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In this paper we develop the theory of Noether-Lasker decomposition of co-

herent analytic subsheaves as an analogue of the algebraic Noether-Lasker de-

composition of ideals in Noetherian rings. The decomposition can be described

as follows : Suppose if is a coherent analytic subsheaf of a coherent analytic sheaf

Jona complex space (X, 0) in the sense of Grauert. For every point x of X,

yx as an CVsubmoduIe of 3~x has a Noether-Lasker decomposition into primary

CVsubmodules 0I" &~x- The radicals of these primary submodules are prime ideals

of <9X which define subvariety-germs of X at x. These subvariety germs are pieced

together to form global irreducible subvarieties of X which we call associated

subvarieties of ¡P. A coherent subsheaf of F which has only one associated sub-

variety is called primary. We prove that every coherent analytic subsheaf can be

represented as the intersection of "locally finite" primary subsheaves. This repre-

sentation is what we call the Noether-Lasker decomposition of the coherent

analytic subsheaf. If (X, 0) is Stein, then a coherent analytic proper subsheaf-^ of a

coherent analytic sheaf 3" is primary if and only if Y(X, if) is a primary submodule

of the Y(X, ̂ -module Y(X, ¿T).

The Noether-Lasker decomposition of subsheaves is derived from the gap-

sheaf theory of Thimm [4]. In part I of this paper we give an exposition of Thimm's

theory of gap-sheaves by sheaf-theoretical methods. In part II of this paper we

establish the Noether-Lasker decomposition of coherent analytic subsheaves.

Notations. All complex spaces in this paper are in the sense of Grauert

[1, §1]. Suppose (X, 0) is a complex space. A holomorphic function on (X, 0) is an

element of Y(X, 6). A holomorphic function f vanishes at a point x of X if the germ

of/at x is not a unit in <SX. A subvariety in X is a set which locally is the set of

points where a finite number of locally defined holomorphic functions vanish.

The ideal-sheaf of a subvariety Y, denoted by Id Y, is the sheaf of germs of holo-

morphic functions vanishing at every point of Y. A complex space (Z, Jt) is a

subspace of (X, 0) if Z is a subvariety of X and there exists a coherent ideal-sheaf

J on X such that Jtr = (0/J)\Z and {z \ z e X, J^G^Z. A module-sheaf on

(X, 0) is an analytic subsheaf of 0" for some p. If j/ is an ideal-sheaf on (X, 0),

then \/¿tf is the ideal-sheaf defined by ( y/sf)x = V^x, where \/s#x is the radical

of the ideal stfx in 6X.
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Suppose that Si and SF are analytic subsheaves of an analytic sheaf F and sé

is an ideal-sheaf on a complex space (X, 6). Denote by 0t;SF the ideal-sheaf

defined as follows: for xeX, fe(@:F)x if and only if fe 6X and fSFx<^mx.

Denote by (SF;sF)r or simply by £F;si the subsheaf of 3" defined as follows:

for x e X, s e (Sf:sé)x if and only if s e $~x and sáxs<^Fx. If M, SF, F, and sé

are coherent, then 3t;SF and SF:sé are coherent. If 5 £ Y(X, F) andfe Y(X, 0),

then ®:s denotes M:Os and (6F-.f)r or simply SF-.f denotes (SF-.Gf)*-.

Suppose X and Y are two complex spaces, F is an analytic sheaf on X, and

77: A^-> Fis a holomorphic map (i.e. a morphism of ringed spaces). Then R°tt(F)

denotes the zeroth direct image of F under w.

Suppose x = (x!,..., xB) £ Cn and rx,...,rn are positive numbers. Then

A(x; rx,..., rn) denotes the poly disc {(zi,...,zn)eCn\\zi—xi\<ri, ISiSn}.

