NECESSARY CONDITIONS FOR EMBEDDING RINGS
INTO FIELDS()

BY
ABRAHAM A. KLEIN

1. Introduction. If a (noncommutative) integral domain R is embeddable in a
(skew-) field D, then the multiplicative semigroup R* = R—{0} is embeddable in the
group D*=D—{0}. Mal'cev [6] has constructed an integral domain R whose
multiplicative semigroup R* cannot be embedded in a group and hence the ring R
cannot be embedded in a field. In [4], we have constructed integral domains that
cannot be embedded in fields, but their multiplicative semigroups are embeddable
in groups. Our construction was based on the following property of matrix rings
over fields:

N,: If a matrix C of order | is nilpotent, then C*' = 0.

Clearly, this condition holds also in subrings of fields, and it is therefore necessary
for embedding a ring in a field. We have constructed integral domains R which do
not satisfy R, for some /=3, but the semigroups R* satisfy a certain sufficient
condition for embeddability in a group.

The problem arises: What is the relation between the necessary conditions
N, I=1,2,... and the trivial necessary condition

M : R* is embeddable in a group.

The aim of this paper is to prove that if an integral domain satisfies all the con-
ditions R, then it also satisfies M. Thus, if we denote the condition (2, N, by N
and we restrict ourselves to integral domains, we have: 3 <. Moreover, since by
[4] there exist integral domains which satisfy 9, but do not satisfy 92,20 (for
some /2 3) we obtain: NS M. The problem whether the condition 9 is sufficient
for an integral domain to be embeddable in a field remains open.

Our main result is achieved by showing that if R is an integral domain and
satisfies ¢, then the semigroup R* satisfies all the necessary and sufficient conditions
of Mal’cev [7] for embeddability in a group. Our formulation of Mal’cev’s condi-
tions is a slight modification of that given by Cohn [1]. We show that for cancellative
semigroups, a restricted set of conditions, which we call “cancelled conditions” is
sufficient for embeddability. We prove that the cancelled conditions have a certain
structure and using it we obtain that %, implies all the cancelled conditions of order
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lin R*. Hence M=%, N, implies that all the cancelled conditions hold in R* and
therefore R* is embeddable in a group.
In the last section of the paper we study the relation between %, and the con-
dition
M, : R* satisfies all the conditions of Mal'cev of order 1.

The result is 9t; =M;, N,=M, and N, M, for /= 3.
At the end of the paper we give an application to our main result and some
remarks about the condition R which have been pointed out by the referee.

2. Mal'cev’s conditions. As in [1] we obtain Mal'cev’s conditions by the aid
of finite chains of brackets of two kinds, round ( , ) and square [ , ], which are
labelled by suffixes. We need only ‘“normal” chains in the sense of

DErFINITION 1. A chain of brackets will be called normal if the round brackets
occur in the chain in pairs of the form

i=1,...,r,and if 1Zi<i’'Zr, then (; appears in the chain after (;, and if it appears
before ); then ), appears also before );. Similar conditions are imposed on the
square brackets.

We shall say that a normal chain is of order I if it contains r pairs of round
brackets and s=/—r pairs of square brackets.

Using a normal chain of order / we obtain a condition of Mal'cev of order I in the
following way:

For each i, i=1,..., r we adjoin 4 elements (indeterminates) a;, p;, b;, b to the
ith pair of round brackets, and in the chain we insert the words a;b, before (;, pib;
after it; p,b; before ),, a;b; after it and obtain

- -aib(ipibs- - - piby)iaiby- - -

Similarly for each j, j=1,..., s, we adjoin 4 elements d,, g;, ¢;, ¢; to the jth pair
of square brackets, and in the chain we insert ¢,d; before [}, c,q; after it; cjq; before
1;, ¢;jd; after it and obtain

eeeidilieq; - - cjqi)icid; - -

Now, we have two words between any two brackets of the chain and we equate
them. Since the chain contains 2/ brackets we obtain 2/— 1 equations which will be
called the internal equations of the chain. Equating the left word of the first bracket
with the right word of the last bracket, we obtain an equation which will be called
the external equation of the chain.

