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In [8] we proved that the index-set corresponding to any recursively enumerable

degree a is of the highest isomorphism-type possible for sets belonging to S3(a).

From the proof of this result we derived Sacks' theorem [4] that the recursively

enumerable degrees are dense. In the present paper we classify three other index-

sets associated with any given recursively enumerable degree a, namely the index-

sets corresponding to the recursively enumerable sets which are respectively of

degree á«, ä a and incomparable with a. We then use the indirect method of [8]

to extend three theorems of Sacks ([3], [5]); these extensions were announced in [8].

Finally, amongst other results we infer from our classifications that certain enumer-

ations are not recursively enumerable; for example, the recursively enumerable

degrees (as distinct from sets) can not be recursively enumerated without repetitions.

We shall use most of the definitions employed in [8], but our notation will be

slightly different and so we restate the more important definitions. One superficial

but convenient change is that we shall do recursion-theory mainly on the positive

integers rather than the nonnegative integers, since this leaves 0 free for various

special purposes. Therefore, the terms "number" and "set" should be reinterpreted

accordingly. We now assemble some of the definitions that we shall use. If A is a

set then we let A(x) =1 if xe A and A(x) = 2if x<£ A. For any number e and set A

we define the partial function 0^ by putting

0^(x)= ¡7(minyFi(e,x,v));

we follow the convention of setting U(0) = 0. For each e and s we define

x e Rse <-* (3y)ySsTx(e, x, y);

if Re = USR% then Rx, R2,..., is an enumeration of all recursively enumerable

sets. If S is any recursively enumerable set then each number e such that Re = S is

called an index of S. We recall that an «-ary sequence {Ah    ,J of recursively

enumerable sets is called recursively enumerable if there is a recursive function

a(ix,..., in) such that Ati_An = Ra(h.w for all ix, ...,/„. A class of recursively

enumerable sets is called recursively enumerable if it can be ordered into a re-

cursively enumerable sequence.

The index-set G(si) of a class si of sets is defined by

e e G(sf) <r-*Reesi.

In particular, the index-set G(a) corresponding to a degree a is defined by

e e G(a) <-> Re is of degree a.
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The three other index-sets related to a which we shall discuss in the present paper

are defined by

e e G( S a) <-> Re is of degree = a,

e e G(^a) <-> Re is of degree ä a,

e £ G(\a) «-> Re is of degree incomparable with a.

The various forms of the arithmetical hierarchy relative to a degree a are written

as in [8]: 2n(a), nn(a) are the classes of all sets expressible by a predicate form with n

alternating quantifiers the first of which is existential, universal respectively, where

in each case the scope of the quantifiers is of degree á a. We refer to 2n(0) and

n„(0) simply as 2n and Iln. Our procedure for classifying an index-set G(sé) once

again consists of finding a definition for G(sé) in some quantifier and then showing

that G(sé) is of the highest isomorphism-type possible for sets in that form. The

first part is trivial : in the cases we consider here, the obvious definitions suffice and

we give these in the appropriate section. The second and difficult part reduces, as

we explained in [8], to showing that if S is any set in the same quantifier form as

G(sé) then there is a recursively enumerable sequence {Ck} of recursively enumer-

able sets such that for all k :

keS<r+Ckesé.

The layout of the paper is as follows. In §1 we obtain a representation for

£3(a) which is slightly different from that used in [8]. In §2 we show that if a is a

recursively enumerable degree <0(1) then G (Sa) is of the highest isomorphism-

type possible for sets in X3(a). In §3 we use the techniques in the main section of [8]

to show that if 0<a¿0(1) then G (^a) is of the highest isomorphsim-type possible

for sets in S4, and if 0<a<0(1) then G(\a) is of the highest isomorphism-type

possible for sets in n4. In §4 we prove:

(i) if a<0a) and ax<a2< ■ ■ ■ is an infinite ascending recursively enumerable

sequence of recursively enumerable degrees each < a, then there is a recursively

enumerable degree c such that ax<a2< ■ ■ ■ <c and a\c.

(ii) if 0<a<0(1) then there is a recursively enumerable degree c such that

c(d_q(2) ancj a|c (\ye announced a stronger result in [8] but we have since been

unable to carry through the proof of this.)

(hi) if 0 < a < 0(1) then there is a degree c which contains a maximal set and is such

that a\c.

By a recent result of Martin [2], (iii) is in fact equivalent to (ii) so that we need

only prove (ii). In a simple application of our method, we also prove in §4 that the

maximal sets of degree 0U) inhabit infinitely many isomorphism-types. Lastly, in §5

we derive some simple results about recursive enumerations.

1. Representation. In this section we devise a slightly stronger representation

for sets in 23(a), where a is recursively enumerable, than that used in [8].
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Lemma 1. If a is a recursively enumerable degree and S e X3(a) then there is a

recursively enumerable sequence {Lkex} having the following properties:

(1) for each k, the partial function Xk(e, x) = max z (z eLkex) is partial recursive

in a.

(2) ifkeS then there is an ek such that ife^ek then Lkex is finite for all x.

(3) ifk $ S then there is for each e an xe such that Lkex is infinite for all xä xe.

Proof. Let A be a fixed recursively enumerable set of degree a, and for each s

let As be the finite subset of A enumerated up to stage s in some fixed recursive

enumeration of A. Since S e 23(a) there is a number c such that for all k :

kes<r-> (3e)(Vu)(3v)Ti(c, k, e, u, v).

Now define a recursively enumerable sequence {Skji} by setting

z e Skeu <-> <yv)v<t(3s)tillT£Xc, k, e, u, v).

