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A fundamental result relating the topology of a smooth manifold and its global

differential geometry is the theorem of De Rham. Let &(X, R) denote the exterior

algebra (over the reals R) of smooth differential forms on X, and let 1q(X, R)

denote its derived cohomology algebra. The De Rham theorem asserts that there

is an algebra isomorphism of !q(X, R) with the singular cohomology algebra (cup

product) H(X, R) of X.

A generalization of this theorem to handle other coefficient domains is due to

C. B. Allendoerfer and J. Eells, Jr. in [1]. For an arbitrary integral subdomain A of

R they define a cochain complex q(X, A)—the complex of A pairs of forms on X—

and prove that the derived cohomology module fe(X, A) of &(X, A) is canonically

isomorphicto theCech cohomology module H(X, A) with values in A. This paper

is a natural extension of the Allendoerfer-Eells paper.

Our concern is to define a ring structure for &(X, Z), where Z denotes the inte-

gers, so that the canonical (module) isomorphism with H(X, Z) preserves products.

The key is to define a certain cochain map &(X, Z) (g>S(F, Z)^»(£(Xx Y, Z),

where X and Y are any smooth manifolds. This defines an exterior cup product

&(X, Z) <g> ©( Y, Z) -> §(Xx F, Z) which sends f <g> i? e $P(X, Z) <g> £«( F, Z) to

£ xt] e Sqp+<!(Xx Y, Z). Let hx: !q(X, Z) -> H(X, Z), h2: $( Y, Z) -> H( Y Z) and

h: &(Xx Y, Z)—>• H(Xx Y, Z) be the canonical isomorphisms. Then a sheaf

argument shows that h{i;xrl) = h1{Z)xh2{rl) where h^) x h2(yj) is the exterior cup

product (or cartesian product) of h^i) and h2(rj) in the Cech theory. We define the

interior cup product for fQ(X,Z) via the homomorphism A*: $q(Xx X,Z)^-q(X,Z)

induced by the diagonal map A: X-> Xx A'and thus obtain a cohomology algebra

&(X, Z) isomorphic with the cohomology algebra H(X, Z). Finally we remark that

the same method applies to arbitrary coefficient rings A in R to define an algebra

&(X, A) algebra isomorphic with H(X, A).

The paper is organized as follows. The first section is devoted to a restatement of

some of the definitions of [1]. In §2 we discuss the general problem of introducing

a product in !q(X, Z). In §3 we prove a lemma regarding general position of chains

and singular sets which is needed in a later section. §4 is devoted to proving the

theorems stated in §2. In §5 we construct the exterior and interior cup products,

and in §6 prove that the isomorphism extends to products. In §7 we make some

remarks concerning products when X is given a triangulation.
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1. All manifolds X, Y, etc. considered in this paper will be smooth (i.e. Cw),

paracompact, and connected. Let 0 be a />-form denned and smooth on X except

for a subset e{8) of X. We shall say that e(9) is an allowable set of singularities, or

briefly, e(6) is allowable, if e(0) is closed and there exists a locally finite family {Na}

of closed submanifolds of X such that for each a, dim (A/a)^dim (X)—p— 1, and

such that e(0)cU {A/<j- This is a refinement of polyhedra in [1]. By a smooth

singular p-cube on A'we shall mean a map X which is the restriction to /"

of a smooth map of R" into X.

We will adhere to the notations of [1], §§2 and 3, with the following exceptions.

For Z the integers, we define a (Z, p) pair (0, co) on X as in [1], Definition 3A,

except that we require that the singular sets e(9) and e(w) be allowable as defined

above, and, for every smooth singular p-cube u on X admissible for (0, co), R(8, oj)u

= J"u 6—\eu co be an element of Z. We further make the following notational con-

vention: if (0, 0) is a (Z, 0) pair on Iwe agree that e(0) = X.

The following notations will be standard throughout. (X, Z, p) will denote the

additive semigroup of all (Z, p) pairs on X, and (X, R, p) will denote the additive

semigroup of all (R, p) pairs on X. &P(X) will denote the Z module of equivalence

classes of (Z, p) pairs on X. An element of &P(X) will be denoted by [0, co] where

(0, to) e (X, Z, p). &(X) = 2„ g o ®"(X) will denote the complex of Z pairs on X with

d: ^P(X)->QP + 1(X) defined by d[6, co] = [0, 0], and §(X) = 2vi0 &"(X) will be the

derived cohomology module of Q(X).