The condition of Mal'cev corresponding to the above chain is: If for any 4/
elements of the semigroup a, p;, b, b, d;, q;, ¢;, ¢}, i=1,...,r,j=1,...,s, the
2/—1 internal equations are satisfied, then the external equation is also satisfied.

Mal'cev’s theorem is: A semigroup with 1 is embeddable in a group if and
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only if it satisfies the conditions of Mal'cev corresponding to all normal chains
[1, p. 268].

In the 4/ words of two letters, which we have inserted in a normal chain of order
1, the elements a;, p;, c;, ¢; occur as left terms and will be called left elements; the
elements d,, q;, b;, b; occur as right terms and will be called right elements.

From now on, we shall deal with cancellative semigroups since we are interested
in the multiplicative semigroups R* of an integral domain which clearly satisfies
the cancellation laws. For such semigroups we shall show that a restricted set of
conditions which we call ““cancelled conditions” is sufficient for embeddability in a
group. :

DEFINITION 2. A chain will be called cancelled if it is normal and for each
i,i=1,...,r, the bracket (; is not followed by ); and if (; is the first bracket of the
chain then ), is not the last; similar conditions are imposed on the square brackets.
A condition of Mal'cev is called cancelled if it corresponds to a cancelled normal
chain.

LEMMA 1. If a cancellative semigroup S satisfies all the cancelled conditions, then
it is embeddable in a group.

Proef. The conditions corresponding to the chains of order 1 are implied by the
cancellation laws. Again using the cancellation laws it is easily shown that each
noncancelled condition of order / follows from a condition of order /—1, and by
induction we obtain that S satisfies all the conditions of Mal'cev. Hence by
Mal’cev’s theorem if 1 € S then S is embeddable in a group. If 1 ¢ S, embed S in
S; =S U {1} and observe that any chain of equations in .S, becomes a chain in §
on multiplying by an element # € S (which can again be cancelled) from left and
right.

3. The structure of the cancelled conditions. Le¢t us fix a cancelled condition of
order / and suppose it contains » pairs of round brackets and s=/—r pairs of
square brackets. By Definition 2, it follows that r=1 and s= 1. Consider the corre-
sponding cancelled condition which is obtained, as in the previous section, by the
aid of 4/ elements a;, p;, b, bi,d;, q;, c;,ci,i=1,...,r,j=1,...,5. Again by
Definition 2, it follows that the two left (right) elements of the words of an equation
of the condition are distinct. Hence each element appears in exactly two equations.

For two left elements u, v define u ~ v if there exist left elements u=u,, uy, . .., u,,
u,,1=v and k+1 equations of the condition as follows

(D UpXo = U1 )1, U Xy = UgYg, .. -, UXy = Upp1Dise

It is easily verified that ““ ~ * is an equivalence relation in the set of left elements
and we obtain a partition of this set into disjoint classes. A similar process leads to a
partition of the set of right elements into disjoint classes. The class which is de-
termined by an element z will be denoted by Z.

LEMMA 2. Ifin (1) w1 =u, then to="{u,, uy, . . ., U}
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Proof. Clearly i, 2{uq, uy, . . ., u.}. Let w € i1, then u, ~ w and since each element
is contained in exactly two equations we have either

UgXo = U1 )1, Ui Xy = UgYa,y . . -5 UiXy = WY,
or
UoYi+1 = UXk, UV = Upg-1Xg—15- . .5 UsY; = WX,

In both cases w belongs to {uo, uy, .. ., 4} and the result follows.

LEMMA 3. For i=1,...,r all the elements of the class p; are contained in the
equations which appear in the interval (;- - -); of the chain.

Proof. For each square bracket the words before and after it have the same
left-hand factor. For any round bracket occuring in the interval (;. . .), its mate also
occurs; this shows that all left-hand factors in the interval (;. . .); occur in pairs and
the result follows from this.

