O)$ and A is a subvariety of X. Then the gap-sheaf of $\mathscr S$ in $\mathscr T$ with respect to A, denoted by $\mathscr S[A]_{\mathscr T}$ or simply $\mathscr S[A]$, is the analytic subsheaf of $\mathscr T$ defined as follows: for $x \in X$, $s \in \mathscr S[A]_x$ if and only if there exist an open neighborhood U of x in X and $t \in \Gamma(U, \mathscr T)$ such that $t_x = s$ and $t_y \in \mathscr S_y$ for $y \in U - A$.

Theorem 1. Suppose $\mathcal S$ is a coherent analytic subsheaf of a coherent analytic sheaf $\mathcal F$ on a complex space $(X,\mathcal O)$ and A is a subvariety of X. Then

$$\mathscr{S}[A] = \bigcup_{n=1}^{\infty} (\mathscr{S} : \mathscr{A}^n)_{\mathscr{F}},$$

where \mathcal{A} is the ideal-sheaf of A, and hence is coherent.

Proof. Let $\mathscr{F} = \bigcup_{n=1}^{\infty} (\mathscr{S}: \mathscr{A}^n)_{\mathscr{F}} \subset \mathscr{F}$. \mathscr{F} is coherent, because it is the union of an increasing sequence of coherent subsheaves of a coherent sheaf [1, Satz 8, §2]. Suppose $s \in \mathscr{S}[A]_x$ for some $x \in X$. Then there exist an open neighborhood U of

x in X and $t \in \Gamma(U, \mathcal{T})$ such that $t_x = s$ and $t_y \in \mathcal{S}_y$ for $y \in U - A$. Let $\mathcal{B} = (\mathcal{S}|U)$: t. $E(\mathcal{B}, \mathcal{O}|U) \subset A \cap U$. By Hilbert Nullstellensatz [2, III.A.7] $\mathcal{A}_x^n \subset \mathcal{B}_x$ for some n. $s \mathcal{A}_x^n \subset s \mathcal{B}_x \subset \mathcal{S}_x$. $s \in \mathcal{F}$.

Suppose $s \in \mathscr{F}_x$. $s \in (\mathscr{S}: \mathscr{A}^n)_x$ for some n. There is an open neighborhood U of x and $t \in \Gamma(U, \mathscr{F})$ such that $t_x = s$ and $t(\mathscr{A}^n | U) \subseteq \mathscr{S} | U$. For $y \in U - A$, $\mathscr{A}^n_y = \mathscr{O}_y$. Hence $t_y \in \mathscr{S}_y$. $\mathscr{F} = \mathscr{S}[A]$. Q.E.D.

The following lemma is a particular case of [1, Hauptsatz I, §6] and it can be proved in a very elementary way.

LEMMA 1. Suppose X and Y are complex spaces, \mathcal{F} is a coherent sheaf on X, and $\pi: X \to Y$ is a proper nowhere degenerate holomorphic map, then $R^0\pi(\mathcal{F})$ is coherent.

THEOREM 2. Suppose $\mathscr S$ is a coherent analytic subsheaf of a coherent analytic sheaf $\mathscr T$ on a complex space $(X,\mathscr H)$ and ρ is a nonnegative integer. Then $E^{\rho}(\mathscr S,\mathscr T)$ is locally contained in a subvariety of dimension $\leq \rho$, i.e. for every $x \in X$ there exist an open neighborhood U of x in X and a subvariety A in U of dimension $\leq \rho$ such that $E^{\rho}(\mathscr S,\mathscr T) \cap U \subseteq A$.

Proof. Since the theorem is local in nature, we can suppose without loss of generality that (X, \mathcal{H}) is a subspace of an open subset G of C^n . Let \mathcal{O} be the structure sheaf of G and $\tilde{\mathcal{F}}$ be the trivial extensions of \mathcal{F} and \mathcal{F} on G respectively. We can further suppose without loss of generality that we have a sheaf-epimorphism $\lambda: \mathcal{O}^p \to \tilde{\mathcal{F}}$ on G. Let $\mathcal{M} = \lambda^{-1}(\tilde{\mathcal{F}})$. Then $E^{\rho}(\mathcal{F}, \mathcal{F}) = E^{\rho}(\mathcal{M}, \mathcal{O}^p)$. Hence we need only prove that

for every coherent module-sheaf $\mathcal{M} \subset \mathcal{O}^p$ on an open (1) subset G of \mathbb{C}^n , $E^{\rho}(\mathcal{M}, \mathcal{O}^p)$ is locally contained in a subvariety of dimension $\leq \rho$.

We fix ρ and prove (1) by induction on n. For $n \le \rho$, (1) is trivially true. Now suppose (1) is true when n is replaced by n-1. We are going to prove by induction on p that (1) is true when n is unreplaced.

(a) p=1. Because of the local nature of (1) we can suppose that G is connected. If $\mathcal{M}=0$, then (1) is trivial. So we can suppose $\mathcal{M}\neq 0$. $E(\mathcal{M}, \mathcal{O})$ is a proper subvariety of G. Take $x\in G$. We want to prove that $E^{\rho}(\mathcal{M}, \mathcal{O})$ is locally contained in a subvariety of dimension $\leq \rho$ at x. If $x\notin E(\mathcal{M}, \mathcal{O})$, then it is obviously true. So we suppose $x\in E(\mathcal{M},\mathcal{O})$. There is a nonzero holomorphic function φ on some open neighborhood U of x such that φ vanishes on $E(\mathcal{M},\mathcal{O})\cap U$. Without loss of generality we can suppose that U is a polydisc $\Delta(x; r_1, \ldots, r_n)$ and the projection $\pi\colon Y\to \Delta(\pi(x); r_1,\ldots,r_{n-1})$ defined by $\pi(z_1,\ldots,z_n)=(z_1,\ldots,z_{n-1})$, where $Y=\{y\mid y\in U, \varphi(y)=0\}$, makes Y an analytic cover over $\Delta(\pi(x); r_1,\ldots,r_{n-1})$ [2, III.B.3].