2. The key step in the construction of a product in $>(X) will be the construction

of a certain cochain map k: &(X) ® (£( F) (&(Xx Y). In §5 we will exhibit a map

(X, R,p)x( Y, R, q) -> (Xx Y, R,p+q) sending (0, co) e (X, R, p) and (0, v)

e(Y, R, q) into a pair denoted by (0, co) x (\f>, -n). The properties of this map imply

that [(0, co) x (>p, rj)] depends only on [0, co] and [</>, rj] and that (0, co) x (</«, rj) is

a Z pair if (0, co) and (>/i, rj) are Z pairs. This map will thus induce k.

More generally, suppose that for every X, Y,p, and q we are given a map

(X, R,p)x(Y, R,q)^-(Xx Y, R,p+q). We will show that if these maps satisfy

certain natural requirements, which are in fact satisfied by the maps of §5, then

(X, Z,p) x (Y, Z, q) is mapped into (A'x Y, Z,p+q), and the maps respect the

equivalence classes. Such a class of maps will be called an exterior pairing of pairs.

Definition 2.1. An exterior pairing of pairs is a mapping (X, R,p)x(Y, R,q)

(A'x Y, R,p+q) defined for äny two smooth manifolds X and Y and for any

nonnegative integers p and q. (0, co) x (>p, rj) will denote the pairing of (0, co)

g (X, R,p) and (tfj, r))e(Y, R, q). We require that the pairing satisfy:
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(1) if (a,j3) = (0, w)x(t/i, v), then e(a) = e(oj) x e(0) u e(8) x e{-n) and e(ß) = e(oj)

x efo),
(2) [(0, to) x (i/r, 77)] is bilinear in (0, w) and OA, 77),

(3) (coboundary formula) if (0, to) e (X, R, p) then

d[(6, to) x ft ,)] = [(0, 0) x (0, ,)]+( -1)>[(0, w) x (0, 0)],

and

(4) whenever/: X' X and g: Y' -> Y are smooth maps such that (f*6,f*ui)

and (g*ip, g*rj) are pairs, then

[(fxg)*(e, c) x (0,,)] = [(f*e,f*w) x (g*t, g*v)].

Theorem 2.2. Suppose an exterior pairing is given. Then for all (0, to) e (X, R, p)

and for all (>j>, rj)e{Y, R, q), [(8, to) x OA, 77)] depends only on [8, oj] and [4>, rf\.

Theorem 2.3. Suppose an exterior pairing is given which maps (X, Z, 0) x (Y, Z, 0)

into (Xx Y, Z, 0) for all manifolds X and Y. Then for all p and q, (X, Z,p)x

(Y, Z, q) is mapped into (Xx Y, Z,p+q).

The proofs of Theorems 2.2 and 2.3 will be deferred to §4. We may thus define

[8, oj] x [ifi, rj] in an unambiguous way to obtain a cochain map k: &(X) ® 6(F)

->ß(Ix Y) which is natural in an obvious sense. The exterior cup product

defined by this pairing is the induced map k: &(X) <g> §(F) ->■ §(Ix Y). We will

see in the proof of Theorem 2.3 that any two pairings which agree on (X, Z, 0)

x(Y, Z, 0) for any two manifolds Xand Ydetermine the same map k.

There is a natural pairing of 0 pairs defined by setting (8, 0) x (i/>, 0) = (8 x i/j, 0),

where dxi/j is the 0-form on Ix Y— (e(6)x Ykj Xxe(tfi)) defined by 8xijj(xxy)

= 8(x) ■ ijj(y). The pairings of §5 will extend this one. Note that we immediately

obtain a commutative diagram

W) ® S°( JO-> Y)

{ I
H°(X, Z) 03) H°(Y, Z)—> H°(Xx Y, Z)

where the vertical maps are canonical isomorphisms.