Suppose F is a sheaf on a topological space E, x e E, U is an open neighborhood

of x in F, and s e Y(U, F). Then sx denotes the germ of s at x and ¡Fx denotes the

stalk of -F at x. If/is a (complex-valued) function on F, then/», denotes the germ

off at x.
Suppose F is a Noetherian ring and F is an F-submodule of a finitely generated

F-module F. Then P(E, F) denotes the set of all associated nonunit prime ideals

in the Noether-Lasker decomposition of F as a submodule of F.

I. Gap-sheaves.

Definition 1. Suppose SF is an analytic subsheaf of an analytic sheaf Jona

complex space (X, <S) and p is a nonnegative integer. The pth gap-sheaf of SF in SF,

denoted by SFmr or simply Fio-:, is the analytic subsheaf of F defined as follows:

for x e X, s e (FÍDÍ)X if and only if there exist an open neighborhood U of x in X,

a subvariety A in U of dimension S p, and t e Y(U, F) such that tx = s and tye SFy

for ye U-A. Denote by E(SF,F) the set {x\xe X, SFX^.FX} and E"(F,F)

denotes E(SF, Fm).

Definition 2. Suppose SF is an analytic subsheaf of an analytic sheaf F on a

complex space (A", (5) and A is a subvariety of X. Then the gap-sheaf of F in F

with respect to A, denoted by SF\A\p or simply SF[A], is the analytic subsheaf of

F defined as follows : for x e X, s e SF[A]X if and only if there exist an open neigh-

borhood U of x in X and t e Y(U, F) such that tx = s and ty e SFy for y £ (7—^4.

Theorem 1. Suppose SF is a coherent analytic subsheaf of a coherent analytic

sheaf F on a complex space (X, 0) and A is a subvariety of X. Then

SF[A] =  Ü (SF:s/-)r,
n = l

where sé is the ideal-sheaf of A, and hence is coherent.

Proof. Let F =U»3=i (F:sén)^czF. F is coherent, because it is the union of

an increasing sequence of coherent subsheaves of a coherent sheaf [1, Satz 8, §2].

Suppose s e F[A]X for some xe X. Then there exist an open neighborhood U of
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x in Jif and t e Y(U, .T) such that tx = s and ty e SPy for y e U-A. Let 0» = (SP\ U):t.

E(SS, C\U)<=AnU. By Hubert Nullstellensatz [2, III.A.7] s/x<=&x for some n.

Suppose se3Fx. se(Sp:sén)x for some «. There is an open neighborhood U

of x and t e Y(U, ST) such that tx=s and t(j/n\U)<=Sr\ U. For ye U-A, s4ny = <9y.

Hence ty e SPy. &=SP{A\.   Q.E.D.

The following lemma is a particular case of [1, Hauptsatz I, §6] and it can be

proved in a very elementary way.

Lemma 1. Suppose X and Y are complex spaces, SF is a coherent sheaf on X, and

w: X-*- Y is a proper nowhere degenerate holomorphic map, then F°7r(Jr) is coherent.

Theorem 2. Suppose SP is a coherent analytic subsheaf of a coherent analytic

sheaf ST on a complex space (X, s€) and p is a nonnegative integer. Then E"(SP, T)

is locally contained in a subvariety of dimension S p, i.e. for every xe X there exist

an open neighborhood U of x in X and a subvariety A in U of dimension S p such

that E"(SP, 3T) n U<=A.

Proof. Since the theorem is local in nature, we can suppose without loss of

generality that (X, J?) is a subspace of an open subset G of Cn. Let 6 be the structure

sheaf of G and £P and $" be the trivial extensions of SP and 5" on G respectively. We

can further suppose without loss of generality that we have a sheaf-epimorphism

A ; g» _> j- on G. Let JH=\-\&). Then E\SP, ST) = E>(Jt, 6P). Hence we need

only prove that

for every coherent module-sheaf J(^(SV on an open

(1) subset G of C\ E0(M, 0") is locally contained in a

subvariety of dimension S p.

We fix p and prove (1) by induction on «. For nSp, (1) is trivially true. Now

suppose (1) is true when « is replaced by «— 1. We are going to prove by induction

onp that (1) is true when « is unreplaced.