We first claim that the partial function

zk(e, u) = max z       (ze Skeu)

is partial recursive in a; for, it can be seen that

max z (ze Skeu) = min z(V.s)sä2F3s(c, k, e, u, z)

= min z[Tg(c, k, e, u, z) & T3(c, k, e, u, z)].

Our second claim is that for all k :

keS<-> (3e)(Vtz)       (Skeu is finite).

We leave the verification of this to the reader, since in any case a proof of this is

contained in Lemma 4 of [8]. Now, for each k, e and x we define

Lkex = ( I U "fc/u-

Clearly, {Lkex} is recursively enumerable, and if Xk(e, x) = max z (z e Lkex) then it

can be seen by examining the definition of Skfu that \k(e, x) = min/Se maxuSxzk(fu)

and so Xk is partial recursive in a. We leave the verification of (2) and (3) to the

reader.

The representation that we used in [8] is easily obtained from Lemma 1. For the

sake of completeness we restate it here although we leave its derivation from

Lemma 1 to the reader.

Lemma 2. If a is a recursively enumerable degree and S e 23(a) then there is a

recursively enumerable sequence {Mkj} which is uniformly of degree á a and such

that for all k:

k e S —> (3e)(Mke is of degree a & (ij)j<e(Mkj is recursive)),

k $ S-+ (Ve)(Mke is recursive).

In the present paper our use of Lemma 2 will be confined to §3 and §4, where we

employ it for a representation of sets in 24—recall that 24=S3(0U)).
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2. Classification of G (¿a). If a>0(1) then G (Sa) consists of all positive

integers and so there is interest only in the case a J0(1> and in particular a<0(1).

In fact, we have only been able (and it only seems possible) to obtain a general

classification in the principal case when a is a recursively enumerable degree

<0(1).

We first need to obtain an upper bound for G ( S a). This is very easy and was

done in [8] but we may as well repeat it here. We observe:

e e G ( ^ a) <-> Re is of degree = a

« (3/)(Vx)(x i Re ~ (3y)Tt(f x, y)),

where A is a fixed set of degree a. (The second equivalence holds because Re is

recursive in A if and only if Re is recursively enumerable in A.) By eliminating <->

and bringing the predicate into normal form, it follows that G (Sa)e23(a).

Notice that this is true for any degree a.

Now, we turn to showing that if a is any recursively enumerable degree < 0(1)

then G ( ̂  a) is of the highest isomorphism-type available to sets in 23(a). One of

the techniques that we use is essentially the easier half of Sacks' proof [4] that the

recursively enumerable degrees are dense.

Before proving the theorem we need a few conventions about limits. If f(x) is a

function we say that limx f(x) = r if there is a number x0 such that/(x) = r for all

xäx0 (in which case limxf(x) is finite), and that limx/(x) = oo if for each r there is

a number xr such that/(x)>r for all x^xr; otherwise, we say that limxf(x) does

not exist.

Theorem 1. If a is a recursively enumerable degree < 0U) and S e 23(a) then

there is a recursively enumerable sequence {Ck} of recursively enumerable sets such

that : k e S <-»• Ck is of degree S a.

Proof. Let A be a fixed recursively enumerable set of degree a. Also, let F be a

fixed recursively enumerable set which is not recursive in A; such a set exists

because A is of degree <0(1). Let As, Bs be the finite subsets of A, B respectively,

that have been enumerated up to stage s in some stage-by-stage recursive enumera-

tion of A, B. Let {Lkex} he the sequence related to a and 5 by Lemma 1 in §1, and let

Lkex be the finite subset ofLkex enumerated up to stage s in some uniform stage-by-

stage recursive enumeration of {Lkex}. Finally, let Xk(e, x) be the largest element of
rs
±-keX'

In preparation for the definition of Ck we define

a(s, e, x) = min yy SsTxA\e, x, y)   if (3y)y á sTf(e, x, y),

= 0 otherwise.

z(s, e, x) = a(s, e, x)   if a(s, e, x) > z(s—l, e, x),

= z(s— 1, e, x)+1    if a(s, e, x) = 0,

= z(s—l,e, x)        otherwise.
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Clearly, if lim5 a(s, e, x) exists and is positive then ze(x) = lims z(s, e, x) exists and is

positive. Therefore, if 0;?(x) is defined for all x then ze(x) is defined for all x and the

function ze is recursive in A. On the other hand, if lims a(s, e, x) is 0, oo or does not

exist then lims z(s, e, x) = oo. Next, we define

fk(s, e) = max {fk(s-1, e), min x(U(a(s, e, x)) ¿ Cfc5_1W)}-

Clearly, lims/fc(i, e) exists for each e, and if 0£(x) is defined for all x then lims fk(s, e)

is finite if and only if 0^(x) + Ck(x) for some x. Finally we let Cke contain every

element of Ck;1 and every number 2e • 3" • 5* such that

K(e, y) í K~\e, y) & ((y e B° & Ms, e) = 2e-3*-5*) V maxuSy {z(s, e, «)} = z).

We define Cl = \Je Qe = U» CL and Ck = (Js Q = Ue Cke, which completes the

construction.

We begin the proof of the theorem with the following lemma.

Lemma 3. Let k and e be fixed. If there is a ye such that Lkey is infinite for all

y^ye then there is an x such that ®i(x) is undefined or Qj(x)^Ck(x).

Proof. Suppose, for reductio ad absurdum, that 0;?(x) is defined and equal to

Ck(x) for all x. It follows that hmsfk(s, e) = oo, and that ze(x) is defined for all x.

Hence, if y^ ye it can be seen that

yeB-*(\lz)(2°-l*-5*eCk),

y$B^ (Vz)2>maXuSï{2e(u))(23■ 3»■ 5' * Ck),

and so

y£F^(3z)(2*-3"-5^Cfc).

