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Let / be a finite abelian group, and let F be a commutative ring. Let EB(J)

denote the set of equivalence classes of Galois extensions of R with group/, and let

AR(J) denote the subset of ER(J) consisting of those extensions which have a nor-

mal basis.

In [8], Chase and Rosenberg obtained a bijection of pointed sets, AR(J)

•zH2(R,J), where H2(R,J) is the cohomology group that Harrison denoted by

H2(R(J), R(H)) [11].

We show that this bijection is an isomorphism of abelian groups, and that it is

natural in R and J (§§1 and 2). Let S be a faithfully flat commutative Ä-algebra.

Using techniques similar to those employed in [7], a double complex is defined,

depending on S and /, whose two coboundary maps are those of Harrison [11] and

Amitsur [1]. The first cohomology group of this double complex is shown to be

isomorphic to a subgroup of ER(J) (§3). By passing to the direct limit over those

faithfully flat /?-algebras which arise from partitions of unity in R, we obtain an

isomorphism between ER(J) and a cohomology group H1 depending only on R

and J. We then have that the inclusion of AR(J) in ER(J) is given as the composite

AR(J) s H2(R, J) -> H1 s ER(J), where the middle map a is an edge homomorphism.

Under certain assumptions a is an isomorphism, and then every Galois extension

of R with group J has a normal basis (§4).

This paper constitutes a portion of the author's doctoral dissertation at Cornell

University. The author wishes to thank S. U. Chase for his helpful advice and

encouragement.

1. Groups of Galois extensions. In this section we will establish some properties

of (not necessarily commutative) Galois extensions, and of certain sets of such

extensions. In what follows, R will always denote a commutative ring, and un-

adorned tensor products will be over R.

For S a ring and G a group, S(G) will denote the group ring pf G over S. We

define a category GsPR as follows : the objects of G$#R are /^-algebras which are also

left F(G)-modules, the elements of G acting as Ä-algebra automorphisms; the
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morphisms in Gs/B are F-algebra homomorphisms which are also F(G)-module

maps.

Let G be a finite group, and let A be any ring. Define ea(A) = {Set functions

v: G -> A}. Then eG(A) is a ring under pointwise operations, and is an F-algebra if A

is an F-algebra. Now suppose A is an object of GsdR. We let A° = {a in A \ x(a) = a

for all x in G}. Define h: A <g>A-+ea(A) to be the homomorphism such that

h(a ® b)(x) = ax(b) for a, bin A and x in G. We say that A is a Galois extension of

R with group G if « is a bijection and A° = F.

Let <f> : G -*■ H be a homomorphism of finite groups. Define a covariant functor

<t>: g^r-^HKhy

<f>(A) = {Set maps v: H-+ A \ v(<j>(x)y) = xv(y) for x in G, y in //};

for/:^->F a morphism in ajtfR, </>(f)(v)=fv. Let »: h-^r-^g-^r he the functor

obtained by viewing an object in H.s/B as an object in ajtfB, via <f>. The functor <j>

is a right adjoint to t. H acts on </>(A) via (.y?;)(z) = 7;(zy).

Suppose now that </>' : G -*■ F, ■£" : F -> // are homomorphisms of finite groups.

Let </>=</>"</>', and let i, i', t" be the functors which are the left adjoints of </>, </>', <f>"

respectively. It is easy to see that there is a natural equivalence of functors, iV'~t.

By uniqueness of adjoints up to equivalence, we conclude that the following

lemma holds.

Lemma 1.1. Let </>', </>" and </> be as described above, and let

<f>' : (¡K -+ kK, <P" ■ K^A -*■ hK, <t>-G^R^ H^R

be the corresponding functors. Then there exists a natural equivalence of functors,

(/>"</>'~<f>.

Theorem 1.2. Let <j>: G -»■ Hbe a homomorphism of finite groups, and let A be a

Galois extension ofR with group G. Then </>(A) is a Galois extension ofR with group H.

Proof. We first remark that for an object A of Gs#R to be a Galois extension of F

with group G, it is necessary and sufficient that there exist elements ax,.. .,an,

bx,..., bn in A such that 2i aiX(b,) = BXx for x in G, and that Aa = R. This is proved

in [6] for A commutative; with trivial modifications, the arguments used [6,

Theorem 1.3, (b) o (c) o (d) o (e)] are valid even when A is not commutative.

