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1. Introduction. We consider linear partial differential operators of order m in

w-dimensional space,

(1) P(x, D) =  ^ a\x)D",
\a\Sm

where x=(x1,..., xn) is a point in Rn, a = (au ..., «„) is an n-tuple of integers =0

with |«|=2"=i ayand Da = ■ ■ ■ Dan« with D^djdxj. The principal part Pm(x, D)

is the homogeneous part of order m,

(2) Pm(x, D) = ^ a"{x)D\

A surface <P(x) = <P(x°), where <P e C1 and grad <P(x°)^0, is called characteristic

at x° with respect to P(x, D) if

(3) Pm(x, grad <t>(x)) = 0  at x = x°.

If, in addition, one can find a function Y such that Pm(x, grad (<P + eT)) is not

0(e2) at x° as e    0, the surface is called simply characteristic at x°.

The Cauchy-Kovalevsky theorem asserts that locally, in a neighborhood of a

point x° in Rn, there exists a unique analytic solution of the Cauchy problem for the

equation P(x, D)u =/, provided that the coefficients of P(x, D), the right-hand side

/, the initial surface passing through x° and the initial data given on this surface are

all analytic in a neighborhood of x° and provided furthermore that the initial

surface is not characteristic with respect to P(x, D) at x°. The uniqueness assertion

of this theorem, with which we are concerned here, was shown by Hörmander

[1, Theorem 5.3.1] to be valid even when distribution solutions are allowed.

The condition that the initial surface is not characteristic at x° implies that the

surface is not characteristic in some neighborhood of x°. On the other hand, if the

initial surface is simply characteristic at all of its points in some neighborhood of x°,

then nonuniqueness of the Cauchy problem holds: there is a smaller neighborhood

of x° and a classical solution u of P(x, D)u=0 which is defined in this neighborhood,

vanishes on one side of the initial surface and is such that x° belongs to the support

of u.
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In this paper we are interested in the case in which the initial surface is simply

characteristic at x° without being characteristic at all of its points in some neighbor-

hood of x°. Then, under certain conditions, nonuniqueness of the Cauchy problem

holds (see Malgrange [2], Treves [3, Theorem 6.10] and Zachmanoglou [4]; the last

reference deals with partial differential equations with variable coefficients and

contains the results of the first two), while under other conditions, uniqueness

holds. The first set of conditions for uniqueness were obtained by Hörmander

[1, Theorem 5.3.2], who considered equations with variable coefficients. For

equations with constant coefficients, more general conditions were obtained by

Treves [3, Theorem 6.9] and Zachmanoglou [5]. The main difficulty in extending

the uniqueness theorems in [3] and [5] to equations with variable coefficients lies in

the fact that the conditions of these theorems when written for variable coefficients

are not invariant under transformations of coordinates. In this paper we formulate

and prove a uniqueness theorem with conditions which are invariant under transfor-

mations of coordinates. These conditions involve the tangency at x° of the initial

surface (which is assumed to be simply characteristic at x°) with the associated

bicharacteristic curve and bicharacteristic strip passing through x°.

The uniqueness theorem in this paper contains and extends the results of Hör-

mander and Treves. The main idea in the proof is the same as the one used by these

authors and is based on a fundamental lemma due to Hörmander [1, Lemma 5.3.2].

The proof involves the construction of a function having noncharacteristic level

surfaces. The function used in this paper is simpler than those used by Hörmander

and Treves. It is essentially the same function that was used in [5] in dealing with

equations with constant coefficients.

§2 contains a short review of the main properties of characteristic surfaces and

bicharacteristic curves and strips. §3 contains the statement of the uniqueness

theorem and a discussion and proof of the invariance of its conditions for coordi-

nate transformations. The proof is presented in §4.

The author wishes to thank Professor F. Treves and Professor G. Fichera for

their valuable advice.

2. Bicharacteristic curves and strips. We present in this section a short review

of the definitions and main properties of bicharacteristic curves and strips without

proofs. More details and proofs of the assertions in this section may be found, for

example in [1, pp. 29-32] and in [4].