Since B is recursively enumerable, this implies that B is recursive in Ck and so as B

is not recursive in A, Ck is not recursive in A.

lfk$Sthen by Lemma 1 of §1 there is for each e a numberye such thatLkey is

infinite for all y^ye, so that by Lemma 3 it follows that Q^Ck for all e. Hence, if

k i S then Ck is not recursive in A, which proves one side of the theorem.

\fkeS then there is a number ek such that Xk(e,y) is defined for all e^ek and

all y. Moreover, since Xk is partial recursive in A and since

2e>3 -5Z £ Cke «-» (3r)rgmins(Aj(e,V) = At(e,v))(2e-3!'-5i £ Cke)

for each e^ek and all y, it follows that (Jeiek Cke is recursive in A. It remains to

prove that \Je<ek Cke is recursive in A. Let e he fixed and <ek; then we simply

wish to prove that Cke is recursive in A. Now, there is a ye such that for all y^ye:

lims Xk(e, y) = oo and so

2° ■ y ■ y e Cke *-*((yeB& lims fk(s, e) = 2e-V- 5*) V maxu s „ {lim, z(s, e, «)} ä z).
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Case 1. ©e (x) is defined for all x. In this case, lim5 fk(s, e) is finite by Lemma 3

and ze(y) is defined for all y, so that if 2e ■ 3y ■ 52 > lims fk(s, e) then

2e • 3" • 5* e Cke <-» z S maxu s v {ze(u)}.

It follows that Cke is recursive in A.

Case 2. Qj(x) is undefined for some x. In this case lims z(s, e, ue) = oo for some

number ue and so 2e-3"-52£ Cke for all z if v^ize. It follows that Cke is the union

of a finite number of finite or recursive sets and so is recursive. This completes the

proof of Theorem 1.

For reasons given in [8] we may immediately deduce :

Corollary 1.1. If a is a recursively enumerable degree < 0(1> then G (Sa) is

of the highest isomorphism-type possible for sets in S3(a).

This also yields the classification of G(a) obtained in [8] for the case a is a re-

cursively enumerable degree < 0(1). For, if A is a fixed recursively enumerable set

of degree a then there is a one-one recursive function/such that

2x e RfM <-> x e A,       2x +1 e RHe) <-> x e Re

for all e. Hence, e e G (Sa) *->f(e) e G(a) for all e, so that G (-¿.a) is one-one

reducible to G(a) which must then also be of the highest isomorphism-type possible

for sets in S3(a). On the other hand, if a=0(1) then G (Sa) is recursive and so the

classification of G(a) in this crucial case has to be dealt with as in [8].

Finally, we remark that the classification we have obtained will not extend to

arbitrary a < 0(1). For, P. F. Rowat has shown the existence of a minimal degree

a<0(1) with aU)=0<2), so that Z3(a)=Z4 but G ( S a) = G(0) e S3 since a is minimal

and so cannot be recursively enumerable, which implies that G (Sa) is not of the

highest isomorphism-type possible for sets in S3(a).

3. Classification of G (ta) and G (\a). If a = 0 then G (^a) consists of all

positive integers and G (\a) is empty so that there is only real interest in the case

0<a^0U); in fact, G (\a) is nontrivial if a|0(1) but we shall not discuss this case

here.

We first obtain upper bounds for G (äa) and G (\a). Since G (\a) is the comple-

ment of G (Sa) u G (^a), we shall obtain an upper bound for G (\a) through

obtaining one for G (^a). Let a be ¿0(1) and let A be a fixed set of degree a. We

observe

e e G (^ a) <-> Re is of degree = a

<-» (3/)(Vx)(x i A <-> (ly)T?'(f, x, y)).

Since A is of degree ^0(1) and TX'(f, x,y) is of degree g0(1) as a predicate of

e,f x, v, it follows that G (^a) e23(0(1>)=24. Now, because G(^«)623(a)çS4

we deduce that G (\a)e II4.
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Our main task is to show that if 0<aSOm then G (^a) is of the highest iso-

morphism-type possible for sets in 24 and if 0 < a < 0(1) then G (\a) is of the highest

isomorphism-type possible for sets in II4. We prove a theorem that is slightly more

general than necessary so that in the next section we may deduce, as an immediate

corollary, the theorem on ascending sequences of degrees mentioned in the intro-

duction ; this involves only the most trivial alterations in the proof. Although this

proof differs little in its general conception from that of the main theorem in [8],

we give it in full detail since we have discovered what appears to be a much more

elegant and comprehensible way of presenting it.

Theorem 2. Let 0<aS0(1) and let ax<a2<- ■ be a recursively enumerable

sequence of recursively enumerable degrees such that a^at for all i. If S e E4 then

there is a recursively enumerable sequence {Ck} of recursively enumerable sets, each

of which is of degree ^a¡for all i, such that for each k:

keS->Ckis of degree 0(1),

k <£ S -> Ck is not of degree ä a.

Proof. Let A be a fixed set of degree a; since aSOa) there is a uniformly re-

cursive sequence {As} such that lims As(x) = A(x) for all x. Also, let {At} be a re-

cursively enumerable sequence of recursively enumerable sets, where At is of degree

«i for each i. Let {Mkj} be the sequence shown to correspond to S in Lemma 2 of

§1 ; in other words {Mk}} is recursively enumerable and such that for all k:

k e S-^ (3e)(Mke is of degree 0(1) & (yj)j<e(Mke is recursive)),

k $ S < (ie)(Mke is recursive).

We now define another recursively enumerable sequence {Nk,} by setting

Nkj = {p* | x e Ae}      if j = 2e,

= {pJ\xeMke}   ifj = 2e+l.