First assume that </> is one-one, and identify G with </>(G). Then <f>(A)

={v: H-> A | /j(x>')=xi;(^) for x in G, y in //}. Choose au ..., an, ¿?1;..., bn in A

such that 2i olx(b¡) = 81,x.

Let l=zx,..., zm be a set of coset representatives of G; thus H={J H(i), where

H(i) = Gz¡ for 7=1,...,«7. Define a map | |://->G by |xz¡|=x for x in G.

Clearly | | satisfies the conditions: (i) 111 = 1 and (ii) \xy\ =x\y\ for x in G and y

in H. Now for i^n,j^m define uu: //-> A, Wj,,-: //-> A by viJ(z)=\z\(ai)8Hm¡Gz,
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w¡j(z)= |z|(è,)8H(i)iGz for z in H. By (ii), v(J and wu are in <?S(/i) for iSnJSm. Now

for each z in H we have that

( 2 "f.^uW) = 2 vui(z)wu(z) = 2 k|(aA) = I-
\ ¡.J / M I

If y^l is in //, we get:

( 2 "uX^W) = 2 MM^KWWcAo),^,,.
\ l.i / u

Case 1. Gz + Gzy. Then (2¡,y i,i,íXM;i.y)Xz)=0.

Case 2. Gz = Gzy. Then w=zyz_1 is in (7, and uz = zy. Thus |zy| = zz|z| by (ii)and

|zy| = |z|/ where t= \z\ _1w|z| ̂  1 is in (?. Thus

( 2 »tM^M) = 2 l*i(«i)i»w*o = n( 2 «¡'M = °-

It is easy to see that </>(A)" = R, and thus $F4) is a Galois extension of R with

group H.

Now suppose c/S: G -> // is onto. Let >ï=kernel OF). Define maps/ .4* ->■ <?i(/i),

/: «£(.4) -*■ AK by j(a)(</>(x)) = x(a),j'(v) = v(l) for a in AK, x'mG,v in ^(^1). It is easy

to verify that j,j" are morphisms in HséR, and that jf = 1 ,j'j= 1. (The action of H on

/I* is given by </>(x)(a) = x(a) for x in £7.) That ,4* is a Galois extension of R with

group // is proved in [14, Proposition 1].

For </> arbitrary, write </> = </>"</>', where </>' is onto and </>" is one-one. Using (1.1)

and the special cases above, we conclude that the theorem holds.

For G a finite group, define ER(G) to be the set of equivalence classes of Galois

extensions of R with group G, two such extensions being equivalent if they are

isomorphic in GstfR.

We define a Galois (R, G)-algebra to be a Galois extension A of R with group G

such that A^R(G) as /?(<7)-modules. Equivalently, there exists a in A such that

{x(a) | x in G} is an /?-basis for A ; this basis is called a normal basis and is said to be

generated by a.

We define AR(G) to be the set of equivalence classes of Galois (R, G)-algebras,

equivalent algebras being those isomorphic in gjPr. Clearly, AR(G) is a subset of

ER(G). We shall write (A) for the class of A in either ER(G) or AR(G).

Theorem 1.3. Let <£:(?—>- H be a homomorphism of finite groups. If A is a

Galois (R, G)-algebra, then <f>(A) is a Galois (R, H)-algebra.

Proof. It is clear that there is an R(H)-module isomorphism <f>(A)^

\\omR(G)(R(H), A), where R(H) is viewed as an (R(G), R(H))-bimodule via </>. We

must show that HomRiG)(R(H), R(G))^R(H) as left R(H)-modules.

For X a finite group, HomR(R(X), R)^R(X) as left /{(^-modules, the iso-

morphism being given by/(a) = 2*6.x «(x)x_1 for a in UomR(R(X), R). Now using
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this fact and an adjointness relation between Horn and ®, we obtain R(H)-

isomorphisms

HomB(G)(F(//), R(G)) S HomR(G)(F(/Y), HomB(F(G), F))

S HomB(F(G) ®R,G) R(H), R) s HomB(F(FQ, F) s /?(//).

Let S be a commutative F-algebra. Define a functor from Gs/R to Gs#s by A ->

S ® A, where x(s <g> a)=s (g x(a) for s in S, a in A and x in G; for a: A ->■ G a

map in 0^, we send a to 1 (g a.

Lemma 1.4. Fei S èe a« R-algebra, and let G and H be finite groups. Then

(a) There exists an isomorphism j: eH(S) —> S (g) eH(F) w«/c« is simultaneously

an R-algebra and an S(H)-module map.