Let P(x, D) be a differential operator with principal part Pm(x, D) having real

C2 coefficients defined in an open set U <= Rn. We use the notation

p$Xx, o = g| pm(x, a,   Pmj* 0=0*;Pm{x> °-

Let x° e Uand N° e Rn be such that Pm(x°, N°) = 0 andP%\x°, N°)*0 for some k.

Then a surface passing though x° with normal N° at x° is simply characteristic at
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x°. The bicharacteristic strip through (x°, N°) is the solution (x(t), £(t)) of the

Hamilton equations,

(4) dxjdt = Pgtx, 0,      dUdt = -Pm,k(x, 0,      k = 1,..n,

satisfying the initial conditions

(5) x(0) = x°,     ftO) = N°.

The curve described by x is called the bicharacteristic curve through (x°, N°).

Clearly this curve is uniquely defined and has no singularities at least in some

neighborhood of x°.

The condition that Pm(x, f) = 0 when r = 0 implies that Pm(x, f) = 0 along the

entire strip. Furthermore f is normal to the bicharacteristic curve at each of its

points. Thus a bicharacteristic strip is a curve (the bicharacteristic curve), which

has a specified tangent plane (with normal f) at each of its points.

Let O be a real-valued function in C2(U) such that grad <p(x)#0 in U and sup-

pose that the level surfaces of 4> are simply characteristic everywhere in U. If

grad <&(x°) = N°, then <S>(x) — 0(.\-°) and grad Q>(x) = { along the entire bicharacter-

istic strip through (x°, A70). In geometric terms this means that the bicharacteristic

curve through (x°, grad <p(a0)) lies on the characteristic surface Q>(x) = <b(x°) and

that the corresponding strip is tangent to the surface along this curve.

3. Statement and discussion of the uniqueness theorem.

Theorem. Let P(x, D) be a differential operator with analytic coefficients defined

in a neighborhood U of a point x° in Rn and having real coefficients in the principal

part. Let O be a real-valued function in Ck(U), where k is an integer ä2, such that

grad 0(x°) = 7WO and suppose that the surface

S = {x:xeU, <&(*) = <p(x0)}

is simply characteristic with respect to P(x, D) at x°. Let ££ = {x(t), £(t)} be the

bicharacteristic strip passing through (x°, N°) when t = 0, let l={x(t)} be the corre-

sponding bicharacteristic curve, and suppose that

(rfV^Wto-WHIf-o = 0, for i = 0,...,k-l,

(6) # 0, for i = k,k odd,

> 0, for i = k,k even,

(7) (W)[grad *(*(/))-«0]|t=o = 0, for i = 0,..., [(*- l)/2].

Then there is a neighborhood U'^U of x° such that every distribution u defined in U,

satisfying the equation P(x, D)u = 0 and vanishing when <P(x) > O(x0), x e U, must

also vanish in U'.

The proof of this theorem is presented in §4. We discuss here the geometric

meaning of the conditions of the theorem and prove that these conditions are
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invariant for transformations of coordinates. It should be recalled (see [1, pp.

29-32]) that Pm(.v, grad <P) is invariant for coordinate transformations. In fact

Pm(x, grad (<I> + eT)) is an invariant for every e. It follows that the condition that S

is simply characteristic at x° is invariant. The equations of a bicharacteristic strip

are also invariant for coordinate transformations. The invariance of conditions (6)

and (7) follows from their geometric meaning. Condition (6) means that the bi-

characteristic curve is a tangent of order k— 1, and not of higher order, to the sur-

face S at x° and that, when k is even, in a sufficiently small deleted neighborhood

of x°, I lies on the side of 5 where 0(x) > <t>(x°). Condition (7) means that the

bicharacteristic strip 3? is tangent of order [(k- l)/2] to the surface S at x° in the

direction of /.