(a) p=l. Because of the local nature of (1) we can suppose that G is connected.

If Jt=0, then (1) is trivial. So we can suppose JtVO. E(J(, 6) is a proper sub-

variety of G. Take x e G. We want to prove that E"(Jt, (V) is locally contained in

a subvariety of dimension S p at x. If x i E(JÍ, (9), then it is obviously true. So

we suppose x e E(J(, 6). There is a nonzero holomorphic function <p on some

open neighborhood U of x such that <p vanishes on E(Ji, 0) n U. Without loss of

generality we can suppose that U is a polydisc A(x; rx,..., rn) and the projection

it: Y-> A(7r(x); rx,..., rn_x) defined by n(zx,..., zn) = (zx,..., zn_x), where

Y={y\ ye U, <p(y)=0}, makes Y an analytic cover over A(7r(x); rx,..., rn_x)

[2, III.B.3].
By Hubert Nullstellensatz, after shrinking U we can suppose without loss of

generality that ym e Y(U, J() for some m. 2. = (J(/<9cpm)\ Y is a coherent analytic
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sheaf on the complex space (Y, Jf), where X = (G/0<pm)\ Y. Uc\Ep(J(,C))

= E"(1, Jf). Let sé = R°TT(F) and 3S = R^(X).

By Lemma 1, sé is a coherent analytic subsheaf of the coherent analytic sheaf

@onA(Tr(x);rx,...,rn-x).

If ye Ep(l, X), then there exist a subvariety A of dimension S p in an open

neighborhood B of y in Y and t e Y(B, X) such that tz e J2 for z £ B — A and

i„ £ äy. Let Tr"1(ir(>')) = {>'0,...., y'}, where j° = y, and F' be disjoint open neigh-

borhoods of y\ OSiSh'm Y, such that F°<= 5. Since <p is proper, there is an open

neighborhood C of n(y) in A(tt(x); rx,..., rn_x) such that w-1(t7)cUí = o F'.

Define ? * £ r(7r - l(C), Jf) as follows: /»[^(C) n fi"^/^-1^) n 5° and

**|77-1(C)nFi = 0 for ISiSl. t* induces í'£ rfC.J1). t'zeséz for zeC—n(A)

and í¿y) (£ J^(v). Since C n n(A) is a subvariety of dimension S p in C, n(y) e

E"(sé,3S). Since y is an arbitrary point in E"(l, X), ED(1, X)cz7T-\Ep(sé,®)). Let

0<st<rt, ISiSn—l, and & be the structure sheaf of D = A(tt(x); sx,..., sn^x).

Then there is a sheaf-epimorphism r¡: ¿%q-^-38\D.

Ep(sé,3S) n D = Ep(r)-\sé\D), St9). By induction hypothesis E"(r¡"\sé\D), 0t9)

is locally contained in a subvariety of dimension = p. There exists a subvariety Z

of dimension Sp in a polydisc 1F=A(7t(x); flf..., tn-x)<^D such that E"(sé,3S)

n rF<=Z.

P^.iljn^;^.(,_br„)

= E°(â, X) n A(x; ?!,..., iB_1; rj e ff-i(£"(j/, J1) n W) <=- rr~\Z).

tt~1(Z) is a subvariety of dimension ^/j in A(x; tx,..., tn_x, rn). The case/?=l is

proved.

(b) The case of a general/? i 1. 0P = <SV ~1 © G. Let a : 0" -» (9" ~1 be the projection

onto the first summand and ß: <9 -> Gv he the injection from the second summand.

Let JT=a(JF) and F = J(C\ ß(<9). Take x eG. Then by induction hypothesis and

by (a) there exist subvarieties Zx and Z2 of dimensions S p in an open neighborhood

U of x such that [/nP^ff'-'jcZj and i/n E"(F, &)<=Z2. It is readily

checked that U n F"(^, tf")"^ u Z2-   Q.E.D.