(Here, p¡ is the y'th prime-number.) Since ax<a2< ■■ -,(JiSj At is clearly of degree

af for all/ Therefore, {Nkj} has the property that for all k:

k e S-^ (3e)(Nke is of degree 0{1) &\Jj<e Nkj is not of degree S a),

k$S^ (Ve)(U,<e NM is not of degree ^a).

Since {Nkj} is recursively enumerable, we can let Nkl be the finite subset of Nk,

enumerated up to stage s in some fixed recursive enumeration of {Nkj}. For each k,

we shall define Ck to be IJj Ckj, where Ckj^Nkj for all/ In order to give some feel-

ing for the construction we mention now that we shall design it so that if k e S

then Nke - Cke is finite, where e is the least number 2j+ 1 such that Mkj is of degree

0(1), and if k $ S then Nke-Cke is finite for all e. The former implies that if k e S

then Ck is of degree 0(1), so that Ck is trivially of degree à« and ao¡ for all i. The

latter implies that if k $ S then Ck is of degree è a¡ for all z, since for each i there
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will in this case be a set Cke of degree a¡. So it can be seen now how we arrange that

Ck is of degree 3: a, for all i, k.

We shall define Ck stage by stage simultaneously with various functions that play

a part in its definition, and Ci will denote the finite set of numbers put into Ck

through our procedure up to stage s. We first define

yk(s, e, x) = min yy s ST$T \e, x, y)   if (3y)y s .JfT \e, y),

= 0   otherwise.

Notice that if ©£*(*) is defined for all x then lims yk(s, e, x) exists and is positive,

and ©e*(x)= £/(lims yk(s, e, x)), for all x. On the other hand, if 0£*(x) is undefined

for some x then either lims yk(s, e, x) = 0, lims yk(s, e, x) = oo or lims yk(s, e, x) does

not exist. Next we define

fk(s, e) = max {fk(s- 1, e), min x(U(yk(s, e, x)) ¥= As(x))},

gk(s, e) = min x(yk(s, e, x) = 0 V yk(s, e, x) + yk(s-1, e, x)),

hk(s, e) = min {fk(s, e), gk(s, e)},

dk(s, e) = max {yk(s, e, x) | x < hk(s, e)}.

Note that yk(s, e,x) = 0 for all sufficiently large x, so that U(yk(s, e, x)) = 0 ̂  As(x)

for all sufficiently large x, and/fc(j, e), gk(s, e), hk(s, e) and dk(s, e) are hence well-

defined. It can be seen that/fc is monotonie in s for any fixed e, and also that if

©e*(x) is defined and equal to A(x) for all x then lims fk(s, e) = oo. In addition, if

0£*(x) is defined for all x then lims gk(s, e) = co. The most important definition in our

construction is the following. If z e C^'1 then we set 8k(s, e, z)= 1 and otherwise

we define

8k(s, e,z) = 0   if z = dk(s, e) & (Vj)J<e(8k(s- l,j, z) = 1),

= 1    if z > dk(s, e),

= 8k(s— 1, e, z)   otherwise.

Finally, we put every element of Ckjl into Cke and otherwise put z into Cke if

zeN*ke and 8k(s,j,z)=\ for all j Se. Then C2=U« Cj., Cke=U. Q. and Ck =

Us Ck = Ue Cfce. This completes the construction.

Before we turn to proving the theorem we need some important preliminaries.

First, we observe that if z £ Nke then

ziCke^ Qr)(Vs)szT(3J)jSe(8k(s,j, z) = 0).

Hence if we define

z £ Dke <-► (3j)i¿e(3r)(Vs)sir(8k(s,j, z) = 0),
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then Nke n Dke £ Nke — Cke. The following simple simple combinatorial lemma is

crucial to our whole argument.

Lemma 4. Nke-Cke = Nke n Dke,for all k, e.

Proof. We only have to prove that Nke - Cke^ Dke. Let z e Nke - Cke and suppose

for reductio ad absurdum that z $ Dke. It follows that since z e Nke - Cke there is a

largest number fS e such that 8k(s,f z) = 0 for infinitely many s, but that on the

other hand since z £ Dke there are then also infinitely many s such that 8k(s,fi z) = 1.

Let j* be a stage such that if s^s* then 8k(s,j, z)= 1 for all y such that/</^e;

such a stage exists by choice off. At each of the infinitely many stages s>s* for

which 8k(s,f z)=0 and 8k(i— 1,/ z)= 1 we must have 8k(s—l,j, z)= 1 for all /</

by definition of 8^. Since, if j>j* then 8k(s—l,j, z)= 1 for all/such that/</^e, it

follows that 8k(s—l,j,z)=l for ally = e at infinitely many stages s>s*. Hence

z £ A^e — Cke, which proves the lemma by contradiction.

After this preliminary diversion, we turn to proving the theorem. We wish to

prove that

k e S -*■ Ck is of degree 0(X),

k $ S -*■ A is not recursive in Ck.

This is an almost immediate consequence of the fact that for any fixed k and for

alle:

1(e): if A is not recursive in \Jj>e Nkj then either 0f*(x) is undefined or 0£*(x)

¥^A(x) for some x.

11(e) : if A is not recursive in (J¡ < e Nkj then Dfce is finite.

To see that it is a consequence we proceed as follows. If k e S then there is an e

such that Nke is of degree 0(1) and A is not recursive in (Jj<e Nkj. Hence, Dke is

finite by 11(e) and so Nke — Cke is finite by Lemma 4. It follows that Cke is of degree

0(1) and so Ck is trivially of degree 0(1). On the other hand if k $ S then for all e, A is

not recursive in U/<e A7«; and so by 1(e) it follows that ©ir*(x) is either undefined

or unequal to A(x) for some x. Hence, if k $ S then A is not recursive in Ck.

Our main task is, therefore, to prove with k fixed that 1(e) and 11(e) hold for all e.