An alternative expression of condition (7) is also interesting and it will be useful

in the proof of the theorem: Let "F be any solution of the characteristic equation

Pm(x, grad Y) = 0 which is in C[(fc+1,,2I(tV) and such that grad }¥(x°) = N°. Then,

since |(/) = grad T(x(0) (see §2), condition (7) is equivalent to

(8)   (cFMOfgrad <i>(x(/))-grad «F(x(0)]|t-o = 0  for i = 0,..., [(k- l)/2].

Geometrically this means that any characteristic surface which is tangent to Sat x°

is also tangent of order [(A: — 1 )/2] to S at x° in the direction of the bicharacteristic

curve through (x°, N°).

It should be noted that the assumption that S is simply characteristic at x° and

equations (4) and (5) defining i£ already imply that

(dildti)[<t>(x(t))-Hx°)]\t = o = 0  for / = 0, 1,

and

[grad $(*(/))-£(/)]|t = 0 = 0.

It is only necessary to verify that (d/dt)<I>(x(t))\t = o = 0. For (=0we have

f=i ü w = i mx°> "0) =mp^ N°> - °'

where we also used Euler's identity for homogeneous polynomials. «7<J>/(7r = 0 when

r=0 means that / is tangent to S at x°. This of course also follows from the fact that

/ must lie on all the characteristic surfaces which are tangent to S at x°.

When k=2, it follows from the above observation that condition (7) and the

first two parts of condition (6) are already implied by the assumption that the sur-

face S is simply characteristic at x°. Therefore the only other assumption on S

is that

> 0.
i = 0

The value of the left-hand side of (9) can be computed using equations (4) and (5)

(9)
d2<&{x(t))

dt*
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and Euler's identity (see [1, p. 127], or [4]). We have

X = a

Since Pm(x, grad (O + eT)) is an invariant for every e, the coefficient

of £ is also invariant. If xV = Pm(x, grad <I>) this coefficient is equal to the expression

on the right-hand side of (10) and this gives another proof of its invariance.

When /c = 4 the only nontrivial part of condition (7) is

It follows that condition (11) is equivalent to the condition that Pm(x, grad $>(xy)

vanishes to the second order at x°. This latter condition is obviously invariant for

coordinate transformations.

When k = 2, the theorem coincides with Hörmander's Theorem 5.3.2 in [1]. For

differential equations with constant coefficients the theorem coincides with Treves'

Theorem 6.9 in [3].

Before closing this section we remark that the function <t> in the theorem may be

replaced by any other function <P' provided that <P and <P' define the same surface

through x° and the same "side". Specifically let d> and <I>' be any two Ck functions

with nonvanishing gradient in U and such that the sets {x : x e U, <l>(x) < <t>(x0)}

and {x : x e U, <!>'(*) < Q>'(x0)} are identical. Then it is clear from the geometric

meaning of the conditions of the theorem that if <J> satisfies these conditions, <I>'

also does. An analytical verification of this assertion is indicated in [4].

4. Proof of the theorem. The proof is based on the following lemma due to

Hörmander [1, Lemma 5.3.2].

Lemma. In an open set Q, <= A*n let P(x, D) have analytic coefficients, and assume

that the coefficient of D™ never vanishes in £2. If u is a distribution in £2 satisfying the

equation P(x, D)u = 0 in £2c = {x : x e £2, xn<c} for some c and if £2c n supp u is

relatively compact in £2, then u = 0 in Dc.

We first outline the proof of the theorem. Clearly we can choose the coordinates

in such a way that x° = 0 and N° is in the direction of the vector (0,..., 0, — 1).

Using the hypothesis and the fact that we can choose U as small as we need, we will

construct in a neighborhood of U a real-valued analytic function of the form

Pm(x, grad <D(.y)))U=;co.

F(x) =f(x')-xn,

satisfying the following conditions:

7(0) = 0,  x'= (*!,..., *n-l)
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(13) There is a number c>0 such that the set

K = {x : xeU, <t>(x) ä <D(0), F(x) > -c}

is a compact subset of U.