By Hilbert Nullstellensatz, after shrinking U we can suppose without loss of generality that $\varphi^m \in \Gamma(U, \mathcal{M})$ for some m. $2 = (\mathcal{M}/\mathcal{O}\varphi^m)|Y$ is a coherent analytic

sheaf on the complex space (Y, \mathcal{K}) , where $\mathcal{K} = (\mathcal{O}/\mathcal{O}\varphi^m)|Y$. $U \cap E^{\rho}(\mathcal{M}, \mathcal{O}) = E^{\rho}(\mathcal{Q}, \mathcal{K})$. Let $\mathcal{A} = R^0\pi(\mathcal{Q})$ and $\mathcal{B} = R^0\pi(\mathcal{K})$.

By Lemma 1, \mathscr{A} is a coherent analytic subsheaf of the coherent analytic sheaf \mathscr{B} on $\Delta(\pi(x); r_1, \ldots, r_{n-1})$.

If $y \in E^{\rho}(\mathcal{Q}, \mathcal{K})$, then there exist a subvariety A of dimension $\leq \rho$ in an open neighborhood B of y in Y and $t \in \Gamma(B, \mathcal{K})$ such that $t_z \in \mathcal{Q}_z$ for $z \in B - A$ and $t_y \notin \mathcal{Q}_y$. Let $\pi^{-1}(\pi(y)) = \{y^0, \ldots, y^i\}$, where $y^0 = y$, and B^i be disjoint open neighborhoods of y^i , $0 \leq i \leq l$, in Y, such that $B^0 \subset B$. Since φ is proper, there is an open neighborhood C of $\pi(y)$ in $\Delta(\pi(x); r_1, \ldots, r_{n-1})$ such that $\pi^{-1}(C) \subset \bigcup_{i=0}^l B^i$. Define $t^* \in \Gamma(\pi^{-1}(C), \mathcal{K})$ as follows: $t^* | \pi^{-1}(C) \cap B^0 = t | \pi^{-1}(C) \cap B^0$ and $t^* | \pi^{-1}(C) \cap B^i = 0$ for $1 \leq i \leq l$. t^* induces $t' \in \Gamma(C, \mathcal{B})$. $t'_z \in \mathcal{A}_z$ for $z \in C - \pi(A)$ and $t'_{\pi(y)} \notin \mathcal{A}_{\pi(y)}$. Since $C \cap \pi(A)$ is a subvariety of dimension $\leq \rho$ in $C, \pi(y) \in E^{\rho}(\mathcal{A}, \mathcal{B})$. Since y is an arbitrary point in $E^{\rho}(\mathcal{Q}, \mathcal{K})$, $E^{\rho}(\mathcal{Q}, \mathcal{K}) \subset \pi^{-1}(E^{\rho}(\mathcal{A}, \mathcal{B}))$. Let $0 < s_i < r_i$, $1 \leq i \leq n-1$, and \mathcal{B} be the structure sheaf of $D = \Delta(\pi(x); s_1, \ldots, s_{n-1})$. Then there is a sheaf-epimorphism $\eta: \mathcal{B}^q \to \mathcal{B}|D$.

 $E^{\rho}(\mathscr{A},\mathscr{B}) \cap D = E^{\rho}(\eta^{-1}(\mathscr{A}|D),\mathscr{R}^q)$. By induction hypothesis $E^{\rho}(\eta^{-1}(\mathscr{A}|D),\mathscr{R}^q)$ is locally contained in a subvariety of dimension $\leq \rho$. There exists a subvariety Z of dimension $\leq \rho$ in a polydisc $W = \Delta(\pi(x); t_1, \ldots, t_{n-1}) \subset D$ such that $E^{\rho}(\mathscr{A},\mathscr{B}) \cap W \subset Z$.

 $E^{\rho}(\mathcal{M}, \mathcal{O}) \cap \Delta(x; t_1, \ldots, t_{n-1}, r_n)$

$$=E^{\rho}(\mathcal{Q},\mathcal{K})\cap\Delta(x;t_1,\ldots,t_{n-1},r_n)\subset\pi^{-1}(E^{\rho}(\mathcal{A},\mathcal{B})\cap W)\subset\pi^{-1}(Z).$$

 $\pi^{-1}(Z)$ is a subvariety of dimension $\leq \rho$ in $\Delta(x; t_1, \ldots, t_{n-1}, r_n)$. The case p=1 is proved.

(b) The case of a general $p \ge 1$. $\mathcal{O}^p = \mathcal{O}^{p-1} \oplus \mathcal{O}$. Let $\alpha : \mathcal{O}^p \to \mathcal{O}^{p-1}$ be the projection onto the first summand and $\beta : \mathcal{O} \to \mathcal{O}^p$ be the injection from the second summand. Let $\mathcal{N} = \alpha(\mathcal{M})$ and $\mathcal{P} = \mathcal{M} \cap \beta(\mathcal{O})$. Take $x \in G$. Then by induction hypothesis and by (a) there exist subvarieties Z_1 and Z_2 of dimensions $\le \rho$ in an open neighborhood U of x such that $U \cap E^\rho(\mathcal{N}, \mathcal{O}^{p-1}) \subset Z_1$ and $U \cap E^\rho(\mathcal{P}, \mathcal{O}) \subset Z_2$. It is readily checked that $U \cap E^\rho(\mathcal{M}, \mathcal{O}^p) \subset Z_1 \cup Z_2$. Q.E.D.

THEOREM 3. Suppose $\mathscr S$ is a coherent analytic subsheaf of a coherent sheaf $\mathscr T$ on a complex space $(X, \mathscr O)$ and ρ is a nonnegative integer. Then $\mathscr S_{[\rho]}$ is coherent and $E^{\rho}(\mathscr S, \mathscr T)$ is a subvariety of dimension $\leq \rho$ in X.

Proof. First we prove the coherence of $\mathscr{L}_{[\rho]}$. Coherence is a local property. Take $x \in X$. By Theorem 2 there exists a subvariety A of dimension $\leq \rho$ in an open neighborhood U of x in X such that $U \cap E^{\rho}(\mathscr{S}, \mathscr{T}) \subset A$.

Since dim $A \leq \rho$, $\mathcal{S}_{[\rho]}|U = (\mathcal{S}|U)[A]$. Hence $\mathcal{S}_{[\rho]}|U$ is coherent by Theorem 1. $\mathcal{S}_{[\rho]}$ is coherent.

