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I. Introduction. If a (noncommutative) integral domain R is embeddable in a

(skew-) field D, then the multiplicative semigroup F* = F-{0} is embeddable in the

group D* = D — {0}. Mal'cev [6] has constructed an integral domain F whose

multiplicative semigroup R* cannot be embedded in a group and hence the ring F

cannot be embedded in a field. In [4], we have constructed integral domains that

cannot be embedded in fields, but their multiplicative semigroups are embeddable

in groups. Our construction was based on the following property of matrix rings

over fields:

9c,: If a matrix C of order I is nilpotent, then C = 0.

Clearly, this condition holds also in subrings of fields, and it is therefore necessary

for embedding a ring in a field. We have constructed integral domains F which do

not satisfy 9c,, for some H3, but the semigroups R* satisfy a certain sufficient

condition for embeddability in a group.

The problem arises: What is the relation between the necessary conditions

9Î,, /= 1, 2,... and the trivial necessary condition

9Jl : R* is embeddable in a group.

The aim of this paper is to prove that if an integral domain satisfies all the con-

ditions 9Î,, then it also satisfies 9Jc. Thus, if we denote the condition Hi™ i % by 9?

and we restrict ourselves to integral domains, we have: 9îç9Jc. Moreover, since by

[4] there exist integral domains which satisfy 9JÎ, but do not satisfy 9c,^9c (for

some /^3) we obtain: 9c^9J?. The problem whether the condition 9Î is sufficient

for an integral domain to be embeddable in a field remains open.

Our main result is achieved by showing that if F is an integral domain and

satisfies 9c, then the semigroup F* satisfies all the necessary and sufficient conditions

of Mal'cev [7] for embeddability in a group. Our formulation of Mal'cev's condi-

tions is a slight modification of that given by Cohn [ 1 ]. We show that for cancellative

semigroups, a restricted set of conditions, which we call "cancelled conditions" is

sufficient for embeddability. We prove that the cancelled conditions have a certain

structure and using it we obtain that 9Î, implies all the cancelled conditions of order

Received by the editors June 2, 1967 and, in revised form, December 10, 1967.

0) This is a part of the author's Ph.D. thesis prepared at the Hebrew University of

Jerusalem under the kind supervision of Professor S. A. Amitsur.

141



142 ABRAHAM KLEIN [March

/ in R*. Hence 9î = P|™= i % implies that all the cancelled conditions hold in R* and

therefore R* is embeddable in a group.

In the last section of the paper we study the relation between 9Î, and the con-

dition

■¡Di, : R* satisfies all the conditions of Mal'cev of order I.

The result is 3lx = mx, 9c2 = 30i2 and 9î,g$Dc, for f£3.

At the end of the paper we give an application to our main result and some

remarks about the condition 3c which have been pointed out by the referee.

2. Mal'cev's conditions. As in [1] we obtain Mal'cev's conditions by the aid

of finite chains of brackets of two kinds, round ( , ) and square [ , ], which are

labelled by suffixes. We need only "normal" chains in the sense of

Definition 1. A chain of brackets will be called normal if the round brackets

occur in the chain in pairs of the form

••(,•• •).-■•

i=l,..., r, and if lSi<i'Sr, then(f- appears in the chain after (¡, and if it appears

before )¡ then )e appears also before ),. Similar conditions are imposed on the

square brackets.

We shall say that a normal chain is of order I if it contains r pairs of round

brackets and s=l—r pairs of square brackets.

Using a normal chain of order / we obtain a condition of Mal'cev of order I in the

following way :

For each i, i= I,..., r we adjoin 4 elements (indeterminates) at, ph ¿>¡, b[ to the

ith pair of round brackets, and in the chain we insert the words a,bi before (¡, p,bi

after it ; pxb\ before )¡, ajo'i after it and obtain

■   -aMiPibi-- pibWaibl- ■-.

Similarly for each j,j= 1,..., s, we adjoin 4 elements d,, q,, c„ c, to the y'th pair

of square brackets, and in the chain we insert c,d, before [,, c,q, after it; c',q, before

],, c'jd, after it and obtain

■■cid,[,c,q,---c;q,],c',d,---.