We now discuss the problem of introducing cup products in &(X) if we are given

an exterior pairing. Let (0, oj) e (X, Z, p) and (</>. 77) e (X, Z, q). Let (a, ß)

e (Xx X, Z,p+q) denote (0, w) x (i/>, 7?). If A: A'-s- Xx X is the diagonal map we

may consider the singular forms A*« and A*ß, where e(A*ce) = e(a>) n e(</r)

u e{8) n e{rj) and e{A*ß) = e(oj) n e(7?). If the singularities of A*a and A*ß are

allowable, then we obtain a pair (A*a, A*ß) e (X, Z, p+q) which we denote by

(0, oj) v (</r, 77). If [0, tu] and [0,77] have representatives (0, oj) and (1/1,77) so that

(0, oj) v (<A, rj) is defined, we set [0, to] V [<A, rj] = [(0, «>)] v [(^, 77)]. [0, w] v [<A, 77] is

called the (interior) cup product of [0, oj] and [<A, 77]. Clearly, when everything is

defined

d([8, to] v [0,77]) = 40, to] v    ,]+(- ry[0, to] v 4-A,
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The crucial fact which allows us to define products in &(X) is this: any two

cohomology classes |, £ e !q(X) are represented by equivalence classes [9, to] and

[i/i, rj] so that [9, oj] v [if/, rj] is defined. It is thus possible to define f v £ to be the

cohomology class of [9, tu] v [</<, •>?]. This gives rise to a commutative pairing

3. Suppose (ö, tu) e (X, R, p) is a pair with the property that for every smooth

singular p-cube u on X such that u~1[e(9)] is empty and w_1[f(cu)] is a single point,

A*(0, tu)w is an element of Z. Then clearly P(#, cu)m e Z for every admissible u such

that w-1[e(cu)] is finite. Our next theorem shows that given a smooth singular cube

admissible for (6, tu) £ (X, R, p), its admissible smooth homotopy class

[1, Proposition 2D] contains a smooth singular cube v such that i>_1[e(tu)] is

indeed finite. Thus to show that (9, tu) is actually in (X, Z, p) we need only show

R(9, oj)u £ Z for every cube u in general position with respect to (9, tu); that is,

u~1[e(9)]= 0 and m_1[e(tu)] is a singleton.

Theorem 3.1. Let (9,w)e(X, R,p) with p>0. Then if u is a smooth singular

p-cube on X admissible for (9, tu), there exists a smooth singular p-cube v on X

admissible for (9, tu) such that

(1) i>_lre(tu)] is finite,

(2) v — u through an admissible smooth homotopy, and

(3) R(6,oj)u=R(9,w)v.

We need the following lemma which can be proved by induction on k using

Thorn's Theorem on transverse regularity [3], [5].

Lemma 3.2. Let f: Y-> X be a smooth map, let K be a compact subset of Y, and

let Ny,..., Nk be closed submanifolds of X. Let d be a metric on X and let 8 be a

positive real number. Then there exists a smooth g: Y-+ X which is transverse

regular to Nu ..., Nk on K such that d(g(y),f(y)) < 8 if y e K.

Proof of Theorem 3.1. Let /: P-> X be a smooth extension of u to an open

neighborhood V of P in R". Suppose {Na} is a locally finite collection of closed

submanifolds of X such that e(tu)<=(J {Na} and dim (A/K)^dim (X)—p for each a.

Suppose X has a Riemannian metric and let d be the induced (distance) metric on

X. Since {Na} is locally finite and f[Ip] is compact, f[Ip] meets only finitely many

Na, say Nai,..., Nak. Choose a positive real number 8 small enough so that if

g: P-> Xis smooth and d(g(t), f(t)) < 8 for tel", then g[Ip] meets only Nttl,.. .Nak,

and g\lp is admissible for (9, tu). This is possible since e(8), e(oS), and

U {Na : a + «!, . . ., cej

are closed. By Lemma 3.2 there exists such a g which is transverse regular to

Nai, ...,Nakon I". Set v=g\Ip.Thsn by Corollary 10.8 of [4], taking 8 sufficiently

small, v ~u by an admissible smooth homotopy, and hence (2) is proven. (3) follows

at once from Proposition 2D of [1].
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It remains to show that r>-1[e(co)] is finite. We first note that t>_1[f(tu)]

CU ^[NcJ. Since dim (A/Ki)^dim (X)-p, since g is transverse regular to N„( on

P, and since Nat is closed, each i>-1[A/aJ is a compact 0 dimensional submanifold

of int P and hence finite. This completes the proof of (1).