(b) If S is an object of GJ#R then j is also a G x H-module map ; GxH acts on

S (g) eH(R) and on eH(S) by (x, y)(s ig) v) = x(s) <g y(v), ((x, y)w)(z) = x(v(zy)) for s

in S, v in eH(R), w in eH(S), y, z in H and x in G.

Proof. Let vx in eH(S) be defined by vx(y) = 8x¡y for x in H. The set {vx | x in //}

is an S-basis of eH(S), and eH(R) has a corresponding F-basis {wx \ x in //}. Let

JŒxsh sxvx) = 2 sx <g wx. An inverse toy is defined by/(s <g v)=sv, and conditions

(a) and (b) are easily verified.

Lemma 1.5. Let A be an object in GJ#R, where G is a finite group. Let S be a

commutative R-algebra. Then

(a) If A is a Galois extension of R with group G (respectively a Galois (R, G)-

algebra) then S (g A is a Galois extension of S with group G (respectively a Galois

(S, G)-algebra).

(b) If S is a faithfully flat R-module [3, p. 46] and S (g Ais a Galois extension of S

with group G, then A is a Galois extension of R with group G.

Proof, (a) The proof of [6, Lemma 1.7] for A commutative holds here,

(b) Let h: A <g A -> eG(A) be defined as at the beginning of this section. We

have isomorphisms (S <g A) ®S(S (g A)^S (g A (g A and

S (g eG(A) s S <g> A (g eG(R) s eG(S (g A),

defined respectively by (s (g a) ®s(s' (g a') -> ss' <g> a <g> a', and as in (1.4). Let

h': (S <g> A) ®S(S (g A)^*eG(S <g> A) be defined analogously to «. Then the

diagram below is commutative:

S ®A ®A     l ®h    > S ® eG(^)

(5 ® i4) ®s(5 ® A) —r,—> eG(S <g A)
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By assumption, «' is an isomorphism; thus « is an isomorphism since S is faithfully

flat [3, Proposition 1]. If a is in Aa then 1 <g a is in (S ® Af = S. Thus 1 (g a

=s (g 1 for some s in S. Then 1 (g s (g 1 =s ig 1 (g 1 = 1 (g 1 (g a, so that

1 eg) s = s (g 1. By [7, Lemma 3.8] we conclude that s is in R, so that a is in R.

The following theorem is proved in [6, Theorem 3.4] for A, B commutative. The

same proof holds in the noncommutative case.

Theorem 1.6. Lei A, Bbe Galois extensions of R with group G. Suppose f: A^r B

is an R-algebra homomorphism and an R(G)-module homomorphism. Then f is an

isomorphism.

Let & denote the category of finite groups and group homomorphisms; let SP

denote the category of sets and set maps; let 3t denote the category of commutative

rings and ring homomorphisms.

Proposition 1.7. (a) The following definitions yield a functor ER:rS^-Sp.

ER(G) is defined as following (1.2). For </>: G -> H a homomorphism of finite groups,

define ER(</>): ER(G) -> ER(H) by ER(<p)(A) = (<j>(A)).

(b) The following definitions yield a functor F( ,(G) : & -> SP. F( ,(G)(F) = ER(G).

For 6: R-> S a homomorphism of commutative rings, define Ee: ER(G) -> ES(G) by

Ee(G)(A) = (S <g A).
(c) E becomes a bifunctor from 0îx^ to SP under the definitions in (a) and (b) ;

specifically, Ee(H)ER((/>) = Es(<t>)Ee(G), where </>, 6 are as in (a) and (b).

Proof, (a) First we note that ER(</>) is a well-defined map. </>(A) is a Galois

extension of R with group H by (1.2); if A ̂ B in G¿éR and j : A -»■ B is a morphism

in G¿ZR, define/: </>(A) -*■ </>(B) by jx(v)=jv for v in </>(A). / is easily seen to be a

morphism in Hs/R, and is thus an isomorphism by (1.6).

Now let 1 : G -> G be the identity map. Then lF4) = {Set maps z;: G -+ A \ v(xy)

= xv(y) for x, y in G}. Define/: 1(A) -> ^ by/(tz) = i)(l). By (1.6) we conclude that

(1(A)) = (A) and FB(1) is thus the identity map.

If </>': G-> K, </>": K^-H are homomorphisms of finite groups, we conclude

from (1.1) that ER(<p"<p') = ER(<p")ER(</>').