Now, we have two words between any two brackets of the chain and we equate

them. Since the chain contains 2/ brackets we obtain 21- 1 equations which will be

called the internal equations of the chain. Equating the left word of the first bracket

with the right word of the last bracket, we obtain an equation which will be called

the external equation of the chain.

The condition of Mal'cev corresponding to the above chain is : If for any 4/

elements of the semigroup auph bt, b\, d,, q,, c„ c',, i= 1,..., r,j= 1,..., s, the

2/— 1 internal equations are satisfied, then the external equation is also satisfied.

Mal'cev'1 s theorem is: A semigroup with 1 is embeddable in a group if and
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only if it satisfies the conditions of Mal'cev corresponding to all normal chains

[I, p. 268].
In the 4/ words of two letters, which we have inserted in a normal chain of order

/, the elements a,,/»,, c}, c'¡ occur as left terms and will be called left elements; the

elements d¡, q¡, b¡, b'¡ occur as right terms and will be called right elements.

From now on, we shall deal with cancellative semigroups since we are interested

in the multiplicative semigroups R* of an integral domain which clearly satisfies

the cancellation laws. For such semigroups we shall show that a restricted set of

conditions which we call "cancelled conditions" is sufficient for embeddability in a

group.

Definition 2. A chain will be called cancelled if it is normal and for each

/',/'= 1,..., r, the bracket (, is not followed by )¡ and if (x is the first bracket of the

chain then )x is not the last; similar conditions are imposed on the square brackets.

A condition of Mal'cev is called cancelled if it corresponds to a cancelled normal

chain.

Lemma I. If a cancellative semigroup S satisfies all the cancelled conditions, then

it is embeddable in a group.

Proof. The conditions corresponding to the chains of order 1 are implied by the

cancellation laws. Again using the cancellation laws it is easily shown that each

noncancelled condition of order / follows from a condition of order /- 1, and by

induction we obtain that 5 satisfies all the conditions of Mal'cev. Hence by

Mal'cev's theorem if 1 e S then 5 is embeddable in a group. If 1 <£ S, embed S in

SX = S u {1} and observe that any chain of equations in Sx becomes a chain in S

on multiplying by an element t e S (which can again be cancelled) from left and

right.

3. The structure of the cancelled conditions. Let us fix a cancelled condition of

order / and suppose it contains r pairs of round brackets and s = I—r pairs of

square brackets. By Definition 2, it follows that ri 1 and si 1. Consider the corre-

sponding cancelled condition which is obtained, as in the previous section, by the

aid of 4/ elements c?,, ph bh b\, djt qjt c}, c), i = 1,..., r, j= 1,..., s. Again by

Definition 2, it follows that the two left (right) elements of the words of an equation

of the condition are distinct. Hence each element appears in exactly two equations.

For two left elements u, v define u~v if there exist left elements u = uQ,ux,..., uk,

Wfc+i = t' and k+l equations of the condition as follows

(1) u0x0 = uxyx,       uxxx = u2y2,...,       ukxk = uk+xyk+x.

It is easily verified that " ~ " is an equivalence relation in the set of left elements

and we obtain a partition of this set into disjoint classes. A similar process leads to a

partition of the set of right elements into disjoint classes. The class which is de-

termined by an element z will be denoted by z.

Lemma 2. If in (1) uk+x = u0 then ü0 = {u0, ux,..., uk}.
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Proof. Clearly w0 2 {u0, ux,..., uk}. Let w eii0 then u0 ~ it' and since each element

is contained in exactly two equations we have either

Wo*o = uxyx,        uxxx = u2y2,. .., i/¡x¡ = wy,

or

«oVfc+i = ukxk,       ukyk = uk_xxk-x,.. .,u,y, = wx.

In both cases w belongs to {u0, ux,..., uk} and the result follows.

Lemma 3. For i= 1,..., r all the elements of the class pi are contained in the

equations which appear in the interval (¡- • )i of the chain.