4. We assume now that an exterior pairing is given. Let (0, to) e (X, Z, p). If U

is an open subset of X then the inclusion /': U-> X induces a map /*: (X, Z,p)

-> (U, Z,p) which is just restriction. Let (9U, to,,) denote z'*(0, to). Then 9V and toy

are the restrictions of 9 and to to U.

Let U be a coordinate ball in X. If />>0 and if e(0) = 0, then </[0, to] = [0, 0],

and there exists by [1] a pair (tt, ti) £ (U, Z,p—l) such that ^[tt, p] — [9v, wu\ as

elements of 6p(t7). Furthermore Tr=wu — k9v where AP^ is the global (/?— l)-form

on U of the Poincare Lemma such that dk9u = 9u.

Lemma 4.1. Let U be an open ball in Rn, and let (0, to) e (U, Z,p) with p>0 and

e{6) = 0. Let OA, rj) e(Y, Z, q) be a pair such that e(ijj) = 0. Then with (tt, p) £

(U, Z,p—l) as above,

d[(tt,p)x(<fi,r,)] = [(0,«)xGM)].

Proof. By the coboundary formula and the fact that e{>j>) = 0,

d[(n, p) X OA, ,)] = [(0, tt) x (0, r,)] = [(0, w-k9) X (0, ,)].

Using bilinearity and the fact that e(k6) = 0, we easily see that

[(O,to-/V0)x(0,r,)] = [(0, to)x(0,r;)],

and hence the lemma follows.

Proof of Theorem 2.3. The proof will be by induction. The case p=q = 0 is

already assumed. Thus we assume that, for any smooth manifolds X' and Y',

whenever (tt, p) e (X', Z, p - 1) (p > 0) and (<P, 0) £ (Y', Z, 0), then (tt, p) x (</.', 0)

e(A"x Z,p-\).

Let (0, to) £ (X, Z,p) and (<p, 0) £ (Y, Z, 0). We must show that (a, ß) = (8, to)

x ((/>, 0)£(lx F, Z, /?). To show this it suffices by §3 to show that R(a, ß)u £ Z for

any smooth singular p-cube u on Xx Y in general position with respect to the

singularities of (a, ß); i.e. u~1[e(ß)] = point and «_1[e(a)]= 0. Thus let u be such a

cube and set x = u~1[e(ß)]. Recall that e(a) = e(8) x F u e(to) x e(</i) and e(/S)

= e(to) x F. Hence w(X) £ e(0) x F u A" x e(</r) since m(x) g e(to) x F. We may thus

suppose, by [1], Proposition 2D, that «[/"]<= U x V, where U and V are coordinate

balls in X and F such that e(9) n (7 and e(if>) n P are both empty.

Let (w, /x) £ (U, Z,p- 1) be the pair such that d[tt, p] = [9u, co^] as elements of

(£"(U) and Tr=oju—k9u. By naturality, the restriction of [a, ß] to iVxP is

[(9u, «„) x (0V, 0)]. By Lemma 4.1, </[(tt, /*) x (07, 0)] = [(flp, w„) x (0V, 0)]. Hence

P(ct, (8)«= —R(tt, p) x (<fiv, 0) 3« is an element of Z. This completes the proof for

q=0 and p arbitrary.
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The proof is now completed by induction on q with p fixed but arbitrary, the

first step of the induction having already been completed. It is clear how to proceed.

The proof of Theorem 2.2 is similar. By bilinearity it is obvious that we need only

show [(0, oj)x(Jj, t?)] = [0, 0] if either [6, w] = [0, 0] or [<A, 77] = [0, 0]. The case

p=q = 0 is trivial and the induction step is proved by noting (with the above

notation) that if [8V, wu] = [0, 0] and e{6u) is empty, then [n, /x] = [0, 0].

5. We shall now construct an exterior pairing of pairs. We first give a motivating

example.