Theorem 3. Suppose F is a coherent analytic subsheaf of a coherent sheaf F

on a complex space (X, 0) and p is a nonnegative integer. Then F[o: is coherent and

E"(F, F) is a subvariety of dimension S p in X.

Proof. First we prove the coherence of Fm. Coherence is a local property.

Take x £ X. By Theorem 2 there exists a subvariety A of dimension S p in an open

neighborhood U of x in X such that U n E°(F, F)<^A.

Since dim ASp, Flp]\U=(F\U)[A]. Hence Fm\U is coherent by Theorem 1.

F[p] is coherent.

Ep(F,F) = E((F:Fip]),&) is a subvariety, because F:Fip) is coherent. Since

E"(F,F) is locally contained in a subvariety of dimension Sp, E"(F,F) is a

subvariety of dimension Spin X.   Q.E.D.
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Corollary. SPlíñ = SP\E"(SP, F)\

II. Noether-Lasker decomposition of subsheaves. Suppose y is a coherent

analytic subsheaf of a coherent analytic sheaf 3~ on a complex space. Let

E"(SP¿F) = {JieIi0)Yf be the decomposition into irreducible branches. Then we

call each nonempty Yf, p^O, iel(p), an associated subvariety of SP in ST and

denote the set of all associated subvarieties of SP in ^~ by SC(SP, ¿7~). From the

definition we see readily that 9£(Sf, 3~) is locally finite. SP is called a primary sub-

sheaf of !T if SP has only one associated subvariety.

The following lemma is a well-known algebraic fact [5, Appendix, Chapter IV] :

Lemma 2. Suppose R is a Noetherian ring and N is an R-submodule of a finitely

generated R-module M. A prime ideal P in R is an associated prime ideal in the

Noether-Lasker decomposition of N as a submodule of M if and only ifP = \/(N:f)

for some fe M.

Theorem 4. Suppose SP is a coherent analytic subsheaf of a coherent analytic

sheaf SF on a complex space (X, <P) and xe X. Let {Xf | /=>=: 0, ieJ(p)} be the set

of all associated subvarieties of SP passing through x, where dim Xf = p, ie J(p),

and suppose (Id Xf)x = C\,eKip.n Bf, is the decomposition into prime ideals. Then

{Pf, \p£0,ie J(p), j e K(p, i)}=P(SPx, fx).

Proof. Suppose PeP(SPx,^x) and dim F=p. Then P=vf(SPx:f) for some

fe 9~x by Lemma 2. P defines a subvariety V of dimension p in an open neighbor-

hood D of x in X. We can suppose after a shrinking of D that there exists

g e Y(D, 3T) such that gx=fand Id V=y/((SP\D):g). This implies that

{y\yeD,gyeSPy}= D-V.

Hence V^Ep(SP,3r). Since dim V=P and dim E0(SP, $~) S p, P=Pf, for some

i e J(p) and some j e K(p, i).

Fix p^O and ieJ(p). By definition Xf is an irreducible branch of Ea(SP,3r~)

for some c^p. Let U be a Stein open neighborhood of x in X such that U n Xf

=°Uie«p.« Xf, is the decomposition into irreducible branches and Pf, = (ld Xfj)x,

j e K(p, i).  Fix j e K(p, i).  Let Z1 be the union  of irreducible branches of

E"(SP, T)c\U other than Xf, and let

Z = Z1KJ(Ep-l(SP,3T)rs U).

Take ye Xf,-Z.

(y\U)[Xf,]y = SrWvf=Sr;.

Since (SP\U)[Xf,] is generated by global sections [1, Satz 4, §2], there exists

t e Y(U, (SP\ U)[Xf,]) such that ty $ SPy.

Let Y=E(SP\U,(SP\U) + (<9\U)t). Since Xf, is irreducible, if Y^Xf„ then

dim Y<p and tyeSP^_m=SPy (contradiction). Hence Y=Xf. Pf, = (ld Xf¡)x

= (Id Y)x = VW ■ a By Lemma 2, Pf, e P(SPX, rx).   Q.E.D.
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This theorem gives us a characterization of associated subvarieties and tells us

that the subvariety-germs defined by associated prime ideals in the Noether-Lasker

decomposition of the stalks of F can be pieced together to form global

subvarieties.