We prove this by induction on e, first proving 1(e) and then proving 1(e) -> 11(e),

in both cases assuming from our induction hypothesis that if A is not recursive in

Ui<e Nkj then Dkj is finite for ally'<7re.

Before we can prove 1(e) we need a definition and two lemmas. We define a partial

function se by setting

se(x) = min s(hk(s, e) > x & (VlOvi*^)*^».«.»)

(z^Cr1^ ((Y/)y<¿z e Nki -* z e DkS)

&(zt(Ji<eDkj-+8k(s,e,z) = 0)))).

By hypothesis, A is not recursive in the finite collection {Nk,)j<e. On the other hand,

by hypothesis, Dkj is finite for all7<e and se is partial recursive in the finite col-

lection {Nkj}j<e. Therefore, we can make the important observation that if se(x)
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is defined for all x then A is not recursive in se. The two lemmas that we now prove

show that se(x) is defined if and only if there is an r such that hk(s, e)>x for all

sir.

Lemma 5. If there is an r such that hk(s, e) > xfor all sir then se(x) is defined.

Proof. Suppose that hk(s, e)>x for all sir. Then gk(s, e)>x for all sir and so

yk(s, e, y) = yk(r, e, y) > 0 for each y Sx and all sir. Also, it then follows that

dk(s, e)imaxyix {yk(r, e, y)} for all sir. We claim that if z £ Ck and zSyÁI, e, v)

with y Sx then there is a stage pi r such that for all sip the following statements

hold:

(1) (Vj)j<e(zeNkj^zeDkJ),

(2) zi\Jj<e Dkj -»■ 8k(s, e, z) = 0.

The first of these statements is an immediate consequence of Lemma 4 and so we

need only concern ourselves with (2). But if z <£ [Jj<e Dkj then there is a stagepir

such that 8k(p-l,j,z)=l for allj<e. It follows that 8k(p, e, z) = 0 and in fact

8k(s, e, z)=0 for all sip, since z $ Ck and zSdk(s, e) for all sir. This completes

the proof of our claim. As there are only finitely many z S yk(r, e, y) for y S x, it is

now easy to see that se(x) is defined.

Lemma 6. If se(x) is defined then hk(s, e)>xfor all sise(x).

Proof. If se(x) is defined then hk(se(x), e)>x and so/k(j, e) > x for all si se(x) by

the monotonicity offk. Hence we have only to prove thatgk(s, e)>x for all sise(x).

This amounts to proving that yk(s, e, y) = yk(se(x), e, y) > 0 for all y S x and si se(x).

We prove this by induction on s. Suppose that yk(s, e, y) = yk(se(x), e, y) for all

y Sx and all s such that se(x)SsSs'. We wish to prove that yk(s'+ 1, e, y') =

yk(s', e, y'), where y' S x is fixed in what follows, and since yk(s', e, y') = yk(se(x), e,y)

>0 this will be so if no number zSyk(s',e,y') belongs to C¿' —Ck'-1. Now, if

se(x)SsSs' then fk(s, e)ifk(se(x), e)ihk(se(x), e)>x, andgk(s, e)>x since yk(s,e,y)

= yk(s— 1, e, y)>0 for all y Sx; for the case s=se(x) this is so because hk(se(x), e)

> x. Therefore, hk(s, e)>x and dk(s, e)i yk(s, e, y) for each y Sx and all s such that

se(x) S s S s'. Now, suppose that zSyk(s',e, y') and that z £ Ck~x whence z ^ Cke(I)_1.

First, it follows that if z e Nkj for some/'<e then z e Dkj and so z ^ Ck. Secondly,

it follows that if z e (J;a<! Nkj then either z e \Jj<e Dkj in which case z £ Cfc, or

z <£ \J,■< e Dki in which case 8k(se(x), e, z) = 0. In the latter case, 8k(s, e,z) = 0 for

all j such that se(x) SsSs', since z S dk(s, e) for all s such that se(x) SsSs', and so

z <£ Cfc. Hence, we have proved that

yk(s'+l,e,y') = yk(s',e,y').

This completes the inductive proof that yk(s, e, y)=yk(se(x), e, y)>0 for each

y Sx and all i^Je(x), which in turn implies that hk(s, e)>x for all sise(x).

In order to prove 1(e), we suppose for reductio ad absurdum that 0£*(x) is defined

and equal to A(x) for all x even though A is not recursive in (Jj<e Nkj. It follows
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that for each x there is an r such that hk(s, e) > x for all s^r. Then, by Lemma 5,

se(x) is defined for all x, and so for each x, by Lemma 6, hk(s, e) > x for all s ä se(x).

Hence, yk(s, e, x)=yk(se(x), e, x)>0 for all s^se(x) and so A(x)= ®e*(x) =

U(yk(se(x), e, x)). This implies that A is recursive in se, which is the required

contradiction.

To prove that 1(e) -*■ 11(e), we proceed as follows. If ©£*(x) is undefined or

unequal to A(x) for some x, then there is a least x such that hk(s, e) = x for infinitely

many s. Also, there is a stage s such that yk(s, e, x) = yk(s, e, x) > 0 for each x < x

and all s^s, since otherwise we would have gk(s, e)<x and hence hk(s, e)<s for

infinitely many s. Now, Dkj is finite for eachy'<e by our induction hypothesis, and

if ze Dke — \Jj<f. Dk} then there is by Lemma 4 a number s* such that zSdk(s, e)

for all sits*. Since there are infinitely many s^s* such that

dk(s, e) = max {yk(s, e, x) | x < x}

we deduce that Dke is finite. This completes the proof that 1(e) and 11(e) hold for all

e. We have already shown that this in turn implies that for all k :

keS^Ck is of degree 0(1),

k í S -> Ck is not of degree ^ a.