Going through the proof of Lemma 3 we obtain

LeMMA 4. (a) If a; € P, then i’ > i, and in particular a, ¢ p, for all i=1, ..., r.
(0) If G417+ *)i+1 is contained in (;- - -);, then a;, , € p;.
(©) If i’ #i, then p; N\ py= .

The analog of Lemma 4 for the right elements is

LeMMA 4. (a) If dj € G, thenj' > j, and in particular d, ¢ G, for all j=1, .. ., s.
(b) If [j+1° - *1j41 is contained in [;- - -1;, then d;, , €.
© Ifj'#j, theng, N ;= o.

The structure of our cancelled condition is given by

THEOREM 5. The set of left elements consist of r+ 1 classes which are a,, p, . . ., pr,
and the set of right elements consists of s+ 1 classes which are d,, §y, . . ., G,

Proof. We prove the theorem for the left elements and in a similar way it can be
proved for the right elements.

By (a) and (c) of Lemma 4, the classes a,, py, . . ., b, are disjoint. It remains to
show that all the left elements a;, p;, ¢;, ¢j, i=1,...,r,j=1,..., s belong to one of
these classes.

The assertion is clear for py,..., p, and let us prove it for a;, i=1, ..., r. For
i=1 we have a; € a;. Let i=2 and assume that the assertion is true for i’, i’ <i. We
consider two cases:

(@) (;---)iis contained in (;_;- - -);—;. Then by Lemma 4(b) with i— 1 replacing i
we obtain ag; € p; _;.

(b) (; appears after );_,. Then the interval );_,---(; does not contain round
brackets of the form (. Let ), be the last round bracket of this interval and i’=i—1
if this interval does not contain round brackets. We have i’ <i and considering the
interval );.- - - (; we obtain that a; and g, belong to the same class. By the induction
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hypothesis a;- belongs to one of the classes a,, pi, . . ., §, and hence q; also belongs
to one of these classes.

It remains to prove that each of the elements c;, ¢}, j=1, ..., s belongs to one of
the classes ay, pi, . . ., pr

For c; consider the nearest round bracket to [; and let it belong to the ith pair.
We obtain either c; € j; or ¢, € ; and we have already proved that g, is one of the
classes @, ps, - . ., pr. In a simiiar way we obtain the result for ¢; which completes
the proof of the theorem.

The following result will be used in the next section.

LEMMA 6. If (; is the first bracket of the chain, then b, € d,.

Proof. The first square bracket of the chain is [, and the interval (;---[; is
either empty or contains round brackets of the form (. If it is empty then p,b, =c,d,
and hence b, € d,. In the other case we have for some i>1:

Piby = aghy, ..., pi_1bi_1 = aby, pib; = cd.
Hence again we obtain b, € d,.

4. The main result. If R is a ring which satisfies the condition %, and if 4, Be R,
and (4B)'=0 then (BA)'=0. Indeed, BA is nilpotent since (BA)'*'=B(AB)'4=0,
and therefore (BA) =0 since R satisfies %,. Using this remark and the results of the
previous sections we shall obtain the main result of this paper which is:

THEOREM 7. If R is an integral domain which satisfies the condition R= N>, R,
then R* is embeddable in a group, i.e., R<M.

Proof. By Lemma 1 it suffices to prove that R* satisfies all the cancelled con-
ditions.

Let us consider the cancelled condition of the previous section and assume that
for 4/ elements of R*

(2) ai,pi, bi’ b;, dj, qj, Cj, c;, i= 1, .. .,r, ] = l,. ey S,

the internal equations hold and we have to prove that the external equation holds.
Assume that (; is the first bracket of the chain and a similar proof can be given in
the other case. Denote by ef the right word of the last bracket of the chain and let
w=a,b; —ef. The external equation is a,b, =ef and hence the result will follow if
we prove that w=0.