Proof. For each square bracket the words before and after it have the same

left-hand factor. For any round bracket occuring in the interval (¡.. .)¡ its mate also

occurs; this shows that all left-hand factors in the interval (¡.. .)¡ occur in pairs and

the result follows from this.

Going through the proof of Lemma 3 we obtain

Lemma 4. (a) If av eph then V > i, and in particular ax ^pt for all i=l,

(b) If d+i- ■ -)i+i " contained in (¡- • •)» then aí + x ep¡.

(c) If i'^/, then pt- npt= 0.

The analog of Lemma 4 for the right elements is

Lemma 4'. (a) Ifdr e q„ thenf >j, and in particular dx $ q,for allj= 1,

(b) If [,+ !■■■ ],+1 is contained in [,■ ■ ■ ]„ then d,+ xeq,.

(c) Ifj'ifi then q,, nq¡=0.

The structure of our cancelled condition is given by

Theorem 5. The set of left elements consist ofr+1 classes which are äx, px,... ,pr,

and the set of right elements consists ofis+l classes which are dx, qx,..., qs.

Proof. We prove the theorem for the left elements and in a similar way it can be

proved for the right elements.

By (a) and (c) of Lemma 4, the classes äx, px,..., pr are disjoint. It remains to

show that all the left elements a¡, ph c,, c',, i= 1,..., r,j= 1,..., s belong to one of

these classes.

The assertion is clear for px,.. .,pr and let us prove it for au i= 1,..., r. For

/ = 1 we have ax e äx. Let ¡a2 and assume that the assertion is true for i", i' < i. We

consider two cases:

(a) (j- • -)j is contained in G_i ■ - -)i-i- Then by Lemma 4(b) with i- 1 replacing /

we obtain a¡ epi_x.

(b) d appears after )t_x. Then the interval )¡-i- • (( does not contain round

brackets of the form (. Let ),. be the last round bracket of this interval and ;" = /— 1

if this interval does not contain round brackets. We have i' < i and considering the

interval )(- • • • (¿ we obtain that av and a, belong to the same class. By the induction

...,r.

...,s.
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hypothesis av belongs to one of the classes ax,px,..., pr and hence a¡ also belongs

to one of these classes.

It remains to prove that each of the elements c¡, c'¡,j= 1,..., s belongs to one of

the classes äx, px,..., pr.

For Cj consider the nearest round bracket to \j and let it belong to the /'th pair.

We obtain either c¡ ept or c¡ e a, and we have already proved that a¡ is one of the

classes âi,pu .. .,pr. In a similar way we obtain the result for c'¡ which completes

the proof of the theorem.

The following result will be used in the next section.

Lemma 6. If(x is the first bracket of the chain, then bx e dx.

Proof. The first square bracket of the chain is [x and the interval (x ■ ■ ■ [x is

either empty or contains round brackets of the form (. If it is empty then pxbx = cxdx

and hence bxedx. In the other case we have for some /> 1 :

pxbx = a2b2, ...,pt„ibt-i = üib{,Pibi = cxdx.

Hence again we obtain bxedx.

4. The main result. If F is a ring which satisfies the condition 9c, and if A, B e F,

and (AB)l = 0 then (BA)l = 0. Indeed, BA is nilpotent since (BA)t + 1 = B(AB)'A = 0,

and therefore (BA)'=0 since F satisfies 9c,. Using this remark and the results of the

previous sections we shall obtain the main result of this paper which is:

Theorem 7. If F is an integral domain which satisfies the condition 9c = P)¡" i %,

then R* is embeddable in a group, i.e., 9c£9Jc.

Proof. By Lemma 1 it suffices to prove that F* satisfies all the cancelled con-

ditions.

Let us consider the cancelled condition of the previous section and assume that

for 4/ elements of F*

(2) au pi, bh b\, dj, qh c¡, c'¡,       i = 1, ..., r,   j = 1,..., s,

the internal equations hold and we have to prove that the external equation holds.

Assume that (x is the first bracket of the chain and a similar proof can be given in

the other case. Denote by efthe right word of the last bracket of the chain and let

w=axbx — ef The external equation is axbx = ef and hence the result will follow if

we prove that w = 0.