(b) If A is a Galois extension of R with group G, S <g> Aisa Galois extension of

S with group G by (1.5). Clearly, Ee(G) is well defined. The functorial properties of

F( ,(G) are straightforward results of associativity relations for tensor products,

and of (1.4).

(c) Define a map/: S (g <¿L4) -* ¿(S (g /4) by/(s (g ízXjO=í (g i>(j>) for s in S,

y in H and z; in </>(A). By (1.6) we conclude that (c) holds.

Now let A and B be Galois extensions of R with groups G and H respectively.

GxHacts on A <g 5 via (x, y)(a ® ¿z) = x(a) (g X¿>) for x in G, y in //, a in A and /z

in B. In [14, Proposition 1] it is shown that A <g 5 is a Galois extension of/? with

group GxH; the equivalence of our definition of Galois extension with other

definitions is discussed in the proof of (1.2).
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Lemma 1.8. (a) Let e: G -> H be the trivial homomorphism between the finite

groups G and H. Let A be a Galois extension of R with group G. Then eH(R) £ e(A)

in HsiR.

(b) Let <f>: G -> H and </>': G' -s- H' be homomorphisms affinité groups. Let A and

A' be Galois extensions ofR with groups G and G' respectively. Then (<f> x </>')(A (g A')

Z<f>(A) ®<b'(A')inHxH,siR.

Proof, (a) We first observe that if eH: {1} -> H is the trivial map, the two inter-

pretations of eH(A), given near the beginning of this section, coincide. Take

e': G->{1}, so that e = eHe'. Now e'(A)^ R since F is the only Galois extension of F

with group {1}. By (1.1), e(A)^eH(e'(A))^eH(R).

(b) From the definitions, we have that

Bx = (<j>x<j>')(A ®A') = {w:HxH'^A®A'\ w(<f>(x)y,<p'(x')y') = (x,x')w(y,y')

for x in G, x' in G', y in H and y' in //'} ;

B2 = <f>(A) ® </>'(A') = {v:H^A\ v(<p(x)y) = xv(y)}

® {v': H' -> A' \v'(<f>'(x')y') = x'v'(y')}.

Define /: B2 -> Bx by linearity and f(v (g v')(y ® y') = v(y) ® v'(y'). It is easy to

verify that/ maps B2 to Bx and that /is an F-algebra and an R(H x H')-module

map. By (1.6) and the remarks preceding this lemma,/is an isomorphism.

Restrict G to be a finite abelian group, and let «7 : G x G —> G be the multiplication

map, a homomorphism since G is abelian. Let t: G-> G be the homomorphism

defined by i(x) = x_1. Define a binary and a unary operation on ER(G) by the

respective formulas: (A)■ (B) = (m(A <g B)), (A)~1 = (t(A)) for L4), (B) in FB(G).

It is not difficult to verify that if A and F are Galois (F, G)-algebras, then ^ <g F is a

Galois (F, G x G)-algebra. Combining this with (1.2), we see that the formulas

above define operations on AR(G) as well as on ER(G). Let ^ab denote the category

of finite abelian groups.

Theorem 1.9. (a) Let G be a finite abelian group. With the operations defined as

above, ER(G) and AR(G) are abelian groups. The identity element of these groups is

(eG(R))-

(b) The bifunctor E of (I..1) is a bifunctor from 0t x ^ab to sit, the category of

abelian groups.

(c) AB(G) is funcional in R and G, and A:3ftx ^ab ->- sit is a sub-bifunctor of E.

Proof, (a) Clearly (A)(B) = (B)-(A). Functoriality of ER yields FB(m(«7xl))

= FB(«7)FB(«ixl) = FB(«7(lxm)), and (1.8) implies that (m x l)(A <g B <g C)

^m(A (g B) (g C in Gs/R. From these remarks it follows that the binary operation

on FB(G) is associative.

Now (eG(R)) is the identity element of ER(G), since we have

A <g<?G(F)3 (lx<>G)04 ®F)
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by (1.8), with eG:{l}->-G (we are using the observation made in the proof of

(1.8)(a)). But using the identifications A ®R^A, Gx{l}^G we have that

(lxeG)(A (g R)^i(A), where /: G^-GxG is given by i(x) = (x, 1). Since m/=lG,

m(A (g ea(R))z la(A)^A in G<.