Using the 4/ elements of (2) and 0 we first construct two matrices A,, B, of
orders (r+1)x/ and /x (s+1) respectively. Then by the aid of 0 and an element
t#0 we shall enlarge 4,, B, to 4, B € R, which will serve to obtain the result.

The two words appearing near each bracket of the given chain have one common
letter: b;, b, ¢, cj for (; , )i, [; , ]; respectively. We put a minus sign before the
elements which are common to the words of the 2kth bracket of the chain, k=1, 2,
..., I. Note that since (; is the first bracket of the chain *“ — ’ is not adjoined to b,.
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A, is obtained by the aid of the r+1 classes of left elements (Theorem 5) and
zeros. We put the elements of a, (with the adjoined signs) in the first row, the
elements of p, in the second row,. .., the elements of p, in the (r+ 1)th row. The
place of each element in the row of its class will be determined by the table:

1 rjr+l l
a |l ...lal| te | ... ] a1
pif ..o e | ... | 21

We put zeros in the remaining places.

B, is obtained by the aid of the s+ 1 classes of right elements and zeros. We put
the elements of g, in the first column, . . ., the elements of g, in the sth column and
those of d, in the (s+ 1)th column. The place of each element in the column of its
class will be determined by the table:

1 by | b3

r+1 d, qs

l d, 91

As in A, the remaining places are filled in by zeros.

By Lemma 4(a) if a, € p; then i’ >i. Whence a;,- appears in 4, on the right side
of p; and this implies that on the left side of p; appear only zeros. Similarly, by
Lemma 4'(a) we obtain that in B, appear only zeros on the left side of g;. By
Lemma 6 b, € d, and hence b, appears in the last column of B,. :

The general element of 4, B, is a sum whose ith term, 1<i<r, is 0 or one of the
words +ab;, +pb;, +pbi, +ab;and whose (r+s+1—j)th term, 1=j<s, is 0 or
one of the words + ¢ d,, +c;q; *+cjq;, +cid;.

Each of the words

(3) a‘b‘, pibb pib:’ aﬁbf, C{dj, quj, Cj'qj, C;dj, i = 1, vy by j = 1, e, S

perhaps with * — ” is obtained as a summand of one and only one element of 4,B;.
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If xy and uv are words of (3) and xy=uv is one of the 2/ equations of the condi-
tion, then x, u belong to the same left class, and y, v belong to the same right class.
Hence +x, +u are in the same row of A4,, say the mth; +y, +v are in the same
column of B, say the nth. Considering the tables which have determined the
positions of the elements in 4, and B,, we obtain that + xy and + uv are summands
of the (m, n)-entry of A,B;. But it is readily seen that “ — > was adjoined to only
one element of each equation. Hence if xy =wuv is an internal equation the contribu-
tion of xy and uv to the (m, n)-entry of 4,B; is +(xy—uv)=0. If xy=uv is the
external equation, one of the words xy and wv is a,b, and the other is ef, and their
contribution to the (1, s+ 1)-entry of 4, B, is a,b, — ef=w. Thus, the (1, s+ 1)-entry
of A,B; is w and the other entries are 0 and we have:

@ A,B, = (gﬁ z)

where 0,, is the r x s zero matrix.
Now, let A’ be defined as the (s—1) x (r+s) matrix

HEy 1r2tEgriat - +E 1,40
and B’ as the (r+s) x (r—1) matrix t(E11+E22+ -+++E,_;,-1). Note that A’ is

defined for s>1 and B’ is defined for r>1. We enlarge the matrices 4,, B, to
matrices 4, B € R, by the aid of 4’ and B’ as follows:

A’
= B = B ! .
a-(3) B-@m

If s=1 we take A=A, and if r=1 we take B=B,. We obtain

_[A'B, | A'B’\}s—1
& 48 = (45 r47) 1
— —~—
s+1 r—1
and we have
at
0 1qs-1 Dit *
. . ¥ 0
(6) A'B, = - , AB' = o ,A'B' = 0.
O . . . .
0 tql tdl O * Pr-lt
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By (4), (5) and (6) we obtain

0 g,
/ T s
O .
0 1q, td,
AB = o ... 0 w alt
0 Pt *
O
O ) Pr-1t
‘ 0 0

Now, we complete the proof of Theorem 7. We have (4B)'=0 since AB is
triangular. Hence by the remark at the beginning of this section it follows that
(BA)'=0. We also see that

(AB)~1 = (tg,-1)- - -(tq)w(p1t)- - - (p;-1t)Eyy.