Using the 4/ elements of (2) and 0 we first construct two matrices Ax, Bx of

orders (r+ I) x I and Ix (s+1) respectively. Then by the aid of 0 and an element

i/0 we shall enlarge Au Bx to A, Be F, which will serve to obtain the result.

The two words appearing near each bracket of the given chain have one common

letter : b¡, b¡, c„ c'¡ for (¡ , )¡, [; , L respectively. We put a minus sign before the

elements which are common to the words of the 2A:th bracket of the chain, k=l,2,

...,/. Note that since (x is the first bracket of the chain " — " is not adjoined to bx.
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Ax is obtained by the aid of the r+l classes of left elements (Theorem 5) and

zeros. We put the elements of ax (with the adjoined signs) in the first row, the

elements of px in the second row,..., the elements of pr in the (r+ l)th row. The

place of each element in the row of its class will be determined by the table:

r+l /

a, ±c. ±Ci

Pi ±ci ±c'i

We put zeros in the remaining places.

Bi is obtained by the aid of the s+1 classes of right elements and zeros. We put

the elements of qs in the first column,..., the elements of qx in the sth column and

those of dx in the (s+ l)th column. The place of each element in the column of its

class will be determined by the table :

r + l

bx

±br

dx

±b'x

±K

qx

As in Ax the remaining places are filled in by zeros.

By Lemma 4(a) if af. ept then /">/'. Whence ar appears in Ax on the right side

of Pi and this implies that on the left side of p{ appear only zeros. Similarly, by

Lemma 4'(a) we obtain that in Bx appear only zeros on the left side of q¡. By

Lemma 6 bxe dx and hence bx appears in the last column of Bx.

The general element of AXBX is a sum whose /'th term, 1S ¡S r, is 0 or one of the

words ±atbi, ±Píb¡, ±Pib[, tafií and whose (r+s+l-j)th term, ISjSs, is 0 or

one of the words ± c¡dj, ± cfij, ± c\q¡, ± qdj.

Each of the words

(3)      atbt, ptbi, p,b[, üib'i, Cjdj, Cfl„ c'¡q}, c',d¡,       i = 1,.... r,   j = 1,..., s

perhaps with " - " is obtained as a summand of one and only one element of AXBX.
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If xy and uv are words of (3) and xy=uv is one of the 2/ equations of the condi-

tion, then x, u belong to the same left class, and y, v belong to the same right class.

Hence ±x, ±u are in the same row of Ax, say the mth; ±y, ±v are in the same

column of Bx, say the «th. Considering the tables which have determined the

positions of the elements in Ax and Bx, we obtain that ± xy and ± uv are summands

of the (m, w)-entry of AXBX. But it is readily seen that " — " was adjoined to only

one element of each equation. Hence if xy = uv is an internal equation the contribu-

tion of xy and uv to the (m, «)-entry of AxBi is ±(xy — uv)=0. If xy = uv is the

external equation, one of the words xy and uv is axbx and the other is ef, and their

contribution to the(l, s+l)-entry of AXBX is axbl — ef=w. Thus, the(l, j+l)-entry

of AXBX is w and the other entries are 0 and we have:

/0       w\

where 0rs is the r x s zero matrix.

Now, let A' be defined as the (s— l)x(r+s) matrix

riFi>r+2 + F2ir+3+ • • ■ +Fs_1>r+S)

and B' as the (r+s)x(r— 1) matrix t(Eu + E22+ ■ ■ ■ +Er_Xj_x). Note that A' is

defined for s> 1 and B' is defined for r> 1. We enlarge the matrices Ax, Bx to

matrices A, Be Rt by the aid of A' and B' as follows:

If i=l we take A = AX and if r=l we take B=BX. We obtain

M\ IA'Bx\A'B'\}s-l

(5) AB-\AxBx\AxB')}r+l

s+1    r-l

<-<

Pr-l

0
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By (4), (5) and (6) we obtain

¿0   tqt-i

[March

AB =

O

*

0   tqi    tdi

■    0

O

o

O

Oit

Pit

0   ■

*

O Pr-l*

0

Now, we complete the proof of Theorem 7. We have (AB)' = 0 since AB is

triangular. Hence by the remark at the beginning of this section it follows that

(BA)' = 0. We also see that

(AB)
l-X   _

(tqs-i)- ■ (tqx)w(pxt)- ■ -(pr_it)Eu.