Also, we have shown above that it can be easily deduced that Ck is of degree S a¡

for all i, k; in the case that k e S this is immediate and in the case that k $ S it

depends simply on Lemma 4 and the fact that then Dke is finite for all e. Hence

we have proved Theorem 2.

Corollary 2.1. IfO<aSOa) then G(^a) is of the highest isomorphism-type

possible for sets in 24.

In order to classify G (\a) with 0<a<0(1), we need Sacks' theorem [3] that if

0<a<0(1) then there is a recursively enumerable degree incomparable with a. This

theorem can in fact be deduced from Theorem 2, which is of some interest in itself,

and in Theorem 3 of the next section we actually derive a stronger result from

Theorem 2.

Corollary 2.2. If 0<a<0(1) then G (\a) is of the highest isomorphism-type

possible for sets in Il4.

Proof. Let A be a recursively enumerable degree incomparable with a, and let

S e n4. By Theorem 2 there is a recursively enumerable sequence of recursively

enumerable sets {Ck} each of degree à b and such that for all k :

k e S -*■ Ck is not of degree ä a,

k £ S -> Ck is of degree 0(1>.

Therefore, if k $ S then Ck is not of degree incomparable with a, but ifkeS then Ck

is not of degree è a, and Ck is not of degree S a since this would imply that b S a.

Hence, we have proved that for all k :

k e S «-» Ck is of degree incomparable with a.
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It follows that G (\a) is of the highest isomorphism-type possible for sets in n4.

In the next section we shall turn from classifying index-sets to deriving theorems

on recursively enumerable degrees by the indirect method we used in [8].

4. Extending some theorems of Sacks. It was proved by Sacks [3] that 0(1) is

not a minimal upper bound for an infinite ascending sequence of uniformly

recursively enumerable degrees; this theorem can be seen to be an immediate

corollary of our Theorem 2. Sacks in fact proved that if ax < a2 < ■ ■ ■ is an infinite

ascending sequence of uniformly recursively enumerable degrees each < a, where

a S 0(1), then there is a recursively enumerable degree c such that ax < a2 < ■ ■ ■ < c

and a^c; this is again an immediate corollary of our Theorem 2, but in fact for

0 < a < 0(1) we can derive the much stronger theorem that follows. We phrase it in

slightly more precise language so as to avoid any confusion.

Theorem 3. If0<a<0m and ax<a2< ■ ■■ is an infinite recursively enumerable

sequence of recursively enumerable degrees each < a, then there is a recursively

enumerable degree c such that ax<a2< ■ ■ ■ <c and a\c.

Proof. Since G ( S a) e £4 it follows from Theorem 2 that there is a recursively

enumerable sequence {Ck} of recursively enumerable sets each of degree iaf

for all / and such that for all k : if Rk is of degree S a then Ck is of degree 0(1) and if

Rk is not of degree S a then Ck is not of degree i a. By the recursion theorem,

there is a k0 such that Rko = Cko and it is clear that the recursively enumerable set

Rko = Cko is of degree incomparable with a but i at for all i. This completes the

proof of Theorem 3.

Our next result is a partial extension of Sacks' main theorem [3] on the jump

operator: if 0<aS0(1) and A is a degree ^0U) which is recursively enumerable in

0(1>, then there is a recursively enumerable degree c such that cm = b and a%c.

We announced incorrectly in [8] that if 0<a<0(1> then we could replace a%c in

Sacks' theorem by a\c. In fact we can only do this in the important particular case

b = 0(2), and we conjecture that it is false for some bi 0(1) and recursively enumerable

in 0(1>.

Theorem 4. Suppose that 0 < a < 0(1). If S e S4 then there is a recursively enumer-

able set such that for all k:

keS^Ckis of degree 0(1),

k$ S^-Ckis not of degree i a & C^1' is of degree 0(2).

Proof. Let A he a fixed set of degree a; since a<0U) there is a uniformly re-

cursive sequence {As} such that lims As(x) exists and is equal to A(x) for all x.

Also, let F be a fixed set of degree 0<2) ; since 0(2) is recursively enumerable in 0(1),

there is a recursively enumerable sequence {Be} such that for all e:

e £ B -*■ Be is finite,

etB-+(\lz)(zeBe).
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Let {Mk]) be the recursively enumerable sequence shown to correspond to S

in Lemma 2 of §1. We define another recursively enumerable sequence {Nkj} by

setting

Nk! = {p* | x e Be}      if / = 2e,

= {pf\xeMke}   ify = 2e+l.

Clearly, for all k :

keS^ (3e)(Nke is of degree 0(1) & Qfj)j<e(Nki is recursive)),

k$ 5 -> (Ve)(Nke is recursive).

Since {Nkj} is recursively enumerable, we may let A^; be the finite subset of Nkj

enumerated up to stage s in some fixed recursive enumeration of {Nk¡}. We shall

define Ck to be \J¡ Ckj, where Ck,^Nkj for all/ Once again we shall arrange that if

k e S then Nke- Cks is finite, where ë is the least number 2/+1 such that MM is of

degree 0(1), and that if k <£ S then Nke — Cke is finite for all e. The former implies that

if k e S then Ck is of degree 0(1). The latter implies that if k <£ S then for all e:

eeB^(3u)(Vv)u>v(pleíCk),

etB^(3u)Civ)v>u(pleeCk).

Hence, if k $ S then B is recursive in Ctk1) and so Cky) is of degree 0<2). The rest of

the theorem goes through as in Theorem 2.

Corollary 4.1. If 0<a<0(1) then there is a recursively enumerable degree c

such that a\c and c(1) = 0<2).