The (r+1, 1)-entry of Bis g, and the (/, r)-entry of A is p,. But E, ., ,E\,E,=F, 1,
and therefore we obtain for the (r+1, r)-entry of B(AB)Y 'A=(BA)'=0 the
equation

qstqs—1- - 1qaWpsl: - Py _1Ip, = 0.

Since R is an integral domain and p;, ..., p;, qs, .. ., qs t are nonzero elements it
follows that w=0 and this completes the proof of the theorem.

In [4] we have constructed integral domains R which do not satisfy R, but R*
are embeddable in groups and therefore R satisfy 9%. Hence by Theorem 7 we
obtain

THEOREM 8. NG I.

5. The relation between 9, and 9M,. In this section we obtain the relation
between the conditions R, and M, (defined in the introduction) for integral do-
mains.

The conditions of Mal’cev of order 1 are satisfied by a cancellative semigroup
and in particular they are satisfied by R* if R is an integral domain. Thus, each
integral domain satisfies 9t,. Since an integral domain has no nonzero nilpotent
elements it satisfies N, and this implies N, =M,.

To obtain the relation between 9, and M, for /=2 we first prove

LEMMA 9. 2N, ;.
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Proof. Let R be an integral domain which does not satisfy %, and we shall prove
that it does not satisfy 9%,,,. Let 4 € R, be nilpotent of order n> /. Thus, 4"=0,
A"~ 1#0 and assume that the (p, g)-entry of A"~ ! is a#0. Let B, € R, be the
matrix obtained from A4 by adjoining a row and a column of zeros and let B=B,
+1tE, .1, where 0#¢ € R. Computing the powers of B we obtain B"*'=0 and
B"+#0 since its (g, I+ 1)-entry is at#0. Thus, B € R, is nilpotent of order n+1
>[+1, hence R does not satisfy %, ;.

Using the previous lemma and the result proved in Theorem 7, we obtain

LEMMA 10. R, =M,

Proof. By the proof of Theorem 7 it follows that if R satisfies %, then R*
satisfies all the cancelled conditions of order /. But, by the previous lemma, R
satisfies M, for k</, hence R* satisfies all the cancelled conditions of order </.
Now, each condition of order / which is not cancelled can be proved using the
cancellation laws and perhaps also a cancelled condition of lower order. This proves
that R* satisfies all the conditions of order / and hence R satisfies M,.

In [4] we have constructed for each />3 an integral domain R which does not
satisfy 9%, and R* is embeddable in a group. Hence R satisfies M and in particular
it satisfies ;. This result together with the result of Lemma 10 implies

THEOREM 11. R, M, for each 1= 3.

Now, we deal with the case /=2. We first prove

LEMMA 12. If R is an integral domain and A € R, is nilpotent of order k+1, k=2,
then all the entries of A and of A* are #0.

Proof. Let 4=(a;;) and 4*=(b;;). Since A*#0 and k=2 we have A2#0.

If a,,=0 then the (1, 1) and (2, 2) entries of A*¥** are a%;}* and a%5* respectively.
But 4**1=0 and since R is an integral domain it follows a;; =a,,=0. Hence we
obtain 42=0, a contradiction. Thus, a,,70 and similarly a,, #0.