(14) Pm(x, grad F(x))^0, for x e U.

We then make the analytic change of variables

}>} - xt,    j = 1,...,n-1; a = -F(x).

The inverse substitution is also analytic. Let u', £1, P', and K' be the images of

u, U, P and A" respectively. Condition (14) means that the level surfaces F(x)

= constant are not characteristic with respect to P in U. Hence their images, which

are the hyperplanes yn = constant are not characteristic with respect to P' in Q.

Furthermore, since K is a compact subset of U, its image K' is a compact subset of

q. Hence the set {v : y e q, y„^c} n supp m' is a compact subset of ü since it is

contained in A". It now follows from the lemma that w' = 0 in {y : y e D, yn<c},

and therefore w=0 in U' = {x : x e U, F(x)> — c} which is a neighborhood of 0

since F(0)=0> — c. In order to complete the proof it remains only to construct a

function F possessing the required properties (13) and (14).

We first consider the following special case: in some neighborhood of 0 the

function d>(x) is of the form

(15) <D(x) = <p(x')-xn,      x = (x1;..., xn_i)

with <p(0) = 0 and grad O(0) = A,0 = (0,..., 0, -1), and the principal part of the

differential operator F(x, D) is of the form

(16) Pm(x, D) = (-\r-1Dn.1Dr1+---,

where the dots stand for terms of order less than w—1 with respect to Dn. The

assumption on Fm(x, D) implies that in a neighborhood of 0, the planes x„ = con-

stant are simply characteristic with respect to F(x, D) and the corresponding

bicharacteristic curves on these planes are parallel to the xn_!-axis. In fact (see §3)

the bicharacteristic strip 3 through (0, N°) is given by the equations

Xi — ■ ■ ■ = xn_2 = xn = 0,     xn-\ = f,

a =■••=     = o,    L = -l.

Thus, conditions (6) and (7) become in this case

[(öV&d _ x)<D(x)L=o = 0,  for /=0,1,..., k-1,

(6') * 0,  for i = k, k odd,

> 0,   for i = k, k even,

(7')      (a'/ax^Mgrad <t>(x)-N°]\x = 0 = 0,   for i = 0, 1,..., [(*- l)/2].
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First we obtain an estimate for the function <p(x'). Expanding it in a finite

Taylor series, we have

<p(x') = Q0(xn.1)+2 ÖX*»-i)*y+Ö(*',*»-i)+o(|*T+l*»-il*)

where x"=(x1,..., xn_a), öo is a polynomial of degree Sk in xn_!, the Qh

j=\,.. .,n — 2, are polynomials of degree _A;-1 in xn_i and Q{x",xn^1) is a

polynomial of degree ^/c in (x", x„_!) without terms of degree ^ 1 with respect to

x". It follows from condition (6') that

öo(*n-i) = CqcPxW-i,     a = ± 1,

where c0 is a positive constant, and from condition (7') that there are constants

Ci, C2 and el5 with ex -»-0 as |x"|, |jcn_ x| -n»0, such that

(17) <p(x") ^ Co^^-Qlx^^lx-l-^lxT-^kn-ll',

where q=[(k+1)/2].

We take as neighborhood of the origin the cylindrical set,

U = {x : (x", xn_j) e U0, -z0 < xn < z0}

where

U0 = {(x", xn_j) : |x"| < x0, -h < xn_x < r0},

and set

Fix) = fix') - xn  with /(x') = <j3x„ _! -1 x" 12/s.

We will show that the positive constants x0, t0, tu z0, S and e can be chosen suffi-

ciently small so that conditions (13) and (14) are satisfied. It should be noted that

when k is even we are free to choose a as either +1 or — 1 whereas when k is odd,

a is given as either +1 or — 1.