 $E^{\rho}(\mathscr{S},\mathscr{T}) = E((\mathscr{S}:\mathscr{S}_{[\rho]}),\mathscr{O})$ is a subvariety, because $\mathscr{S}:\mathscr{S}_{[\rho]}$ is coherent. Since $E^{\rho}(\mathscr{S},\mathscr{T})$ is locally contained in a subvariety of dimension $\leq \rho$, $E^{\rho}(\mathscr{S},\mathscr{T})$ is a subvariety of dimension $\leq \rho$ in X. Q.E.D.

COROLLARY. $\mathscr{G}_{[\rho]} = \mathscr{S}[E^{\rho}(\mathscr{S}, \mathscr{F})].$

II. Noether-Lasker decomposition of subsheaves. Suppose $\mathscr S$ is a coherent analytic subsheaf of a coherent analytic sheaf $\mathscr T$ on a complex space. Let $E^{\rho}(\mathscr S,\mathscr T)=\bigcup_{i\in I(\rho)}Y_i^{\rho}$ be the decomposition into irreducible branches. Then we call each nonempty Y_i^{ρ} , $\rho\geq 0$, $i\in I(\rho)$, an associated subvariety of $\mathscr S$ in $\mathscr T$ and denote the set of all associated subvarieties of $\mathscr S$ in $\mathscr T$ by $\mathscr X(\mathscr S,\mathscr T)$. From the definition we see readily that $\mathscr X(\mathscr S,\mathscr T)$ is locally finite. $\mathscr S$ is called a primary subsheaf of $\mathscr T$ if $\mathscr S$ has only one associated subvariety.

The following lemma is a well-known algebraic fact [5, Appendix, Chapter IV]:

LEMMA 2. Suppose R is a Noetherian ring and N is an R-submodule of a finitely generated R-module M. A prime ideal P in R is an associated prime ideal in the Noether-Lasker decomposition of N as a submodule of M if and only if $P = \sqrt{(N:f)}$ for some $f \in M$.

THEOREM 4. Suppose $\mathscr S$ is a coherent analytic subsheaf of a coherent analytic sheaf $\mathscr T$ on a complex space $(X, \mathscr O)$ and $x \in X$. Let $\{X_i^{\rho} \mid \rho \geq 0, i \in J(\rho)\}$ be the set of all associated subvarieties of $\mathscr S$ passing through x, where dim $X_i^{\rho} = \rho$, $i \in J(\rho)$, and suppose (Id $X_i^{\rho})_x = \bigcap_{j \in K(\rho,i)} P_{ij}^{\rho}$ is the decomposition into prime ideals. Then $\{P_{ij}^{\rho} \mid \rho \geq 0, i \in J(\rho), j \in K(\rho,i)\} = P(\mathscr S_x, \mathscr T_x)$.

Proof. Suppose $P \in P(\mathscr{S}_x, \mathscr{T}_x)$ and dim $P = \rho$. Then $P = \sqrt{(\mathscr{S}_x:f)}$ for some $f \in \mathscr{T}_x$ by Lemma 2. P defines a subvariety V of dimension ρ in an open neighborhood D of x in X. We can suppose after a shrinking of D that there exists $g \in \Gamma(D, \mathscr{T})$ such that $g_x = f$ and Id $V = \sqrt{((\mathscr{S}|D):g)}$. This implies that

$$\{y \mid y \in D, g_y \in \mathcal{S}_y\} = D - V.$$

Hence $V \subseteq E^{\rho}(\mathcal{S}, \mathcal{F})$. Since dim $V = \rho$ and dim $E^{\rho}(\mathcal{S}, \mathcal{F}) \leq \rho$, $P = P_{ij}^{\rho}$ for some $i \in J(\rho)$ and some $j \in K(\rho, i)$.

Fix $\rho \ge 0$ and $i \in J(\rho)$. By definition X_i^{ρ} is an irreducible branch of $E^{\sigma}(\mathcal{S}, \mathcal{T})$ for some $\sigma \ge \rho$. Let U be a Stein open neighborhood of x in X such that $U \cap X_i^{\rho} = \bigcup_{j \in K(\rho, i)} X_{ij}^{\rho}$ is the decomposition into irreducible branches and $P_{ij}^{\rho} = (\operatorname{Id} X_{ij}^{\rho})_x$, $j \in K(\rho, i)$. Fix $j \in K(\rho, i)$. Let Z^1 be the union of irreducible branches of $E^{\sigma}(\mathcal{S}, \mathcal{T}) \cap U$ other than X_{ij}^{ρ} and let

$$Z = Z^1 \cup (E^{\rho-1}(\mathscr{S}, \mathscr{T}) \cap U).$$

Take $y \in X_{ij}^{\rho} - Z$.

$$(\mathscr{S}|U)[X_{ij}^{\rho}]_{y} = \mathscr{S}_{[\sigma]y} \neq \mathscr{S}_{y}.$$

Since $(\mathcal{S}|U)[X_{ij}^{\rho}]$ is generated by global sections [1, Satz 4, §2], there exists $t \in \Gamma(U, (\mathcal{S}|U)[X_{ij}^{\rho}])$ such that $t_y \notin \mathcal{S}_y$.

Let $Y = E(\mathcal{S}|U, (\mathcal{S}|U) + (\mathcal{O}|U)t)$. Since X_{ij}^{ρ} is irreducible, if $Y \neq X_{ij}^{\rho}$, then dim $Y < \rho$ and $t_y \in \mathcal{S}_{L\rho-1|y} = \mathcal{S}_y$ (contradiction). Hence $Y = X_{ij}^{\rho}$. $P_{ij}^{\rho} = (\text{Id } X_{ij}^{\rho})_x = (\text{Id } Y)_x = \sqrt{(\mathcal{S}_x:t_x)}$. By Lemma 2, $P_{ij}^{\rho} \in P(\mathcal{S}_x, \mathcal{T}_x)$. Q.E.D.

This theorem gives us a characterization of associated subvarieties and tells us that the subvariety-germs defined by associated prime ideals in the Noether-Lasker decomposition of the stalks of $\mathcal S$ can be pieced together to form global subvarieties.

COROLLARY 1. If $Y \in \mathcal{X}(\mathcal{S}, \mathcal{F})$, then $E(\mathcal{S}, \mathcal{S}[Y]) = Y$.