The(r+1, l)-entry of Bisqs and the (/, r)-entry of .4 ispr. But Fr+1-1F1,F,r = Fr+1>r

and therefore we obtain for the (r+l, r)-entry of B(AB)'~1A = (BA)' = 0 the

equation

qstqs-x---tqxwpxt- ■ -pr-xtpT = 0.

Since F is an integral domain and px,...,pr, qx,..., qs, t are nonzero elements it

follows that w=0 and this completes the proof of the theorem.

In [4] we have constructed integral domains F which do not satisfy 9c, but F*

are embeddable in groups and therefore F satisfy 9Jc. Hence by Theorem 7 we

obtain

Theorem 8. 9cg9Jc.

5. The relation between 9c, and 9Jc,. In this section we obtain the relation

between the conditions 9c, and 9)c, (defined in the introduction) for integral do-

mains.

The conditions of Mal'cev of order 1 are satisfied by a cancellative semigroup

and in particular they are satisfied by F* if F is an integral domain. Thus, each

integral domain satisfies <HRX. Since an integral domain has no nonzero nilpotent

elements it satisfies 3ix and this implies 'ÏRx = '>Dlx.

To obtain the relation between 9c, and 9Jc, for li 2 we first prove

Lemma 9. 9c, = 9c¡+1.
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Proof. Let R be an integral domain which does not satisfy 9c, and we shall prove

that it does not satisfy 9?,+1. Let A e R¡ be nilpotent of order n>l. Thus, An = 0,

An~1^0 and assume that the (p,q)-entry of A"'1 is a^O. Let BxeRl+x be the

matrix obtained from A by adjoining a row and a column of zeros and let B=Bi

+ tEq<i+i, where O^teR. Computing the powers of B we obtain Än+1=0 and

Bn^0 since its (q, /+l)-entry is at^O. Thus, BeRl+i is nilpotent of order n+l

>/+1, hence R does not satisfy 9c,+1.

Using the previous lemma and the result proved in Theorem 7, we obtain

Lemma 10. %ç<$Jll.

Proof. By the proof of Theorem 7 it follows that if R satisfies 9c,, then R*

satisfies all the cancelled conditions of order /. But, by the previous lemma, R

satisfies 9c« for kSl, hence R* satisfies all the cancelled conditions of order Si-

Now, each condition of order / which is not cancelled can be proved using the

cancellation laws and perhaps also a cancelled condition of lower order. This proves

that R* satisfies all the conditions of order /and hence R satisfies 501,.

In [4] we have constructed for each /& 3 an integral domain R which does not

satisfy 9c,, and R* is embeddable in a group. Hence R satisfies 9JI and in particular

it satisfies 9Jc,. This result together with the result of Lemma 10 implies

Theorem 11. 9c,§9Jc, for each 1^3.

Now, we deal with the case 1=2. We first prove

Lemma 12. If Ris an integral domain and A e R2 is nilpotent of order k +1, k ̂  2,

then all the entries of A and of Ak are ^0.

Proof. Let A = (a¡,) and Ak=(bu). Since A"¿0 and fc£2 we have A2±0.

If ö12 = 0 then the (1,1) and (2, 2) entries of Ak + 1 are a11+1 and a\2x respectively.

But Ak + 1 = 0 and since R is an integral domain it follows an=a22 = 0. Hence we

obtain A2 = 0, a contradiction. Thus, ai2^=0 and similarly a2X^0.