Proof. Let {Ck} be the sequence shown to exist in Theorem 4 corresponding to

G (Sa) since G ( S a) e S4. By the recursion theorem there is a k0 such that

-ft/to= Cfo is °f degree incomparable with a and such that C$ is of degree 0(2).

We recall that a recursively enumerable set M is maximal if every recursively

enumerable extension of M either has a finite complement or differs from M by a

finite set. Sacks [5] proved that if 0<a^0a) then there is a degree c, such that a%c

and c contains a maximal set; Martin [2] has since proved that a recursively

enumerable degree c is the degree of a maximal set if and only if c(1) = 0(2) and so

this result of Sacks is in fact an immediate corollary of Sacks' own work [3] on the

jump-operator. Martin's theorem also enables us to state

Corollary 4.2. If 0 < a < 0(1) then there is a recursively enumerable degree c

such that a\c is the degree of a maximal set.

This extends Sacks' theorem on maximal sets. Another result which has been

consolidated by Martin's theorem is our theorem [7] that there is a maximal set of

degree 0(1>. A simple application of our present methods enables us to state a more

general theorem with which to conclude this section.

Theorem 5. The maximal sets of degree 0(1) lie in an infinity of incomparable

many-one degrees.
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Proof. We first need the following lemma due to Paul Young which is of some

interest in its own right. Since it is unpublished, we give our own proof here.

Lemma 7. Any two maximal sets are either many-one incomparable or of the same

many-one degree.

Proof. Suppose that A and B are two maximal sets, A is many-one reducible

to B and /is a recursive function such that for all x: x e A <->/(x) e B. Let F be the

range off. Then B u f(A) = B u Fand so is a recursively enumerable superset of B.

As B is maximal, f(A) must be either finite or differ from F by a finite set. But A is

many-one reducible tof(A) and sof(A) cannot be finite since this would imply that

A is recursive. We conclude that f(A) differs from F by a finite set Q. Let p and q

be arbitrary elements of A and A respectively, and let b be a recursive function

ranging over B. We set

Six) - p   if (3y)(b(y) = x& (Vz)2S,(/(z) # x)),

= q   if x £ Q,

= min y(f(y) = x &(Vz)2<!/(è(z) ̂  x))   otherwise.

We leave the reader to satisfy himself that g is recursive and that for all

x: x e F <-> g(x) £ A. This completes the proof of the lemma. Notice that in the

proof of the lemma we did not need the maximality of A but simply that A is not

recursive ; so the maximal sets inhabit minimal many-one degrees.

It remains to prove that the maximal sets of degree 0(1) lie in an infinity of many-

one degrees. Suppose that, on the contrary, they lie in only finitely many many-one

degrees séx, sé2,..., sén. It follows easily from Lemma 1 of [8] that

G(séiV---Usén)eI,3;

in other words there is a recursive predicate T such that for all k :

RkeséxKj---\Jsén<^> (3e)(\/y)(3z)T(k, e, y, z).

We now first describe a recursive enumeration of recursively enumerable sets

Cx, C2,..., such that

Rk e séx u • • • u sén -> Ck is recursive,

Rk £ séx u • • • u sén -> Ck is maximal and of degree 0a'.

We then use the recursion theorem to obtain a contradiction.

Since the sets Cx, C2,..., are obtained by incorporating a very simple procedure

into the construction of a maximal set of degree 0a), we shall not go into details

but merely describe the procedure assuming that the reader is familiar with [7]. The

basic idea of [7] is to define a maximal set M such that M dominates every partial

recursive function, for it must then be of degree 0a' by an observation due to

Tennenbaum. This is achieved by starting with a recursive function t which is

assumed only to be such that t(e, s)St(e, s+l) and t(e, s)<t(e+ 1, s) for all e and
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s, and t(e) = \ims t(e, s) exists for all e. Next, M is constructed so that if ux, u2,...,

are elements of M in increasing order then ue > t(e) for all e. Finally, it is shown that

if t is suitably chosen then Â? dominates every partial recursive function. With these

observations in mind we shall now show how to produce the required sets C1( C2,....

First, we need to define

dk(s, e) = max v(3f)fée(^y)y¿v(3z)zSsT(k,f, y, z)

for each k, e and j. Clearly, if Rk e séx u • ■ • u sén then there is a least number ek

such that dk(s, e) takes on infinitely many values as 5 increases, for each eiek.

On the other hand, if Rk $ séx u • ■ • u sén then lims dk(s, e) exists and is finite for

all e. Let k now be fixed but arbitrary. We define tk(s, e) = max {t(e, s), dk(s, e)} for

for all e and s, and proceed to define Ck exactly as M is defined in [7] except that

we use tk instead of t. If Rk $ séx u ■ • • u sén then tk(e) = lims tk(s, e) exists and is

finite for all e, and since it has all the properties of t mentioned above (for, if the

sequence tx, t2,..., dominates every recursive function then so does the sequence

<ki» tk2,...) the corresponding set Ck is a maximal set of degree 0a'. On the other

hand, if Rk e séx u • • ■ u sén then there is a number ek such that tk(s, e) takes on

infinitely many values for each ei ek, whence it will be seen by inspecting the con-

struction in [7] that the corresponding set Ck is finite.

Since the construction that we have outlined is uniformly effective, there is a

recursive function y such that Ck = Ry{k) for all k. By the recursion theorem there is

a number k* such that Rk, = RHk.) and it is clear that Ffc. $séxu- • -u sén although

Rk. is a maximal set of degree 0a'. This completes the proof of the theorem.

It is possible to prove Theorem 5 by a difficult direct construction. This was

done by Martin (unpublished) and it was on being told of his proof that we dis-

covered the much simpler proof above.