Proof. Obviously $E(\mathscr{S}, \mathscr{S}[Y]) \subset Y$. Suppose $x \in Y$ and $P \in P((\mathrm{Id}\ Y)_x, \mathscr{O}_x)$. Then by Theorem 4, $P \in P(\mathscr{S}_x, \mathscr{T}_x)$. By Lemma 2, $P = \sqrt{(\mathscr{S}_x : s)}$ for some $s \in \mathscr{T}_x$. $s \in \mathscr{S}[Y]_x - \mathscr{S}_x$. Q.E.D.

COROLLARY 2. Suppose \mathcal{R} is a coherent analytic subsheaf of \mathcal{T} and $\mathcal{L}(\mathcal{L},\mathcal{T}) = \{X^i \mid i \in I\}$. Then $\mathcal{L}(\mathcal{L},\mathcal{R}) \subset \mathcal{L}(\mathcal{L},\mathcal{T})$. Hence there is a subset J of I such that $E(\mathcal{L},\mathcal{R}) = \{J\}$.

Proof. Suppose $Y \in \mathcal{X}(\mathcal{S}, \mathcal{R})$. Take $y \in Y$ and $P \in P((\text{Id }Y)_y, \mathcal{O}_y)$. By Theorem 4, $P \in P(\mathcal{S}_y, \mathcal{R}_y)$. By Lemma 2, $P = \sqrt{(\mathcal{S}_y : s)}$ for some $s \in \mathcal{R}_y$. Since $s \in \mathcal{F}_y$, by Lemma 2, $P \in P(\mathcal{S}_y, \mathcal{F}_y)$.

By Theorem 4, $P \in P((\text{Id } X^i)_y, \mathcal{O}_y)$ for some $i \in I$ such that $y \in X^i$. Since the two irreducible subvarieties X^i and Y have a branch-germ in common at Y, $X^i = Y$. Hence $\mathcal{X}(\mathcal{S}, \mathcal{R}) \subset \mathcal{X}(\mathcal{S}, \mathcal{F})$. The existence of J follows from

$$E(\mathcal{S}, \mathcal{R}) = \bigcup \{Y \mid Y \in \mathcal{X}(\mathcal{S}, \mathcal{R})\}.$$
 Q.E.D.

THEOREM 5. Suppose $\mathscr S$ is a coherent analytic subsheaf of a coherent analytic sheaf $\mathscr T$ on a complex space $(X, \mathscr O)$ and A is a subvariety of X. Suppose $\mathscr X(\mathscr S, \mathscr T) = \{X^i \mid i \in I\}, x \in A$, and $I' = \{i \in I \mid x \in X^i\}$. Suppose

$$P((\operatorname{Id} X^{i})_{x}, \mathcal{O}_{x}) = \{P_{ij} \mid j \in J_{i}\}, \qquad i \in I'.$$

Let $\mathscr{S}_x = \bigcap \{Q_{ij} \mid i \in I', j \in J_i\}$ be a Noether-Lasker decomposition of \mathscr{S}_x , where the radical of Q_{ij} is P_{ij} , $i \in I'$, $j \in J_i$, and let $K = \{i \mid i \in I', X^i \notin A\}$. Then

$$(\mathscr{S}[A])_{r} = \bigcap \{Q_{ii} \mid i \in K, j \in J_{i}\}.$$

Proof. Let $\mathcal{A} = \operatorname{Id} A$. By Theorem 1

$$\begin{aligned} \mathscr{S}[A]_{x} &= \bigcup_{n=1}^{\infty} \left(\mathscr{S}_{x} : \mathscr{A}_{x}^{n} \right) = \bigcup_{n=1}^{\infty} \bigcap \left\{ Q_{ij} : \mathscr{A}_{x}^{n} \mid i \in I', j \in J_{i} \right\} \\ &= \bigcap \left\{ \bigcup_{n=1}^{\infty} \left(Q_{ij} : \mathscr{A}_{x}^{n} \right) \mid i \in I', j \in J_{i} \right\}. \end{aligned}$$

For $i \in I' - K$, $P_{ij} \supset \mathscr{A}_x$ and hence $Q_{ij} : \mathscr{A}_x^n = \mathscr{T}_x$ for *n* sufficiently large. For $i \in K$, $P_{ij} \supset \mathscr{A}_x$ and hence $Q_{ij} : \mathscr{A}_x^n = Q_{ij}$ for every *n*. Therefore

$$\mathscr{S}[A]_x = \bigcap \{Q_{ij} \mid i \in K, j \in J_i\}.$$
 Q.E.D.

COROLLARY. $\mathscr{X}(\mathscr{S}[A], \mathscr{T}) = \{X^i \mid X^i \in A\}$ and

$$E(\mathcal{S}[A], \mathcal{F}) = \bigcup \{Y \mid Y \in \mathcal{X}(\mathcal{S}, \mathcal{F}), Y \neq A\}.$$

Proof. The first assertion follows from Theorems 4 and 5 and the second assertion follows from the first. Q.E.D.

LEMMA 3. Suppose $\mathscr{G} \subset \mathscr{R}$ are coherent analytic subsheaves of a coherent analytic sheaf \mathscr{F} on a complex space (X, \mathscr{O}) . Suppose \mathscr{I} is the ideal-sheaf of $E(\mathscr{S}, \mathscr{R})$ and $x \in E(\mathscr{S}, \mathscr{R})$. Then there is a natural number k such that $((\mathscr{I}^k \mathscr{F} + \mathscr{S}) \cap \mathscr{R})_x = \mathscr{S}_x$.

Proof. $E(0, \mathcal{R}/\mathcal{S}) = E(\mathcal{S}, \mathcal{R})$. By Hilbert Nullstellensatz there is a natural number l such that $\mathscr{I}_x^l \subset (0:\mathcal{R}/\mathcal{S})_x$. By the Lemma of Artin-Rees [5, Theorem 4'; §2, Chapter VIII] there exists a natural number k such that $(\mathscr{I}^k(\mathcal{T}/\mathcal{S}) \cap (\mathscr{R}/\mathcal{S}))_x \subset (\mathscr{I}^l(\mathcal{R}/\mathcal{S}))_x$. Hence $((\mathscr{I}^k\mathcal{T} + \mathcal{S}) \cap \mathscr{R})_x = \mathscr{S}_x$. Q.E.D.