It follows from (1.8) that (1 x t)(A <g A)^A (g t(A) in GxG^R; by (a) of the same

result, ER(e)(A <g A)^eG(R) in GsPR, where e: GxG-+G is the trivial homo-

morphism. But e=m(lxi). Applying ER to this relation, we obtain (A)-(A)'1

= (ea(R)).

The proofs for AR(G) are precisely the same as those for ER(G).

(b) Let </>: G -* H be a homomorphism of finite abelian groups. Let mG: GxG

->G,tG:G ->- G denote the group operations here, and let mH, tH be the corre-

sponding homomorphisms for H. By (1.8) and functoriality of ER, we get the follow-

ing chain of isomorphisms in h^r'-

mH(<p(A) ® </>(B)) £ mH((<px<p)(A ® F)) £ («^ x </>))(A ®iî)s (¿mG)F4 (g B).

Thus FB(<F) is a group homomorphism.

Let 6: R^S be a homomorphism of commutative rings. As in the proof of

(1.7)(c), we can show that 5 <g m(A (g B)^m(S <& A <g 5) in G^. But 5 (g ^ (g 5

^Sig^ ig^S (g .ßin oxc^s- It follows that F9(G) is a group homomorphism, and

(b) is proved.

(c) One can verify that A is a bifunctor precisely as one verified functoriality of

E. The proofs above also hold for AR(G).

Remark. In [12] Harrison introduced T(G, R), the subset of EB(G) consisting of

classes of commutative Galois extensions. It is shown in [12] that T(G, R) is func-

torial in G and R, and that T(G, R) defines a bifunctor F: S?ab x ^ -> sP6. Using

the lemma below, which we state here for later reference, it is not difficult to show

that the group structure defined on T(G, R) in [12] agrees with that induced on

T(G, R) from the group structure of ER(G).

Lemma 1.10. Let<f>: G -*■ H be a map of finite abelian groups. Let K={(x, <£(x)_1)

in G x H}. Then for A a Galois extension of R with group G, we have </>(A)

£ (A (g eH(R))K in HsPR. If</> is the identity map from G to G and m: GxG —> G is the

multiplication map, then m(A <g B) £ (A (g B)K in GsiR.

Proof. Define </>':GxH^ H by </>'(x,y) = </>(x)y for x in G, y in H; thus A'

= kernel (</>'). Let j: eH(A) -> A (g eH(R) be defined as in (1.4). Using the explicit

definition of/ the definition of <j>(A) as a subalgebra of eH(A), and the fact that H is

abelian, we see that j restricts to a map / : <p(A) -> (,4 (g eH(R))K. From (1.4) we

know that y is an Ä-algebra and an R(G x H)-mod\xle homomorphism, and thus/

is an F-algebra and an R(H)-modnle homomorphism. But (A <g> eH(R))K is a

Galois extension of R with group H (we refer the reader to the remark directly

preceding (1.8), and to [14, Proposition 1]). By (1.6),/ is an isomorphism. Using

(1.6) it is easy to show that m(A (g B)^(A <g B)K when </> is the identity map on G.



488 MORRIS ORZECH [March

2. A cohomological description of AR(J). In this section we introduce a co-

homology theory patterned after one introduced by Harrison in [11], and used in

[5] to classify AR(J).

Let y be an abelian group. For each integer «^0 we define maps An ¡: Jn -W + 1

as follows (where we use multiplicative notation for /):

K.i((xx,..., xn)) = (1, xx,..., xn) for i = 0,

= (xj,.. .,x„ xt,xi+ j,..., xn)   for 0 < i < n+l,

= (xx,..., xn, 1) for/ = n+l.

We will henceforth suppress the subscript « on Ani and we shall use A¡ to desig-

nate the corresponding map A¡: G" -> Gn + 1, where G is any other abelian group.

One may easily verify the relations

(2.1) Ay+1A, = AtAj   for Oúiújún+1.

Now suppose F: f^ab -> sit ¡s a (covariant, not necessarily additive) functor

from the category of finite abelian groups to the category of abelian groups. We

define a complex CF(J) by setting CnF(J) = 0 for n<0, CnF(J) = F(Jn) for n^O;

8nF(J): F(Jn) -» F(Jn + 1) is given by 8nF(J) = Wilo1 (F^))*"1'1 for «â0, where F(J)

is denoted multiplicatively. That Sn + 1S" = 0 follows from (2.1) and from functori-

ality of F (see, e.g. [1, Theorem 5.1]). The «th cohomology group of this complex,

Ker (8n)/Im (8"'1), will be denoted by HnF(J).