If fln = 0 then since AAk = Ak + 1 = 0 we obtain aX2b2, = axxbXj + aX2b2, = 0 for

/= 1, 2. Hence b2X = b22 = 0 and since A2k = 0 its (1, l)-entry is bfx = 0 which implies

that bxx = 0. By the relation AkA = Alc + 1=0 we obtain bX2a2X = bxxaxx+b12a21=0

and therefore bx2 = 0. Thus, we have proved Ak = 0, a contradiction. Hence axx^0

and similarly a22^0 and this completes the proof that all the entries of A are #0.

Now, we prove that all ¿?j;/0. We have axxbx, + aX2b2, = 0 and since axx, aX2^0 it

follows that bx,=0 if and only if b2, = 0. Similarly the equation bixan + bi2a2x = 0

implies ¿¡i = 0 if and only if bi2 = 0. Hence if b¡, = 0, then the second entry of the /th

column of Ak is 0, and therefore the second column of Ak is also 0, a contradiction.

This proves that each b¡,=/=0.

Theorem 13. 9c2 = 9Jc2.
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Proof. By Lemma 10 we have 9c2£9Jc2. To obtain equality it suffices to prove

that if F is an integral domain which does not satisfy 9c2, then it does not satisfy 9Ji2.

Let F be an integral domain and let A e R2 be nilpotent of order k+ 1, ki2.

We shall show that F does not satisfy 9Ji2. Let us consider the following condition

of Mal'cev of order 2:

(7) axbidpxbx = cxdx[xcxqx = pxb'x)xaxb'x = c'xqx]xc'xdx.

As in the previous lemma let A = (Oij), Ak = (bi¡). Since Ak=F0 and ki2v/e have

A2^0 and suppose the (z',y')-entry of A2 is not 0. We take:

ax = aa,      px = btx,       bx = aXj,       b'x = bXj

dx = a2i,       qx = b2J,       cx = -bi2,       c'x = -ai2.

By Lemma 12 all these elements are ^0 (belong to F*) and since AkA = AAk

= Ak + 1=0 and AkAk = 0 we obtain

Pxbx = bixaXj = -bi2a2j = cxdx,

cxqx = -bi2b2j = biXaxj = pxb'x,

axb[ = alxbXj = -ai2b2j = c'xqx.

Thus, for 8 elements of F* the internal equations of (7) hold, but since the (/',;')-

entry of A2 is not 0 we have axbx = aiXaXj^ —ai2a2j = c'xdx which means that the

external equation of (7) does not hold. Hence R does not satisfy 9Jc2 and this

completes the proof of the theorem.

The following is an application to our main result which has been communicated

to us by the referee(2).

A semifir ( = local fir in [2]) is an integral domain in which every finitely generated

left (or right) ideal is free of unique rank.

Theorem 14. A semifir satisfies 9c and hence its multiplicative semigroup is

embeddable in a group.

Proof. Let A be an Ix I matrix over a semifir F and assume An = 0 for some n,

but #"V0.

Write V=R' considered as left F-module; by [2, Proposition 2.1] all finitely

generated submodules of F are free. Moreover multiplication (on the right) by A

defines an F-homomorphism. Thus writing Vi=VA{ we have the chain of sub-

modules

V=V0^VX2---^ Fn_i2 Fn = 0.

All these submodules are free of diminishing ranks, hence if « > / we have equality

at some stage, say rank (F¡_1) = rank (V¡). But this means that A acting on K*_i is

injective, whence so is An = 0, i.e. Fi_1=0, a contradiction unless nSl-

(2) The author wishes to thank the referee for this interesting application.
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We conclude with the following remark.

A ring R satisfying 91 has the following property for every integer n : If A, B e Rn

and AB= 1 then BA = 1. Indeed, if AB= 1 and BA jt 1 then as in [5, p. 35] define

ei} = Bi~1Ai~1 — BiAi for i,j=l, 2,..., and observe that for each m S 2, eX2 + e23

+ ••   -T-em-i,m is nilpotent of order m, a contradiction.

In [3] the property "A, Be Rn and AB= 1 then BA = 1 " is expressed in the follow-

ing equivalent form :

III. In a free F-module of any rank n, any generating set of n elements is free.

Hence a ring satisfying 9c has the property III and also satisfies II and I of [3] and in

particular it has the invariant basis property.
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