LEMMA 4. Suppose $\mathscr{G} \subset \mathscr{R}$ are coherent analytic subsheaves of a coherent analytic sheaf \mathscr{F} on a complex space (X, \mathscr{O}) . Then there exists a coherent analytic subsheaf \mathscr{Q} of \mathscr{F} such that $E(\mathscr{Q}, \mathscr{F}) = E(\mathscr{S}, \mathscr{R})$ and $\mathscr{Q} \cap \mathscr{R} = \mathscr{S}$.

Proof. Suppose $\mathcal{X}(\mathcal{S}, \mathcal{R}) = \{X^i \mid i \in I\}$. Let \mathcal{I}_i be the ideal-sheaf of X^i . Take $x^i \in X^i$. By Lemma 3 and Corollary 1 to Theorem 4, there exists a natural number k(i) such that

$$((\mathscr{I}_{i}^{k(i)}\mathscr{T} + \mathscr{S}) \cap \mathscr{S}[X^{i}]_{\mathscr{R}})_{r^{i}} = \mathscr{S}_{r^{i}}, \quad i \in I$$

Since $\mathscr{X}(\mathscr{S},\mathscr{R})$ is locally finite, $\mathscr{Q} = \bigcap_{i \in I} (\mathscr{I}_i^{k(i)}\mathscr{T} + \mathscr{S})$ is a coherent analytic subsheaf of \mathscr{T} . Obviously $E(\mathscr{Q},\mathscr{T}) \subseteq E(\mathscr{S},\mathscr{R})$. We are going to prove that $\mathscr{Q} \cap \mathscr{R} = \mathscr{S}$.

From Corollaries 1 and 2 to Theorem 4 and (2) we conclude that

$$(3) E(\mathcal{S}, (\mathcal{S}_{i}^{k(i)}\mathcal{F} + \mathcal{S}) \cap \mathcal{S}[X^{i}]_{\mathcal{R}}) \subset \bigcup \{X^{j} \mid j \in I, X^{j} \subsetneq X^{i}\}, i \in I.$$

Obviously $\mathscr{S} \subset \mathscr{Q} \cap \mathscr{R}$. Let $Y = E(\mathscr{S}, \mathscr{Q} \cap \mathscr{R})$. By Corollary 2 to Theorem 4 there exists a subset of J of I such that $Y = \bigcup \{X^i \mid i \in J\}$. Suppose $Y \neq \varnothing$. Then take $y \in Y$. Take a relatively compact open neighborhood of U of y in X. Let $F = \{i \mid i \in J, X^i \cap U \neq \varnothing\}$. F is a finite set. Take $i \in F$ such that

$$\dim X^i = \max \{\dim X^j \mid j \in F\}.$$

Take an open neighborhood W of a point z of X^t in U such that

$$W \cap (\bigcup \{X^j \mid j \in I, X^j \Rightarrow X^i\}) = \emptyset.$$

 $Y \cap W = X^i \cap W$. $(\mathcal{Q} \cap \mathcal{R})|W \subset \mathcal{S}[X^i]_{\mathcal{R}}|W$. By (3) $(\mathcal{S}_i^{k(i)}\mathcal{T} + \mathcal{S}) \cap \mathcal{S}[X^i]_{\mathcal{R}}|W = \mathcal{S}|W$. Hence

$$\mathscr{S}|W\subset \mathscr{Q}\cap \mathscr{R}|W\subset (\mathscr{S}_{i}^{k(i)}\mathscr{T}+\mathscr{S})\cap \mathscr{S}[X^{i}]_{\mathscr{R}}|W=\mathscr{S}|W.$$

 $z \notin Y$ (contradiction). Hence $Y = \emptyset$ and $\mathscr{S} = \mathscr{Q} \cap \mathscr{R}$.

Suppose $E(\mathcal{Q}, \mathcal{F}) \neq E(\mathcal{S}, \mathcal{R})$. Take $x \in E(\mathcal{S}, \mathcal{R}) - E(\mathcal{Q}, \mathcal{F})$. Then $\mathcal{Q}_x = \mathcal{F}_x$. $\mathcal{S}_x = \mathcal{Q}_x \cap \mathcal{R}_x = \mathcal{R}_x$, contradicting that $x \in E(\mathcal{S}, \mathcal{R})$. Hence $E(\mathcal{Q}, \mathcal{F}) = E(\mathcal{S}, \mathcal{R})$. Q.E.D.

LEMMA 5. Suppose $\mathscr S$ is a coherent analytic subsheaf of a coherent analytic sheaf $\mathscr T$ on a complex space $(X, \mathscr O)$ and $\mathscr X(\mathscr S, \mathscr T) = \{X^i \mid i \in I\}$. Let $J = \{i \mid i \in I, X^i \text{ is maximal in } \mathscr X(\mathscr S, \mathscr T)\}$. Then there exist a coherent analytic subsheaf $\mathscr R$ of $\mathscr T$ and primary subsheaves $\mathscr Q_i$ of $\mathscr T$, $i \in J$, such that (i) $E(\mathscr R, \mathscr T) = \bigcup_{i \in K} X^i$, where K = I - J, (ii) $E(\mathscr Q_i, \mathscr T) = X^i$, $i \in J$, and (iii) $(\bigcap_{i \in J} \mathscr Q_i) \cap \mathscr R = \mathscr S$.

Proof. For $i \in J$ let $Y^i = \bigcup \{X^j \mid j \in I \text{ and } j \neq i\}$ and define $\mathcal{Q}_i = \mathcal{S}[Y^i]$.

Then by Corollary to Theorem 5, $\{X^i\} = \mathcal{X}(\mathcal{Q}_i, \mathcal{F}), i \in J$. Hence $E(\mathcal{Q}_i, \mathcal{F}) = X^i$ and \mathcal{Q}_i is a primary subsheaf of $\mathcal{F}, i \in J$. Take $y^i \in X^i - Y^i, i \in J$. Then $(\mathcal{Q}_i)_{y^i} = \mathcal{S}_{y^i}, i \in J$. Since $\mathcal{Q}_i \supset \mathcal{S}, i \in J$, we have

$$\left(\bigcap_{i\in I}\mathcal{Q}_{j}\right)_{y^{i}}=\mathscr{S}_{y^{i}}, \qquad i\in J.$$

Since $\mathscr{X}(\mathscr{S},\mathscr{F})$ is locally finite, $\bigcap_{i\in J}\mathscr{Q}_i$ is a coherent analytic subsheaf of \mathscr{F} . By (4) and Corollary 2 to Theorem 4 $E(\mathscr{S},\bigcap_{i\in J}\mathscr{Q}_i)\subset\bigcup_{i\in K}X^i$.