We define a functor V'R: S?ab ->si't by setting UR(J)=U(R(J)), the (multi-

plicative) abelian group of units of the group ring R(J). In the discussion below we

shall use multiplicative notation for J as well as for UR(J). The cochain complex

CUR(J) is given by

-> {1} -> U(R) ̂ U U(R(J)) -** U(R(J2)) —>•••.

In [11] Harrison introduced this complex for the case of F a field.

If 77 is a cocycle in U(R(Jn)), cl (a) will denote the cohomology class of 77 in

HnUR(J). We note that S° is the trivial map.

Theorem 2.2. There exists an isomorphism of abelian groups ß: H2UR(J)^AR(J).

The map ß determines a natural equivalence of the bifunctors H2U and A.

Proof. The existence of a bijection of sets ß: H2UR(J)^ AR(J) is proved in

[8, Corollary 4.8] and in [5, Corollary 2.16]. The abelian group structure on AR(J)

is that defined in §1. That H2U is a bifunctor from 0t x 0ab to sit can be verified

in a straightforward manner. (M is the category of commutative rings.) We will give

the construction of ß and ß'1, and some pertinent facts, for later reference.

Let cl(a) be in H2UR(J), u—J,x,yejax,y(x,y) being in U(R(J2)). Define an

operation o on the R(J)-module R(J)by R-linearity andx°y = ~2.zeJ ax-iz.y-1i!zfor

x, y in J. The fact that ° gives an associative operation follows from the fact that 77

is a cocycle; moreover o makes R(J) into a Galois extension of R with group J.
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We write R(J)U for the algebra thus arising, and we note that by its definition,

R(J)U has a normal basis. We set j8(cl (u)) = (R(P)u) in AR(J).

Conversely, suppose (A) is in AR(J). There exists an isomorphism /: R(J) -> A

of /?(./)-modules. We obtain a new multiplication on R(J), which we denote by °',

rendering /into an F-algebra isomorphism. Then x"1 o' y~1 = Ji2eJ ax¡y(z)z where

aXtV(z) is in R for x,y,z in J. Setting uA = J^xyax_y(l)(x,y) defines a cocycle in

U(R(J2)). We define ß-\(A)) = cl (uA).

It follows that ß and ß~l are well-defined set maps. Moreover, if A=R(J)U and

/: R(J) -*■ R(J)U is taken to be the identity map, the operation °' on R(J) agrees with

the operation ° on R(J). Also, if A and/are as above, and if we endow R(J) with the

algebra structure defined by uA, then/becomes an F-algebra isomorphism. From

these remarks its follows that ß and ß'1 are bijections that are inverse to each other.

We now show that ß is a homomorphism of abelian groups. It is easy to verify

that R(J)u^ej(R) in ¡sPR iff u is a coboundary i.e. iff cl(w)=l. Now let

z/ = 2a*,¡,(x, y) and v = Jibx,y(x,y) be cocycles in U(R(J2)). LetK={(x,x~1) in JxJ}.

Define a map j: R(J)UV ̂ (R(J)U <g R(J)V)K by F-linearity and by the formula

j(x) = j.yej xv (g v_1. It is easy to see that y is a well-defined map. Using the form-

ulas for u and v and for the multiplication in R(J)U and R(J)V, it is straightforward to

show that y is an /^-algebra and F(J)-module homomorphism. By (1.6), y is an

isomorphism, and we conclude from (1.10) that (R(J)U)(R(J)V) = (R(J)UV). Thus ß

is a homomorphism.

That ß defines a natural equivalence of bifunctors may be shown using a direct,

though computationally involved, approach. Scrutiny of [8] and [5] also reveals

that ß is natural, since it is defined there in a more canonical manner.

Remark 2.3. Let u and v be cocycles in U(R(J2)), and let/: R(J)U -> R(J)V be an

isomorphism of Galois extension i.e. an isomorphism in ,s/R. Then/defines an

F(y)-module automorphism of R(J), so there exists a unique w in U(R(J)) such that

f(x) = wx for x in R(J)U. From the definitions of the multiplication in R(J)U and

R(J)V, it is easy to see that u=vo1(w). Conversely, if w is in U(R(J)) and u = o1(w)v,

defining a map/: R(J)U -> R(J)V by/(x) = M>x, we obtain an isomorphism of Galois

extensions.