Example. Suppose X= R2 and suppose we are given pairs (6, oj) and OA, t?) on X

such that 6 and </> are global 1-forms, e(a>) is the x-axis, and e(rj) is the v-axis.

We would like to find a smooth 1-form ß with e(ß) = e(oj) n e(rj) and dß = dyijj.

We add the additional requirement that ß= — 0 v 17 near e(w) — e(oj) n e{rj) and that

ß = oj v t/i near e{-q) — e(w) n e(rj). Thus we need to define ß by patching. Let

<f>: X— e(co) n e(rj) -> /? be a smooth function such that <A=0 near e(oj) — e(o>) n e(rj)

and <A = 1 near e(ri) — e(cu) n e(-q). Then the form ß= —8v rj + d(<f>oj V 77) satisfies our

requirements. It can be shown that if (Ö, w) e (X, Z, 1) and OA, 77) e (X, Z, 1), then

(6 V <A, /S) e (X, Z, 2). We will see that the pair (6 v ifi, ß) may be taken for the def-

inition of (6, co) v OA, 77).

Let : X x y -> A1 and 7r2: A1 x y -> y be the projections. If 0 is a p-form on X

and <A is ag-form on Y, we define a (p-f^)-form 0 x <A on A'x yby0xi/i = 7r'f0v 77-*»A-

Oxi/jis called the cross product of 0 and <A. Clearly d(6 x >fi) = (d8) x ip + (— l)p8 x diji.

If 0 is singular on A' with e(0) allowable, then tt*8 is singular onlxf with e(jr*8)

= e(0) x y allowable. Thus if (0, o>) e (Z, /?, p) (resp. (X, Z, p)), then (tt*8, tt*oj)

e(XxY, R, p) (resp. (X+ Y, Z, p)).

We now define the cross product of pairs. Let us first fix some notation. (0, oj)

will always denote a fixed element of (X, R, p) and OA, 77) will always denote a fixed

element of (Y, R, q). We set M=Xx Y, M0 = M—e(oj) x e{>j>), Mx = M-e(8) x e(rj),

and M2 = M-e(oj)xe(rj). If p>0 and <7>0 we set S= M— [e(-n-*oj) u e^fiA)].

M0, A/j, Af2, and 5* are dense open subsets of M.

We now define three C°° functions as follows:

(1) Let U0, Ux be open subsets of M0 such that a/) n Af0<= £/„, e{-!r*^) n A/0

<= LTj and t/0 n \]x = 0, the closures being taken in M0. The t/f exist since eOnfco)

n Af0 and e(7r2<A) n A/0 are closed disjoint subsets of M0. If p = 0, necessarily

t/0 = Af0 and 1/ = 0. If e(oj) = 0 we take U0 = 0 and if e(<A) = 0 we take U1= 0.

Let <A0: Af0 -> R be a C°° function such that <Ao[tA)] = 0 and <£0[t/i] = 1.

(2) Let V0, Vu be open subsets of Mx such that e(Tr*8) nM^ F0, e(Tr*r>) n Mx

c I7!, and K0 n Kx = 0, the closures being taken in If q = 0 we take V0 = 0 and

F^A/j. If <?(0) = 0 take Ko=0 and ife(77)=0 take P1=0.Let#1: A/j^/fbea

C°° function such that <Ai[Ko] = 0 and 01[K1]= 1.

(3) Let W0, Wx be open subsets of M2 such that e(iT*o>) n A/2 <= H/0, e(7rf 77)

n M2<= Wl5 and H7,, n Wx = 0, the closures being taken in M2. Assume also that
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^c^and H^Ki. Ifp = 0 and q>0, W0 = M2, and \ip>0 and q = 0, W± = M2.

If e(oj)= 0 set W0= 0 and if e(rj)= 0 set W1= 0. Let 02: M2 -> R be a C°°

function such that 02[W/O] = O and 02[W/i] = 1-

Now if p>0 and <?>0 define a smooth (p+q— l)-form ß on 5 by

/J = -cA0cux1/. + (-l)''ci16»x1? + (-l)''-1^2cox7y).

If p = 0 and <jr>0 define a smooth (c7-l)-form ß on A/-[e(nf0) u e(Tr*rj)] by

If p>0 and 9 = 0 define a smooth (/>-l)-form ß on M-[e^to) u e(7r|0)] by

£ = (l-0o)<oX0.