In order to satisfy condition (13) it is sufficient to choose the constants such that

the boundaries 8S and dS' of the surfaces S={x : xe U, <D(x) = 0} and S' =

{x : x e U, F(x)= — c} lie on the lateral surface {x : x' e 8U0, — z0<xn<z0} of the

boundary of U and such that 8S' lies "below" 8S. Since the first requirement can

be satisfied simply by choosing z0 large in comparison to x0, t0 and tu we concen-

trate on the second, more difficult one. We must choose the constants such that on

aS" the condition $(x) > 0 holds.

On 8S' we have

4>(x) = <t(x)-[F(x) + c] = pOO-^n-i+kT/'-c

and using the estimate (17),

<D(x) ̂  eo^4-i-C1|xn_1|a|x"|-C2|*T-£il*n-i|'c-^xn_1 + |x"|2/£-c.

In fact, if e is sufficiently small, we have the estimate

<P(x) ^ C0CT,cXn_1-Ci|xn_1|9|x"|-e1|x„_1|'c-CT8xn_1+|x"|2/2e-C.
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First, we consider k even, in which case q = kß, and set

S _  .fc-l+CL/4)       v    _ /(fc/2) + (l/4)      „ _  tai2)      t    _ t
° — '0 ,    -*0 — '0 )    e — '0     )     '1 — 'o-

We state once and for all that all the following estimates are valid provided t0 is

sufficiently small. On the parts of dS' on which \x"\^x0, x„_i = ± t0 we have

4>(x) S Cot^-CA^Xo-e^-Bto-c

= t^Co-C^-^-t^-c > C-%tk0-c.

On the parts of dS' on which |x"| = x0, —t^Xn-^to we have

fl>(x) ä (co-^-a-Ql^^l^o-Sl^.il+xg^-c

ä -d/J*»'*>-tf+OM>+/*/2-c > itf-c.

Thus, when A: is even, condition (13) is satisfied with c = min [c0, \]toj2.

Next we consider k odd, in which case <7 = (£+l)/2. We discuss only the case

a= + 1. The proof for c= — 1 can be obtained from the proof for a— + 1 by inter-

changing tQ and ^ throughout. We set

S _ ,k-l+U/8)      v    _ <(fc-l)/2 + (l/4)      , _ ,(1/8)      ,    _ ,l+(l/8)
° — <0 ,    -*0 — '0 >    e — '0     >    «1 - '0

On the part of dS' on which |x"| S x0, xn_! = ?0 we have (as in the case of k even)

<D(x) >

On the part of dS' on which \x" \ gx0, t=—tt we have

0(» S -(co+eiW-Ci^+^Xo+S^-c

= 4+<1/4)[i - (c0+eMk "2),a - CA*+1),1S]

> i/0fc + (1,4)-c.

On the part of dS' on which |x"| =x0, —/i^ ^ r0 we have

O(x) S - c0t? - CAk + 1)/2*o - Mo* -    + xtl(2e) - c

- Itk-(.5l8)_r tk + (kl8)_(-< <fc + (l/4)__ tk
— 2'0 c0'0 ^-l'O el'0

_ fk + UIB) _ c > J.^k-(5/8)_c_

Thus, when k is odd, condition (3) is satisfied with c= y$ + aii).

Next, we verify that with the constants chosen as above the function F satisfies

condition (14). We have

gradF(x) = (-2x"/>, aS, -1).

From the assumption (16) it follows that

PJxif, L-i, -1) =

where the dots stand for terms of degree S2 with respect to (f", £„_i). Hence

Pm(x;f, £n.u -1) = ln-i[l + 0(|r| + |^„-i|)] + 0(|r|2),
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in a neighborhood of x=£" = £„_! = (). Consequently

Pm(x, grad F) = o8[l+0(\x"\le+8)] + 0(\x"\2le2)

in a neighborhood of 0. For sufficiently small tQ, U is contained in this neighbor-

hood. Now, it is easy to verify that there is a positive constant C3 such that when k

is even, the above choice of constants and <r= 1 yield

Pm(x, gradF) ä ir0fc_1+(1/4)-C3/ofc-1+a/2) > 0

in U for sufficiently small t0. When k is odd and a= + 1,

Fm(x, gradF) ^ itf"^"'«-^-1*»'*' > 0

in U. When A: is odd and a= — 1, we have in a similar way Pm(x, grad F)<0 in (7.