Suppose $x \in \bigcup_{i \in K} X^i - E(\mathcal{S}, \bigcap_{i \in J} \mathcal{Q}_i)$. Then $x \in X^j$ for some $j \in K$ and $\mathcal{S}_x = \bigcap_{i \in J} (\mathcal{Q}_i)_x$. Let $L = \{i \mid i \in J, x \in X^i\}$. Since

$$P((\mathcal{Q}_i)_x, \mathcal{T}_x) = P((\operatorname{Id} X^i)_x, \mathcal{O}_x), \qquad i \in L,$$

$$P(\mathcal{S}_x, \mathcal{T}_x) \subset \bigcup_{i \in I} P((\operatorname{Id} X^i)_x, \mathcal{O}_x).$$

Since

$$P((\operatorname{Id} X^{i})_{x}, \mathcal{O}_{x}) \cap (\bigcup_{i \in L} P((\operatorname{Id} X^{i})_{x}, \mathcal{O}_{x})) = \emptyset,$$

Theorem 4, which asserts that $P((\operatorname{Id} X^{i})_{x}, \mathcal{O}_{x}) \subset P(\mathcal{S}_{x}, \mathcal{T}_{x})$, is contradicted. Hence $E(\mathcal{S}, \bigcap_{i \in J} \mathcal{Q}_{i}) = \bigcup_{i \in K} X^{i}$. By Lemma 4 there exists a coherent analytic subsheaf \mathcal{R} of \mathcal{F} such that $(\bigcap_{i \in J} \mathcal{Q}_{i}) \cap \mathcal{R} = \mathcal{S}$ and $E(\mathcal{R}, \mathcal{F}) = \bigcup_{i \in K} X^{i}$. Q.E.D.

THEOREM 6 (NOETHER-LASKER DECOMPOSITION OF COHERENT SUBHEAVES). Suppose $\mathscr S$ is a coherent analytic subsheaf of a coherent analytic sheaf $\mathscr T$ on a complex space $(X, \mathscr O)$ and $\mathscr X(\mathscr S, \mathscr T) = \{X^i \mid i \in I\}$. Then for every $i \in I$, there exists a primary subsheaf $\mathscr Q_i$ of $\mathscr T$ such that $E(\mathscr Q_i, \mathscr T) = X^i$ and $\bigcap_{i \in I} \mathscr Q_i = \mathscr S$.

Proof. For $Y \in \mathcal{X}(\mathcal{S}, \mathcal{T})$ define the *depth* of Y in $\mathcal{X}(\mathcal{S}, \mathcal{T})$ to be $\sup\{l \mid \text{there exist } Y_j \in \mathcal{X}(\mathcal{S}, \mathcal{T}), \ 0 \le j \le l, \text{ such that } Y_0 = Y \text{ and } Y_j \subsetneq Y_{j+1} \text{ for } 0 \le j < l\}.$ If $Y_j \in \mathcal{X}(\mathcal{S}, \mathcal{T}), \ 0 \le j \le l, \text{ and } Y_j \subsetneq Y_{j+1}, \ 0 \le j < l, \text{ then for } x \in Y_0, \dim_x Y_j < \dim_x Y_{j+1}$ (because Y_j is irreducible) and $l \le \dim_x X$. So the depth of Y in $\mathcal{X}(\mathcal{S}, \mathcal{T})$ is finite for $Y \in \mathcal{X}(\mathcal{S}, \mathcal{T})$. For $i \in I$ denote the depth of X^i by d_i , and, for any nonnegative integer d_i let $I_d = \{i \mid i \in I \ d_i = d\}, \ J_d = \bigcup_{l \le d} I_l$, and $K_d = I - J_d$.

We are going to prove by induction on d the following:

(5) For every $d \ge 0$ there exist primary subsheaves \mathcal{Q}_i of \mathcal{F} for $i \in I_d$ and a coherent analytic subsheaf \mathcal{R}_d of \mathcal{F} such that (i) $E(\mathcal{Q}_i, \mathcal{F}) = X^i$, $i \in I_d$, (ii) $E(\mathcal{R}_d, \mathcal{F}) = \bigcup_{i \in K_d} X^i$, and (iii) $(\bigcap_{i \in I_d} \mathcal{Q}_i) \cap \mathcal{R}_d = \mathcal{F}$.

 $J_0 = \{X^i \mid X^i \text{ is maximal in } \mathcal{X}(\mathcal{S}, \mathcal{F})\}$. By Lemma 5, (5) is true for d = 0. Suppose (5) is proved for $0 \le d \le e$. Since $E(\mathcal{R}_e, \mathcal{F}) = \bigcup_{i \in K_e} X^i$ and

$$E(\mathcal{R}_e, \mathcal{F}) = \bigcup \{Y \mid Y \in \mathcal{X}(\mathcal{R}_e, \mathcal{F})\},\$$

 $\{X^i \mid i \in I_{e+1}\} = \{Y \in \mathcal{X}(\mathcal{R}_e, \mathcal{F}) \mid Y \text{ is maximal in } \mathcal{X}(\mathcal{R}_e, \mathcal{F})\}$. By Lemma 5 there exist primary subsheaves \mathcal{Q}_i of \mathcal{F} , $i \in I_{e+1}$, and a coherent analytic subsheaf \mathcal{B} of \mathcal{F} such that (i) $E(\mathcal{Q}_i, \mathcal{F}) = X^i$, $i \in I_{e+1}$, (ii) $E(\mathcal{B}, \mathcal{F})$ is thin in $\bigcup_{i \in I_{e+1}} X^i$, and (iii) $(\bigcap_{i \in I_{e+1}} \mathcal{Q}_i) \cap \mathcal{B} = \mathcal{R}_e$. Hence $(\bigcap_{i \in I_{e+1}} \mathcal{Q}_i) \cap \mathcal{B} = \mathcal{S}$. Let

$$Z = \{Y \mid Y \in \mathcal{X}(\mathcal{B}, \mathcal{T}), Y \subset \bigcup_{i \in K_{e+1}} X^i\}.$$

By Corollary to Theorem 5, $E(\mathcal{B}[Z]_{\mathcal{F}}, \mathcal{F}) \subset \bigcup_{i \in K_{n+1}} X^i$. Let

$$V = E(\mathcal{S}, \left(\bigcap_{i \in J_{e+1}} \mathcal{Q}_i\right) \cap \mathcal{B}[Z]_{\mathcal{F}}).$$

Then $V \subset Z$. Since Z is thin in $\bigcup_{i \in I_{e+1}} X^i$, by Corollary 2 to Theorem 4, $V \subset \bigcup_{i \in K_{e+1}} X^i$.