3. A cohomological description of ER(J). Before introducing the Amitsur-

Harrison bicomplex, we review the definition of Amitsur cohomology for ease of

future reference.

Let S be a commutative F-algebra, and let Sn denote the «-fold tensor product of

S over R. For « ̂  0 and 0 S iS « + 1, define c^: Sn + 1-+Sn + 2by

e\n)(s0 <g • ■ • <g Sn) = S0  ® • • • (g Sj-!  <g 1   (g S¡  (g • • • (g sn.

Let F be a covariant functor from the category of commutative F-algebras to siê.

We define a cochain complex C(S/R,F) by setting Cn(S/R, F) = F(Sn + 1), the

coboundary dn: C(S/R, F) -*■ Cn + 1(S/R, F) being given by dn = Uïio (H^Y'1*
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(here, as henceforth, we write et for e\n); we consider F(S') as a multiplicative

abelian group). The «th cohomology group of C(S/R, F) is denoted by Hn(S/R, F).

That dn + 1dn = 0 follows from the relations (3.1), as shown in [1, Lemma 5.1],

(3.1) £fe; = »/+1«,       for / £j.

Abusing notation, we will write cl (v) for the cohomology class in Hn(S/R, F) of a

cocycle v in F(Sn + 1).

Remark 3.2. Pic (S) will denote the set of isomorphism classes of finitely

generated projective S-modules of rank 1 [3, p. 141]. For F such a module, we will

write <F> for the class of F in Pic (S). As shown in [3], Pic (S) is an abelian group

with identity <S>, the operation being <F><g> = <F ®s g>. If fi.S^T is a

homomorphism of commutative rings, Pic (/): Pic (S) -*■ Pic (F) defined by

Pic (/)«F» = <F ®SP> is a group homomorphism [3].

The following theorem of Grothendieck is to be found in [7, Corollary 4.6] and

is given here, along with parts of its proof, for future reference.

Theorem 3.3. Let T be a faithfully flat commutative R-algebra [3, p. 46] and let

i: R-^-T be the inclusion map. Then there is a natural isomorphism a: H1(T/R, U)

-> Ker (Pic (/)), where U denotes the "units" functor.

Proof. We sketch the construction of a and a-1. For proofs, we refer the reader

to [7, §4].

Given a cocycle v in U(T2)=C1(T/R, U), we let P(i;) = {x in T\ ve0(x) = ex(x)}.

The sequence

0^F®F(t>)->F2->F3

is exact, where the map from T2 to T3 is 1 ® ve0 — 1 ® vex [7, Lemma 3.8]. Thus

T ® P(v) may be identified with its image in T2. Then /: F->- T2 defined by j(x)

= v~1ex(x) may be shown to define a F-isomorphismy: T-^-T ® P(v), with inverse

ji given by jx(t ®x)=/x [7, Theorem 4.2]. It now follows that setting a(cl (v))

= (P(v)} gives a well-defined homomorphism a: H1(T/R, U) -*■ Ker (Pic (/')).

Conversely, if <F> is in Pic (F) and/: F->■ T ® F is a F-isomorphism, we get a

F2-module isomorphism/: T2 ->■ F2 given as the composite

(3.4)        t2   l ®f> T2 ® F " ® l > F2 ® F * ®f~\ F3     g2    > T2

where ct^ ® t2) = t2 ® 'i./must be defined by left multiplication by some element

vP in U(T2), since it is a F2-module isomorphism, a-1 is now defined by a_1«P»v

=cl(i?p).

Remark 3.5. If F is a faithfully flat F-algebra, and J is an abelian group, then

T(J) is a faithfully flat F(7)-algebra [3, Chapter I, §3, Proposition 4].

Theorem 3.6. Let J be a finite abelian group, and let Abe a Galois extension ofR

with group J. Then A is a finitely generated projective R(J)-module of rank 1.
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Proof. We recall the observations made in the proof of (1.2) that A satisfies

conditions (b)-(e) of [6, Theorem 1.3], even if A is not commutative. In particular,

let D(A, J) be the free left ^-module on the symbols ux, x in J. A multiplication

is defined by linearity and by the formula (aux)(buy) = ax(b)uxy for x, y in J, a and b

in A. Then the homomorphism j: D(A,J) -> EndB (A) defined by j(aux)(b) = ax(b)

is a ring isomorphism. A computation shows that the image of R(J) under / is

Endsy) (A). Thus R(J)^EndRUy (A). Thus, if A were a finitely generated projective

R(J)-module, A would have rank 1 by [3, p. 181, exercise 20]. That A is R(J)-

projective when it is commutative is proved in [6, Lemma 1.6 and Theorem 4.2].