Corollary 1. // YeF(F, F), then E(F, F[Y]) = Y.

Proof. Obviously E(F, F[Y])<=Y. Suppose xeY and PeP((\d Y)X,GX).

Then by Theorem 4, F £ P(FX, Fx). By Lemma 2, F=\/(Fx:s) for some s e Fx.

seF[Y]x-Fx.   Q.E.D.

Corollary 2. Suppose & is a coherent analytic subsheaf of F and Fczâi^F

and F(F,F) = {Xi \ i el}. Then F(F,&t)cF(F,F). Hence there is a subset J

of I such that E(F, 0t) = (J {Xi \ i e J}.

Proof. Suppose Y e F(F, 0t). Take y e FandF£F((Id Y)y, &y). By Theorem 4,

PeP(Fy, 0ty). By Lemma 2, P=\/(Fy:s) for some s e ®y. Since s e Fy, by

Lemma 2, PeP(Fy, Fy).

By Theorem 4, F £ F((Id X')y, 0y) for some i e I such that y £ X1. Since the two

irreducible subvarieties X' and Y have a branch-germ in common at y, X'=Y.

Hence F(F, ®) <=F(F, F). The existence of J follows from

E(F, 0t) = (J {Y | YeF(F, &)}. Q.E.D.

Theorem 5. Suppose F is a coherent analytic subsheaf of a coherent analytic

sheaf F on a complex space (X, (9) and A is a subvariety of X. Suppose F(F, F)

= {Xi | i £ /}, x £ A, and I' = {iel\xe X*}. Suppose

P((ldX%,0x) = {Pii\jeJi},       ieT.

Let Fx=(~){Qij | ieI',jeJÙ be a Noether-Lasker decomposition of Fx, where

the radical of QtJ is Pit, i e /', 7' £ Ju and let K= {i \ i e I', X' d: A}. Then

(V[A})X= niQiilieKJeJi).

Proof. Let sé=\d A. By Theorem 1

y[A}x =  \J (Fx:séx)=  Oil {QiF-Jéï \ iel'JeJ,}
n=l n=l

- r\{(ji(Qii-^l)\i^r,.i^Ji\

For iel'—K, P^séx and hence Qu:séx=Fx for n sufficiently large. For ieK,

Ptj 4> séx and hence Q^ : séx = Qi} for every n. Therefore

F[A]x=C\{Qij\ieK,jeJi}. Q.E.D.

Corollary. F(F[A],F) = {Xi | X^A} and

E(F[A], F)=(J{Y\YeF(F, F),  Y et A).
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Proof. The first assertion follows from Theorems 4 and 5 and the second asser-

tion follows from the first.   Q.E.D.

Lemma 3. Suppose SPcz<% are coherent analytic subsheaves of a coherent analytic

sheaf 3~ on a complex space (X, 0). Suppose J is the ideal-sheaf of E(SP, 0t) and

x e E(SP, M). Then there is a natural number k such that ((Jh3~ + SP) n 0t)x = SPx.

Proof. E(0,®/SP) = E(SP,ge). By Hubert Nullstellensatz there is a natural

number / such that Jxx<^\T>:0l/SP)x. By the Lemma of Artin-Rees [5, Theorem 4';

§2, Chapter VIII] there exists a natural number k such that (JkLT/SP) n (0t/SP))x

c (J\0t/SP))x. Hence ((J*f + SP)r\ 0t)x = SPX.   Q.E.D.

Lemma 4. Suppose yczg% are coherent analytic subsheaves of a coherent analytic

sheaf ST on a complex space (X, (9). Then there exists a coherent analytic subsheaf

3.ofT such that E(M, T) = E(SP, 3t) and 3, r\@ = SP.