The proof of the theorem for the special case considered is complete.

It remains to reduce the general case to the case that we have studied. We do this

by means of analytic transformations of coordinates. Let Y(x) be a real analytic

function defined in a neighborhood of 0 and satisfying the conditions

Pm(x, grad T) = 0,     T(0) = 0,     grad T(0) = N°.

That such a function exists follows from the existence theorem for the initial value

problem for the characteristic equation. (See, for example, Theorem 1.8.2 and the

remark following it in [1].) Since N° is in the direction of (0,..., 0, -1), the

equations

yi = Xj,        7=1,..., n-l,

yn = -V{x),

define a nonsingular analytic transformation of coordinates in a neighborhood of 0.

The level surfaces T(x) = constant which are simply characteristic with respect to

P(x, D) in a neighborhood of x = 0 are mapped to the hyperplanes yn = constant

which therefore are simply characteristic with respect to the image P'(y, D) of

P(x, D) in a neighborhood of y = 0. Since P£n(0; 0,..., 0, -1)#0 for some j,

7=1,...,«, and since P'^n\0; 0,..., 0, -1) = 0 we may assume, renaming the

variables if necessary, that ^"""(O; 0,..., 0, -1)#0.

Now, in a neighborhood of y = 0, the equations of the bicharacteristic curve with

parameter t = zn_ 1; lying on the plane yn = zn and passing through the point y" = z",

yn.! = 0, yn = zn when the parameter t = zn _ 1 = 0, are of the form

F> = Zj+fj(z", Zn-l, Zn),

Fn-1 =A-l(z >zn-l>zn)>

yn = Zn-

The functions /, are analytic in a neighborhood of z = (z", zn_1? zn)=0 and

fj(z", 0, zn)=0,7=l,..., n-l. Moreover, it follows from Hamilton's equations,

that the Jacobian of y with respect to z at the origin is equal to

P;<»-»(0;0,...,0, -1) / 0.
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Hence, the analytic mapping z -> y defined by the above equations, has an analytic

inverse y —> z in a neighborhood of 0. It is easy to verify that in the z-coordinate

system the planes zn = const are simply characteristic with respect to the image

P"m(z, D) of P'm(y, D) in a neighborhood of 0, and the corresponding bicharacter-

istic curves on these planes are parallel to the zn _ x axis. In fact, in view of Hamilton's

equations we have

P"m(z; 0,...,0, -1) = 0,

and

«z;0,...,0, -1) = 0,  for/= \,...,n-2,n,

= 1,  fory = n-1,

when z is in some neighborhood of 0 and hence, in this neighborhood,

p"jz,D) = (-lr-^.-iflff-^---

where the dots stand for terms of order less than m — 1 with respect to Dn.

In the z-coordinate system the image of the function O(jc), which for simplicity

we will denote by O(z), is such that grad <I>(0) is nonzero and in the direction of the

vector (0, ...,0, —1). Hence, we may solve the equation 3>(z) = <J>(0) for zn to

obtain zn = <p(z'), where z'=(zu..., zn-t), <p(0) = 0, <p2/0) = 0, j=\, ...,n-l,

and 9 £ Ck in some neighborhood of 0. If Q>'{z) = <p(z') — z„, then the sets

{z : z £ U, <t>(z) < 0(0)} and {z : z e U, 3>'(z) < 0} are identical provided U is a

sufficiently small neighborhood of 0. According to the remarks at the end of §3, we

may replace the function $ with the function 0'. Now, in the z-coordinate system

all the assumptions of the special case considered above are satisfied. Since the

conditions of the theorem are invariant for analytic transformations of coordinates

and since the inverse transformations are also analytic, the proof of the theorem is

complete.

The work presented in this paper was done under National Science Foundation

Grants GP-06208 and GP-07422.
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