If a;;=0 then since AA*=A**1=0 we obtain a;sb,;=a;,b,;+a;3b,;=0 for
j=1, 2. Hence by, =b,,=0 and since 42*=0 its (1, 1)-entry is b%; =0 which implies
that b,,=0. By the relation A*A=A**1=0 we obtain b,,as, =b,,a;, +b,,a,; =0
and therefore b,,=0. Thus, we have proved 4¥*=0, a contradiction. Hence a,, #0
and similarly a,,#0 and this completes the proof that all the entries of 4 are #0.

Now, we prove that all b;;#0. We have a,,b;,+a,,b,;=0 and since a,, a,,#0 it
follows that b,;,=0 if and only if b,;=0. Similarly the equation b;;a;, + b;2a2, =0
implies b;, =0 if and only if b,;=0. Hence if b;;=0, then the second entry of the jth
column of 4* is 0, and therefore the second column of A* is also 0, a contradiction.
This proves that each b;;#0.

THEOREM 13. RN, =M,.
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Proof. By Lemma 10 we have R, = M,. To obtain equality it suffices to prove
that if Ris an integral domain which does not satisfy 9i,, then it does not satisfy 9t,.

Let R be an integral domain and let 4 € R, be nilpotent of order k+1, k= 2.
We shall show that R does not satisfy IM,. Let us consider the following condition
of Mal’cev of order 2:

O] a,b,(1p:b, = ¢1di[1619; = pib)asby = cigilicids.

As in the previous lemma let 4=(a;;), A*=(b;,). Since A¥*#0 and k=2 we have
A?#0 and suppose the (i, j)-entry of 4% is not 0. We take:

a, = ay, p1 = by, b, = ay;, by = by

d, = ay;, g1 = by, ¢ = —by, ¢y = —ap.

By Lemma 12 all these elements are #0 (belong to R*) and since 4*A=AA4"*
=A**1=0 and A*4*=0 we obtain

piby = buay; = —bpay; = ¢ dy,
€191 = —bisby; = byay; = pibi,

arby = anby; = —apbs; = ciq;.

Thus, for 8 elements of R* the internal equations of (7) hold, but since the (i, j)-
entry of A% is not 0 we have a,b,=a;,a,;# —a;,a,;=c1d; which means that the
external equation of (7) does not hold. Hence R does not satisfy 9%, and this
completes the proof of the theorem.

The following is an application to our main result which has been communicated

to us by the referee(?).
A semifir (=local fir in [2]) is an integral domain in which every finitely generated
left (or right) ideal is free of unique rank.

THEOREM 14. A semifir satisfies M and hence its multiplicative semigroup is
embeddable in a group.

Proof. Let A be an /x [ matrix over a semifir R and assume A*=0 for some »,
but A"~ 1#£0.

Write V=R considered as left R-module; by [2, Proposition 2.1] all finitely
generated submodules of V are free. Moreover multiplication (on the right) by 4
defines an R-homomorphism. Thus writing V;=VA' we have the chain of sub-
modules

V= Vo; V1 202 Vn_12 Vn=0'

All these submodules are free of diminishing ranks, hence if n>/ we have equality
at some stage, say rank (¥;_;)=rank (V¥;). But this means that 4 acting on V;_, is
injective, whence so is 4"=0, i.e. V;_;=0, a contradiction unless n</.

(?) The author wishes to thank the referee for this interesting application.
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We conclude with the following remark.

A ring R satisfying i has the following property for every integer n: If A, Be R,
and 4B=1 then BA=1. Indeed, if AB=1 and BA#1 then as in [5, p. 35] define
e;=B'"'4’-1—B'4’ for i, j=1,2,..., and observe that for each m22, e;;+ey;
+ -+ +en_1.m is nilpotent of order m, a contradiction.

In [3] the property “A4, B€ R, and AB=1then B4=1"is expressed in the follow-
ing equivalent form:

IIL, In a free R-module of any rank n, any generating set of n elements is free.
Hence a ring satisfying 9 has the property III and also satisfies IT and I of [3] and in
particular it has the invariant basis property.
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