Proof. Suppose 3C(SP,m) = {Xi \ i el}. Let Ji be the ideal-sheaf of X'. Take

xf e X\ By Lemma 3 and Corollary 1 to Theorem 4, there exists a natural number

k(i) such that

(2) ((JV»T + SP)c\ nx'h)x> = K>,      i £ F

Since SC(SP,0t) is locally finite, £ = C\ití (Jf^F+SP) is a coherent analytic sub-

sheaf of ST. Obviously E( 1, F)<^E(SP,St).VIe are going to prove that 2tC\0t=SP.

From Corollaries 1 and 2 to Theorem 4 and (2) we conclude that

(3) EL9, (J?nF+SP)n SP[X%) c (J {x' \ j e I, X' £ X%       i e I.

Obviously SP^2lr\dt. Let Y=E(SP, 2. c\&). By Corollary 2 to Theorem 4

there exists a subset of J of I such that Y= \J {X* \ i e J}. Suppose Y+ 0. Then

take y e Y. Take a relatively compact open neighborhood of U of y in X. Let

F={i | z e /, X' n U¿ 0}. F is a finite set. Take i e F such that

dim X1 = max {dim Xj \ j e F}.

Take an open neighborhood IF of a point z of Z* in U such that

Wn(\J{X'\jeI,X'^Xi})^ 0.

Y n W= X1 n W. (M n &)\ W^ ^[X1]^ W. By (3) (Jf»ST+SP) n S"[X%\ W=

SP\ W. Hence

SP\W^St n 0t\ W^JfW+SP) n ^[X1]^ W=SP\ W.

z $ F (contradiction). Hence 7= 0 and SP=1 n ^.

Suppose E(2.,$~)iE(SP,0l). Take íe£(^áf)-E(á, J). Then ^ = ̂ .

SPx=lxr\0tx = @x, contradicting that xeF(^^). Hence E(&,9~) = E(Sf,0t).

Q.E.D.
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Lemma 5. Suppose F is a coherent analytic subsheaf of a coherent analytic sheaf

F on a complex space (X, <S) and F(F,F) = {Xl \ i el}. Let J={i \iel, X{ is

maximal in F(F, F)}. Then there exist a coherent analytic subsheaf M of F and

primary subsheaves ü¡ of F,ie J, such that (i) E(¿%, F) = (Ji€K X', where K=I—J,

(ii) £(J(, F) = X\ i £ J, and (iii) (f)ieJ SL^C\m = F.

Proof. For i e J let Y{ = U {X1 \jel and ;¥ i) and define J, = F[ Y%

Then by Corollary to Theorem 5, {Xi}=F(li, F), ieJ. Hence E(li,F) = Xi

and j2¡ is a primary subsheaf of F, i e J. Take y' £ Xi - Y\ i e J. Then (i?¡)j,< = Fy<,

i e J. Since lt^>F,ieJ, we have

(4) (r)^),=Fyt,       ieJ.

Since ^"(^ ^") is locally finite, f)ieJ J, is a coherent analytic subsheaf of F.

By (4) and Corollary 2 to Theorem 4 E(F, f\le] J2,)c:|jiejr *'•

Suppose xe\JieE Xi-E(F,f)ieJ 1(). Then x £ JSTi for some jeK and

^=Die/ (^i)*- Let F={/1 /' £ J, x e X'}. Since

P((<2t)„ Fx) = F((Id X%, <SX),       i eF,

P(FX, Fx) c  (J F((Id JT%, 0,).
feL

Since

F((Id AT*)* <P,) n (JJ F((Id X%, &x)) = 0,

Theorem 4, which asserts that F((Id X^, (SX)<^P(SFX, Fx), is contradicted. Hence

L(F,r)ieJ ^i) = \JieK X*. By Lemma 4 there exists a coherent analytic subsheaf

0t of F such that (fV ^¡) nâë=Fand E(®, F)=\JieK XK   Q.E.D.