By Lemma 4 there exists a coherent analytic subsheaf \mathscr{H} of \mathscr{T} such that $E(\mathscr{H},\mathscr{T})=V$ and $(\bigcap_{i\in J_{e+1}}\mathscr{Q}_i)\cap\mathscr{B}[Z]_{\mathscr{T}}\cap\mathscr{H}=\mathscr{S}.$ Let $\mathscr{R}_{e+1}=\mathscr{B}[Z]_{\mathscr{T}}\cap\mathscr{H}.$ Then $(\bigcap_{i\in J_{e+1}}\mathscr{Q}_i)\cap\mathscr{R}_{e+1}=\mathscr{S}$ and $E(\mathscr{R}_{e+1},\mathscr{T})\subset\bigcup_{i\in K_{e+1}}X^i.$ Suppose $E(\mathscr{R}_{e+1},\mathscr{T})$ $\neq\bigcup_{i\in K_{e+1}}X^i.$ Take $x\in\bigcup_{i\in K_{e+1}}X^i-E(\mathscr{R}_{e+1},\mathscr{T}).$ $x\in X^j$ for some $j\in K_{e+1}$ and $\mathscr{S}_x=\bigcap_{i\in J_{e+1}}(\mathscr{Q}_i)_x.$ Let $L=\{i\mid i\in J_{e+1}, x\in X^i\}.$ Since $P((\mathscr{Q}_i)_x,\mathscr{T}_x)=P((\mathrm{Id}\ X^i)_x,\mathscr{O}_x),$ $i\in L,\ P(\mathscr{S}_x,\mathscr{T}_x)\subset\bigcup_{i\in L}P((\mathrm{Id}\ X^i)_x,\mathscr{O}_x).$ However,

$$P((\operatorname{Id} X^{i})_{x}, \mathscr{O}_{x}) \cap (\bigcup_{i \in L} P((\operatorname{Id} X^{i})_{x}, \mathscr{O}_{x})) = \varnothing,$$

contradicting Theorem 4, which asserts $P((\operatorname{Id} X^i)_x, \mathcal{O}_x) \subset P(\mathcal{S}_x, \mathcal{F}_x)$. Hence $E(\mathcal{R}_{e+1}, \mathcal{F}) = \bigcup_{i \in K_{e+1}} X^i$. The induction process is complete and (5) is proved. We claim that $\mathcal{S} = \bigcap_{i \in I} \mathcal{Q}_i$. Obviously $\mathcal{S} \subset \bigcap_{i \in I} \mathcal{Q}_i$. Take $x \in X$.

$$F = \{i \mid i \in I, x \in X^i\}$$

is a finite set. Take $d \ge \max \{d_i \mid i \in F\}$. Then $x \notin \bigcup_{i \in K_d} X^i$. $(\mathcal{R}_d)_x = \mathcal{T}_x$.

$$\mathscr{S}_{x} = \left(\bigcap_{i \in I_{d}} (\mathscr{Q}_{i})_{x} \cap (\mathscr{R}_{d})\right)_{x} = \bigcap_{i \in I_{d}} (\mathscr{Q}_{i})_{x} \supset \bigcap_{i \in I} (\mathscr{Q}_{i})_{x}.$$
 Q.E.D.

REMARK. The decomposition $\mathscr{S} = \bigcap_{i \in I} \mathscr{Q}_i$ is irredundant, i.e. $\mathscr{S} \neq \bigcap_{i \in I - \{j\}} \mathscr{Q}_i$ for any $j \in I$; for otherwise by Theorem 4 we have

$$\mathscr{X}(\mathscr{S},\mathscr{F}) \subset \bigcup_{i\in I-\{i\}} \mathscr{X}(\mathscr{Q}_i,\mathscr{F}) = \{X^i \mid i\in I-\{j\}\}.$$

In general, \mathcal{Q}_i , $i \in I$, is not uniquely determined. For example, when (X, \mathcal{O}) is C^2 with coordinate-functions z_1 and z_2 , then $(\mathcal{O}z_1) \cap (\mathcal{O}z_1^2 + \mathcal{O}z_2) = (\mathcal{O}z_1) \cap (\mathcal{O}z_1 + \mathcal{O}z_2)^2$ are two different irredundant Noether-Lasker decompositions.

However, corresponding to the uniqueness of isolated ideal components in the usual Noether-Lasker decomposition in rings, we have the following:

A subset L of $\mathscr{X}(\mathscr{S}, \mathscr{F})$ is called an isolated system of associated subvarieties if $Y_1 \subseteq Y_2$, $Y_i \in \mathscr{X}(\mathscr{S}, \mathscr{F})$, i = 1, 2, and $Y_1 \in L$ imply $Y_2 \in L$. If L is an isolated system of associated subvarieties, then $\bigcap \{\mathscr{Q}_i \mid X^i \in L\}$ is unique, because it is equal to $\mathscr{S}[\bigcup \{X^i \mid X^i \notin L\}]$ by Corollary to Theorem 5.

THEOREM 7. Suppose $\mathcal G$ is a coherent analytic subsheaf of a coherent analytic sheaf $\mathcal F$ on a complex space $(X,\mathcal O)$. If $\mathcal G$ is primary, then $\Gamma(X,\mathcal G)$ is a primary $\Gamma(X,\mathcal O)$ -submodule of $\Gamma(X,\mathcal F)$. The converse is true if $(X,\mathcal O)$ is Stein and $\Gamma(X,\mathcal G)$ $\neq \Gamma(X,\mathcal F)$.