If p=q = 0, ß is undefined.

Theorem 5.1. LeZ (0, to) e (X, R, p) and (</-, rj) e (Y, R, q). Ifp+q>0 the form ß

has a unique smooth extension ß to M2 = Xx Y— e(oS) x e{rj), and dß has a unique

smooth extension a to M0 n M1 = Xx Y— [e(6) x e(rj) u e(ai) x e(0)]. (a, ß) is thus

an (R, p+q)pair on Xx Y with e(ß) = e(to) x e(rj) and e(a) = e(6) x e(rj) u e(w) x e(0).

//> = 9 = 0, (0x0, 0) is an (R, 0) pair on XxY with e(0 x 0) = e(0) x Fu Xxe(i/>).

Proof. We first note that any smooth extensions of ß and dß will be unique since

their respective domains are dense subsets of M. We will carry out the proof for the

casep > 0 and q > 0. The other cases are handled in a like manner. We want to show

that ß extends from S to M2. Now M2=Su W0 u Wx and since W0 n W± = 0, we

need only show that ß extends from S n rVt to Wi for /=0, 1. Now S n W0

= W0-e{rr*w), and since Wo^fcx[0] n 0a HO], /5=(-l)"010xij on S n IF0.

Since ff0 is disjoint from e^i-fri), (—IF^^xt, extends immediately to IFo-e(77f0).

But Wo^M! so 0i = O near IF0 n e(7rf0), and hence ß extends smoothly to W0.

The extension of ß to Wx is similar.

We next show that dß has a smooth extension a to M0 n Mj. On 5,

(//3 = (- 1)" rf(0!0 xt,) - t/(0oco x 0)

= (0i-0o)0X0 + (-l)*7r*co v dtyoirU)

+ (-0^(0^*0) v

As before we can show that tt*w v d((f>0Tr*ili) extends smoothly to M0, d^^ff) v rrfr;

extends smoothly to Mx, and (0i -0O)0 x 0 extends smoothly to M0 n A/j. Thus a

is defined and smooth where asserted.

Definition 5.2. We denote by (0, to) x (0, rj) the (R,p+q) pair obtained in

Theorem 5.1 from (0, to) e (X, R, p) and (0, rj) e (Y, R, q) by patching. (0, to) x (0, t,)

is called the cross product of (0, to) and (0, rj).

Remark. For different choices of neighborhoods U{, V'u Wj and functions 0,

satisfying (1), (2), (3) we may construct another (R,p+q) pair (et', ß') on Xx Ffrom

(0, to) and (0, rj) by patching. A close scrutiny of the form ß—ß' shows that all its

singularities are removable and thus [a, ß'] = [a, ß]. We conclude that [a, ß] is

independent of the choices of patching functions 0O, 0i, 02.



496 J. B. CARRELL [February

Theorem 5.3. The assignment of (6, co) e (X, R,p) and OA, -n)e(Y, R, q) to

(6, co) x OA, 7j) determines an exterior pairing.

The proof of Theorem 5.3 is straightforward and will be omitted.

We have thus shown the existence of an exterior pairing extending the natural

pairing of 0 pairs discussed in §2. We thus have, by §2, homomorphisms

k: ©(AT) ® $(7) -»• ©(ATx Y)  and   v :        <g> £>(*) ~> SftX)

which define the exterior and interior cup products for %>(X).

6. We shall now show that !g(X) and H(X, Z) are isomorphic as rings. The

complex &(X) determines in a natural way a presheaf of complexes on X: namely

we assign to an open subset U of X the complex G(t/). If Kc U, the restriction

©([/)->(£(T) is induced by the inclusion i: F-> U. Obviously the restrictions

commute with d. The differential graded sheaf associated with this presheaf is

denoted by Vx = 2rzo ^px- By [1] we have a resolution of Z, 0 -> Z-> %x -> <8l

->••• •. Let 7be another manifold. Then for Uopen in Zand Kopen in Ywe have

by §5 homomorphisms

(P(t/) ®&(V)^(ip+9(Ux V)

commuting with the restrictions. These give rise to a homomorphism of differential

sheaves ^x <£> —*■ ^x x y- This homomorphism is compatible with the canonical

homomorphism Z ® Z^> Z; i.e.