Theorem 6 (Noether-Lasker decomposition of coherent subheaves). Suppose

F is a coherent analytic subsheaf of a coherent analytic sheaf F on a complex space

(X,0) and F(F,F) = {Xl \ i el}. Then for every i el, there exists a primary

subsheaf £x of F such that E(âu F) = Xl and C\i£l ât = F.

Proof. For YeF(F, F) define the depth of Y in F(F, F) to be sup {/1 there

exist Y}eF(F,F), OSjSl such that 70=Fand Y¡^Yi+i for OSj<l}. If

YjeF(F,F),OSjSl,a.nd Yj^Yj + i,0Sj<l, then for xe Y0,dimx F^dim* Yj+i

(because Y, is irreducible) and /^dimx X. So the depth of Fin F(F,F) is finite

for Y e F(F, F~). For i e I denote the depth of A'' by d{, and, for any nonnegative

integer d, let/„={/'| ield¡=d}, Jd = \Ji¿i h &ndKd=I-Jd.

We are going to prove by induction on d the following :

(5) For every diO there exist primary subsheaves J2, of F for ield and

a coherent analytic subsheaf 0td of F such that (i) E(âl,F~) = Xi,ie Id,

(ii) E{ßt, F) = \JieKd X\ and (iii) (C]     Êt) n®d=F.
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J0={Xi | X1 is maximal in^(^ &~)}. By Lemma 5, (5) is true for d=0. Suppose

(5) is proved for OSdSe. Since E(Ste, ^) = \JieKe X* and

E(0te,^) = \J{Y\ Year(3l„r)},

{X1 | iele + 1}={Ye&(&e,#~) | Y is maximal in 3C(0te, 5~)}. By Lemma 5 there

exist primary subsheaves ¿2{ of 3~, iele + x, and a coherent analytic subsheaf^

of y such that (i) E(lt, ^) = X\ iele + x, (ii) E(SS, 9~) is thin in Uw.»i x'> and

(iii) (fW, ^) n ^=^c. Hence (TWi.+1 âx)cM% = SP. Let

z = {F| Year&.r), ftUie,,tIn

By Corollary to Theorem 5, E(@[Z}s-, F)<=\JteK,+1 XK Let

Then  F<=z.  Since Z is thin in Ui6/e + i ^'. bY Corollary 2 to Theorem 4,

By Lemma 4 there exists a coherent analytic subsheaf Jf of 9~ such that

F(^^)= F and (f|f./.+1 ^i)n^[Z> n ¿f=^ Let fetl=J[ZV n JK Then

(nte/.+lá,)n«. + 1 = y and £(«.+i,^)<=Ut«. + l *'• Suppose E(&, + UT)

ï'LU.+î*'- Take x6Uteíttl^-£(^+i,n *e*' for some jeKe + x and

^=fW,+1 Wr Let 1-0 | ieJ.+1,xeX% SinceP((£t)„ ¿Q=F((Id Z%(PJ,
Í6L, F(^, ^)<=U<eiJP((W X'),, ^)- However,

F((Id X%, 0X) n (|J F((Id Z% (P,)) = 0,

contradicting   Theorem   4,   which   asserts   F((Id X')x, <Dx)czP{SPx, J~x).   Hence

F(^e + i, <^) = UieKe+i ^'- The induction process is complete and (5) is proved.

We claim that SP=C\ití £t. Obviously SP^Ç\ieI Jf. Take xeX.

F={i\iel,xe X*}

is a finite set. Take d^ max {a\ \ i e F}. Then x i \JieKd XK (@d)x=J~x.

SPx = tf\   (4)« n («„))   = H (4), => D (a,),. Q.E.D.