Finally, we announced in [8] that the index-sets corresponding to the maximal

sets and the hyperhypersimple sets are both of the highest isomorphism-type

possible for sets in 114. We leave the proof of these results to the interested reader

but remark that they have also been obtained independently by A. H. Lachlan

and R. W. Robinson.

5. Recursive enumeration. In this final section we shall use two of the index-set

classifications that we have obtained here and in [8] to prove the nonexistence of

recursive enumerations satisfying certain conditions.

First, we use the classification of G (0a') that was obtained in [8] to show that the

recursively enumerable degrees can not be recursively enumerated without rep-

etitions. (We recall that Friedberg [1] has proved that the recursively enumerable

sets can be recursively enumerated without repetitions.) This is an immediate

consequence of the following rather stronger theorem.

Theorem 6. If {A,} is a sequence of recursively enumerable sets such that to each

recursively enumerable degree a there corresponds exactly one number j for which A,

is of degree a, then {A,} is not uniformly of degree S0a}.
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Proof. Suppose for reductio ad absurdum that {A¡} is uniformly of degree S 0a>.

Let {Af} be the sequence obtained from {A,) by omitting the set A¡ that represents

0(1); clearly, the sequence {Af} remains uniformly of degree á0(1). Now, for each e,

Re is of degree <0(1) if and only if Re is recursive in Af for some / Therefore, it

follows that

G (0U)) = {e | (V/X-Re is not recursive in Af)}

= {e | (V/-)(V/)(3x)(x e Re <-> (3y)TxAf(f x, y))},

since Re is recursive in Af if and only if Re is recursively enumerable in Af. Now,

because L4f} is uniformly of degree ^0(1), it follows by removing <-> and standard

contraction that G (0(1)) e II4. This contradicts our theorem [8] that G (0(1)) is of

the highest isomorphism-type possible for sets in £4 and so does not belong to II4.

Theorem 7. There is no recursively enumerable sequence {A¡} of recursively

enumerable sets such that to each recursively enumerable degree a there corresponds

exactly one number j for which A¡ is of degree a.

Proof. Every recursively enumerable sequence of recursively enumerable sets is

uniformly of degree S 0(1).

Now we turn to our second result. Let a be any recursively enumerable degree.

We shall obtain a necessary and sufficient condition for the recursively enumerable

sets of degree S a to be uniformly recursively enumerable or uniformly of degree

S 0(1). As a consequence of this result we obtain a number of recursively enumer-

able degrees a for which the recursively enumerable sets of degree Sa are not

uniformly of degree ^0(1>, and so in particular not uniformly recursively enumer-

able. We need the following preliminary theorem which is of some interest in its

own right.

Theorem 8. If si is a class of recursively enumerable sets which contains all finite

sets then the following are equivalent:

(i) si is recursively enumerable,

(ii) si is uniformly of degree ^0(1),

(iii) G(si)e±Z3.

Proof, (i) -»■ (ii) since every recursively enumerable class of recursively enumer-

able sets is uniformly of degree S 0U). In order to prove that (ii) -*■ (iii), let si

be uniformly of degree S 0(1). It follows that there is a function a(j, x) of degree

¿0(1) such that every element of si is represented by a(j, x) for some / In other

words we can write

e e G(sJ) «-♦ (3j)ÇVx)(Re(x) = a(j, x)).

It easily follows that G(si) e£3 since 23=S2 (0C1)). Lastly, in order to prove that
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(iii) -> (i) we suppose that G(si) e S3. Let T be a recursive predicate such that

for all e :
e e G(si) «-» (3y)(Vv)(3z)r(e,/ y, z).

We define a recursively enumerable sequence {Ak} by setting

x e Ak <-> x e Rik)l & (Vy)ySx(3z)Y((k)x, (k)2, y, z).

If Ak is finite then Ak e si by hypothesis. If Ak is infinite then (k)x e G(si) and

Ak = Rik)l so that /Ifc e si. On the other hand, if Re e si then (\/y)(3z)Y(e,f v, z) for

some least number/; let k = 2e-3f. It follows that Ak-Re and so the elements of

{Ak} exactly constitute si. This completes the proof of the theorem.

Since G(0) e S3 and every finite set is of degree 0 it follows immediately from

Theorem 8 that the recursive sets are uniformly recursively enumerable ; this was

first proved by Suzuki [6]. The more general theorem we have proved, however,

provides recursive enumerations for a number of less obvious classes : for example,

for the class of recursively enumerable sets of degree Sa whenever a(2) = 0(2),

since then S3(a)=S3 and so G ( S a) e S3. In fact, we have a necessary and sufficient

condition for the existence of such recursive enumerations in the following theorem.

Theorem 9. If a is any recursively enumerable degree < 0(1> then the following

are equivalent :t

(i) the class of recursively enumerable sets of degree Sa is uniformly recursively

enumerable,

(ii) the class of recursively enumerable sets of degree Sa is uniformly of degree

= 0(1),

(iii) a(2>=0<2>.

Proof, (i) and (ii) are equivalent by the preceding theorem, (ii) and (iii) are

equivalent because : (ii) <-> G (Sa) e E3 by the preceding theorem, G (¿a)eS3

<->£3=£3(a) by Theorem 1 and 23=£3(a)<->a(2) = 0(2) because S3=21(0<2)) and

S3(a)=S1(a(2)). Notice that it is a trivial consequence of Friedberg's work [1] that

(i) is equivalent to

(iv) the class of recursively enumerable sets of degree Sais uniformly recursively

enumerable without repetitions.

On the other hand it is not possible to add

(v) the class of recursively enumerable sets of degree S a is uniformly of degree

Sa; since, for example, the recursive sets are certainly not uniformly recursive

even though they are recursively enumerable. We do not know of any recursively

enumerable degrees a < 0(1) for which the recursively enumerable sets of degree S a

are uniformly of degree S a.
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