® -*■      x y

I 1
z ® z->z

commutes. It follows from [2, II, 6.2] that we have a commutative diagram

<g> §(F)-> §(Ix y)

J I
H(X, Z) g) //(y, Z)—> H(Xx Y, Z)

where the horizontal maps are defined by exterior cup products and the vertical

maps are canonical isomorphisms.

From the definition of the (interior) cup products for !g(X) we deduce

Theorem 6.1. Let $?(X) have the graded ring structure induced by the cup product.

Then the canonical (module) isomorphism !q(X) -» H(X, Z) is an isomorphism of

graded rings.

7. We now make some remarks on products when X is given a triangulation.

These may be applied to give an alternate proof of Theorem 6.1. Our first theorem

shows that the cross product of pairs (§5) behaves like the cross product of

ordinary cochains.
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Theorem 7.1. Let (0, co) e (X, R, p) and (if>, rj)e(Y, R, q). Let u (resp. v) be a

smooth singular cube on X (resp. Y) admissible for (9, co) (resp. (<js, rj)). Then

R(9, co) x ft rj)u x v = R(9, w)uR(if-, 7))v.

Proof. Obviously u x v is admissible for (9, w)x (ifi, rj). Set (a, ß) = (9, co) x (</i, rj).

If p > 0 and q > 0 we have

ß = -<P(vxt+(-iy<i>1exv+(-iy-id(<f>awxi,),

where <j>0, <f>2 are certain functions defined in §5. We may alter the choice of the

c4, without changing [a, ß]. Hence we assert:

(1) c/S0 may be chosen so that \u x v\ eint <f>ö 1[0],

(2) <&x may be chosen so that \u x v\ <=int c4f 1[1], and

(3) <j>2 may be chosen so that \(8u) x v\ <=int <f>2

Thus near \uxv\, a=9x<l> and ß = (-\)v 9 x-q+ (-])" ~1 d(<j>2wxrj). We also

note that

e(<f>2w x rj) r\ \ux(8v)\ = 0.

Hence

et — ^= 0 X i/r — coXi/r— 0X71+ d(<f>2w X rj)
Juxu       Jß(uxu) Juxu J(Su)xu Jux(chj) Jux(ßu)

= 0Xl/r— coXl/f — 0X77+ COXT?

Juxu J(Su)xu 7ux(0u) 7(ßu)x(ßu)

by Stokes' Theorem and (3).

Since juxv 9xifs=iu 0-j", t/> etc., we have, therefore,

7?(cc, ß)uXV = R(8, oj)u-R(</>, rj)v.

Now suppose X= M and F= A are (smooth) cubical complexes and let and

Nj. denote their dual cell complexes, which are again cubical complexes. Mx Ais a

cubical complex in a natural way with (Mx N)* = x A*. Let S(A/) and ©(A)

be the cochain complexes defined in [1], §5. Then the cross product defines a

cochain map S(A/) <g> ©(TV) -> ©(A/ x A).

Let C(A/) and C(N) denote the ordinary complexes of smooth cubical cochains

on M and A respectively. Then there exists an isomorphism h: (£(A7) -> C(M)

given by h([9, co])c = 7?[0, co]c for any smooth cubical chain c on M. Combining

these facts with the fact that the inclusion ©(A/) -> S(A") induces an isomorphism

of cohomology rings, we obtain from Theorem 7.1

Theorem 7.2. Let X and Y have smooth cubical triangulations M and N re-

spectively. Let H(M, Z), H(N, Z), and H(M x A, Z) denote the cubical (or singular

cubical) cohomology rings of M and A respectively with values in Z. Then there exists

a commutative diagram

®%(y)-> &xx Y)

H(M, Z) <g> H(N, Z) —> H(M x N, Z)
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where the vertical arrows represent the isomorphisms defined above and the horizontal

arrows represent the exterior cup products.

A detailed discussion involving the notion of a diagonal approximation can be

given to establish the equivalence of &{X) and H(X, Z) (singular cohomology) as

rings.
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