- **Proof.** (i) Suppose $\mathscr S$ is primary. Let $\{Y\}=\mathscr X(\mathscr S,\mathscr T)$. We are going to prove that $\Gamma(X,\mathscr S)$ is a primary $\Gamma(X,\mathscr O)$ -submodule of $\Gamma(X,\mathscr F)$ with $\Gamma(X,\operatorname{Id} Y)$ as its radical. Take $f\in\Gamma(X,\operatorname{Id} Y)$. Fix $y\in Y$. Since $E(\mathscr S:\mathscr T,\mathscr O)=Y$, by Hilbert Nullstellensatz $f_y^k\mathscr T_y\subset\mathscr S_y$ for some natural number k. $\mathscr X(\mathscr S,f^k\mathscr T+\mathscr S)\subset\{Y\}$ by Corollary 2 to Theorem 4. $y\notin E(\mathscr S,f^k\mathscr T+\mathscr S)$ implies $E(\mathscr S,f^k\mathscr T+\mathscr S)=\varnothing$. $f^k\Gamma(X,\mathscr T)\subset\Gamma(X,\mathscr S)$. Suppose $g\in\Gamma(X,\mathscr O)-\Gamma(X,\operatorname{Id} Y)$ and $s\in\Gamma(X,\mathscr T)$ such that $gs\in\Gamma(X,\mathscr S)$. For some $y\in Y$ g does not vanish at y. Then $s_y\in\mathscr S_y$. $\mathscr X(\mathscr S,\mathscr S+\mathscr S)\subset\{Y\}$ by Corollary 2 to Theorem 4. $y\notin E(\mathscr S,\mathscr S+\mathscr S)$ implies $E(\mathscr S,\mathscr S+\mathscr F)=\varnothing$. $s\in\Gamma(X,\mathscr F)$.
- (ii) Suppose $\Gamma(X, \mathcal{S})$ is a primary $\Gamma(X, \mathcal{O})$ -submodule of $\Gamma(X, \mathcal{F})$. Suppose $\Gamma(X, \mathcal{S}) \neq \Gamma(X, \mathcal{F})$ and (X, \mathcal{O}) is Stein. Let $P \subset \Gamma(X, \mathcal{O})$ be the radical of $\Gamma(X, \mathcal{S})$. P defines a subvariety Y in X. Clearly $E(\mathcal{S}, \mathcal{J}) \subset Y$ and $E(\mathcal{S}, \mathcal{J}) \neq \emptyset$.

We claim $P = \Gamma(X, \text{ Id } Y)$. Take $f \in \Gamma(X, \text{ Id } Y)$. Fix $y \in Y$. By Hilbert Null-stellensatz $f_y^k \in (\sum_{i=1}^l \mathcal{O}g_i)_y$ for some natural number k and some $g_1, \ldots, g_l \in P$. $y \notin E((\sum_{i=1}^l \mathcal{O}g_i):f, \mathcal{O})$. By Cartan Theorem A there exists $h \in \Gamma(X, (\sum_{i=1}^l \mathcal{O}g_i):f)$ such that h does not vanish at y. $hf \in \Gamma(X, \sum_{i=1}^l \mathcal{O}g_i)$ and $h \notin P$. Let $\varphi \colon \mathcal{O}^l \to \sum_{i=1}^l \mathcal{O}g_i$ be the sheaf-epimorphism defined by $\varphi(t_1, \ldots, t_l) = \sum_{i=1}^l t_i(g_i)_x$ for $x \in X$ and $(t_1, \ldots, t_l) \in \mathcal{O}_x^p$. Since $H^1(X, \text{Ker } \varphi) = 0$ by Cartan Theorem B, $hf = \sum_{i=1}^l c_i g_i$ for some $c_1, \ldots, c_l \in \Gamma(X, \mathcal{O})$. $hf \in P$. $h \notin P$ implies $f \in P$. Hence $P = \Gamma(X, \text{ Id } Y)$.

Y is irreducible, for otherwise $Y = Y_1 \cup Y_2$ for some subvarieties $Y_1 \neq Y$ and $Y_2 \neq Y$ and $P = \Gamma(X, \text{Id } Y) = \Gamma(X, \text{Id } Y_1) \cap \Gamma(X, \text{Id } Y_2)$ with $\Gamma(X, \text{Id } Y_i) \neq \Gamma(X, \text{Id } Y)$, i = 1, 2.

Suppose $Z \in \mathcal{X}(\mathcal{S}, \mathcal{T})$, $Z \subset Y$. Suppose $Y \neq Z$. Then take $y \in Y - Z$. By Corollary 1 to Theorem 4, $E(\mathcal{S}: \mathcal{S}[Z], \mathcal{O}) = Z$. By Cartan Theorem A there exists $f \in \Gamma(X, \mathcal{S}: \mathcal{S}[Z])$ such that f does not vanish at y and there exists $s \in \Gamma(X, \mathcal{S}[Z]) - \Gamma(X, \mathcal{S})$. Hence $f \notin P$, $s \notin \Gamma(X, \mathcal{S})$, and $fs \in \Gamma(X, \mathcal{S})$. Contradiction. $\mathcal{X}(\mathcal{S}, \mathcal{T}) = \{Y\}$. \mathcal{S} is primary. Q.E.D.

REMARKS. (i) Theorem 7 justifies the term primary subsheaf.

(ii) Theorem ' of [3] follows from Theorems 6 and 7.

The author wishes to thank Professor Robert C. Gunning for his suggestions and encouragements.

REFERENCES

- 1. H. Grauert, Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen, Inst. Hautes Études Sci., No. 5, Paris, 1960.
- 2. R. C. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs, N. J., 1965.
 - 3. O. Forster, Primärzelegung in Steinschen Algebren, Math. Ann. 154 (1964), 307-329.
- 4. W. Thimm, Lückengarben von kohärenten analytischen Modulgarben, Math. Ann. 148 (1962), 372-394.
 - 5. O. Zariski and P. Samuel, Commutative algebra, Van Nostrand, Princeton, N. J., 1958.

Purdue University,

Lafayette, Indiana
University of Notre Dame,
Notre Dame, Indiana