Remark. The decomposition S/'=f)ie,Sti is irredundant, i.e. SP=£(~\ie,_{n J,

for any y e i; for otherwise by Theorem 4 we have

X(SP, ST) <=   (J   3T(3(, .T) = {*' | i e /-(/}}•

In general, J„ z e I, is not uniquely determined. For example, when (X, <9) is C2

with coordinate-functions Zj and z2, then (0Zj) n (0zx + @z2) = (<9zx) r\ (0zx + <Pz2)2

are two different irredundant Noether-Lasker decompositions.
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However, corresponding to the uniqueness of isolated ideal components in the

usual Noether-Lasker decomposition in rings, we have the following:

A subset F of 2F(F, F) is called an isolated system of associated subvarieties if

Yx c Y2, Y¡ £F(F, F),i=l,2, and Yx e L imply Y2 eL.lfL is an isolated system

of associated subvarieties, then f) {J, | X* eL} is unique, because it is equal to

F[\J {X< | X' t L}] by Corollary to Theorem 5.

Theorem 7. Suppose F is a coherent analytic subsheaf of a coherent analytic

sheaf F on a complex space (X, 6). If F is primary, then Y(X, F) is a primary

Y(X, <S)-submodule ofY(X, F). The converse is true if(X, 0) is Stein and Y(X, F)

¿Y(X,F).

Proof, (i) Suppose F is primary. Let {Y}=3£(F, F). We are going to prove that

Y(X, SF) is a primary Y(X, 0)-submodule of Y(X, F) with Y(X, Id Y) as its radical.

Take/£ Y(X, Id Y). Fix y e Y. Since E(F:F, &)= Y, by Hubert Nullstellensatz

fkFy^Fy for some natural number k. F(FJkF + F)c{Y} by Corollary 2 to

Theorem 4. y £ E(FJkF + F) implies E(FJkF + F)=0. fkY(X, F)c Y(X, F).

Suppose g e Y(X, &)- Y(X, Id Y) and j £ Y(X, F) such that gs e Y(X, SF). For

some ye Y g does not vanish at y. Then sy e Fy. F(F, (9s + F)<={ Y} by Corollary 2

to Theorem 4. y £ E(F, &s+ F) implies E(F, <9s+F)=0.se Y(X, F).

(ii) Suppose Y(X, F) is a primary Y(X, 0)-submodule of Y(X,-F). Suppose

Y(X, F)^Y(X, F) and (X, (9) is Stein. Let P^Y(X, (9) be the radical of Y(X, F).

P defines a subvariety Y in X. Clearly E(F, f)^Y and E(F, ß)+0.

We claim P=Y(X, Id Y). Take fe Y(X, Id 7). Fix y e F. By Hubert Null-

stellensatz fy e(2i=i ®gi)y for some natural number k and some gx,...,g¡eP.

y t F((2í = i 0&):/, 0). By Carian Theorem A there exists h e Y(X, (2í = i %):/)

such that h does not vanish at y. n/e TÍA', £{ = i #&) and h $ P. Let cp: &■ -*■ 2¡_i %

be the sheaf-epimorphism defined by cp^,..., (|) = 2í = i fi(gi)x for x £ A' and

(/j., ...,t,)e <9X. Since //HA', Ker <p) = 0 by Cartan Theorem B, Ä/=2'-i A^i for

some cj,..., c, e r(Ar, 0). A/e F. A £ F implies/E F. Hence F= r(A-, Id F).

F is irreducible, for otherwise F= Yx u F2 for some subvarieties YX^Y

and F2# F and F=r(A-, Id Y) = Y(X, Id Yx) n r(A", Id F2) with ríA", Id F() #

r(A-, Id Y), / = 1, 2.

Suppose ZeF(F,F). Z<= F. Suppose F^Z. Then take y e Y-Z. By Corollary

1 to Theorem 4, E(F:F[Z], <S)=Z. By Cartan Theorem A there exists / e

Y(X, F:F[Z]) such that/does not vanish at y and there exists j e T(A', F[Z])-

Y(X, F). Hence f $ P, s f Y(X, F), and fs e Y(X, F). Contradiction. F(F, F)

= {Y}. F is primary.    Q.E.D.

Remarks, (i) Theorem 7 justifies the term primary subsheaf.

(ii) Theorem ' of [3] follows from Theorems 6 and 7.

The author wishes to thank Professor Robert C. Gunning for his suggestions and

encouragements.
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