The same proofs are valid for A not commutative.

Let F be a functor from the category of commutative /{-algebras to the category

of abelian groups. Define a new functor FJ by FJ(S) = F(S(J)). The isomorphisms

S(J)^S (g R(J), S <gT TçzS give rise to natural isomorphisms

C(T(J)/R(J), F) s CLT/R, FJ),       H\T(J)/R(J), F) ~ H\T/R, FJ),

and we shall treat these as identifications. We shall also identify T(J) ®RU) A with

F (g A when A is an F(./)-module.

For Fa commutative F-algebra, we introduce a cochain bicomplex C(J, T/R) by

setting:

Cn'm(J, T/R) = 0   if « < 0 or m < 0,

= U(Tn + 1(Jm + 1))   forn,m ê 0.

The coboundaries are defined by using the Harrison and Amitsur coboundaries,

i.e. those introduced following (2.1), and preceding (3.1) respectively; a change of

sign is needed to assure that the axioms for a bicomplex are satisfied [4, p. 60] :

gn.m. U(Tn + 1(Jm + 1))-> U(Tn + 1(Jm + 2))

is given by Sn'm = (8m+1)<-1)". The map

dn.m. u(Tn + 1(Jm+1))-+ U(Tn + 2(Jm + 1))

is defined by dn-m = dn, the latter being the coboundary in C(T(Jm + 1)/R(Jm + 1), U).

The double complex C(J, T/R) gives rise to a total complex [4], which we also

denote by C(J, T/R), and to cohomology groups Hn(J, T/R). We note that the

group operation on U(Tn(Jm)) is multiplicative. The low degree terms of the total

complex are :

U(T(J))^U(T(J2))® U(T2(J))^U(T(J3)) © U(T2(J2)) © U(T3(J)),

and the two maps here shown, call them D° and FF, are given by D0(u) = (81(u),

d°(u)) for u in U(T(J)), and D\(u, v)) = (o2(u), ¿/»S1^-1), d\v)) for u in V(T(J2))

and v in U(T\J)).

Theorem 3.7. Let i: /? -> F be a ring homomorphism such that T is a faithfully

flat commutative R-algebra. Let J be a finite abelian group.
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Then   there  exists  a  natural  isomorphism   cp : HX(J, T/R) -> K(J, T/R)   where

K(J, T/R) is the inverse image of AT(J) under the map E¡(J): ER(J) -» ET(J).

Proof. We first construct ç^: K(J, T/R) -> H\J, T/R). Let (A) be in K(J, T/R),

i.e. A isa Galois extension of F with group J, and there exists a F(./)-isomorphism

/: T(J) -> F ® A = A'. Then, as in the proof of (2.2), we have a unique 17 = 77.4. in

U(T(J2)) such that 82(t7)=1, and such that /: T(J)U -> A' is an isomorphism of

Galois extensions. Now consider the composite mapping/defined by the diagram

below, where e(i) = et(u) for /=0, 1 :

(3.8)
T2(J)em -

1
■> T2 ® A

1

T2 ®A
1 ®f-\

T2(J) ,e(0) . ■* T2(jya)

By a slight variant of the discussion surrounding (3.4) (and using (3.6) to justify

the argument), there exists an element v = vA in U(T2(J)) such that d1(v)=l and

such that/(x) = i;x for x in T2(J); but since each map in (3.8) is a ring isomorphism,

as well as a T2(J)-module isomorphism,/is an isomorphism of Galois extensions

of T2 with group J. By (2.2) we conclude that e0(u) = ex(u)81(v); so d°(u) = 8\v)

and (u,v) is a cocycle in the total complex. We set xpx((A))=class (u,v) =

class (uA-, vA).

We must show that 9^ is well defined. Letj:Ax-+A2 be an isomorphism of

Galois extensions of F with group J. Let/: T(J)^-A'¡ be F(y)-module isomor-

phisms, for /= 1, 2. Write vu u¡ for vAi, uAi, i= 1, 2. The composite map

/ = /2"1(l ®j)fx:T(Jfx->T(jy>

defines a unique isomorphism / of Galois extensions such that f2f=(I ® j)fx.

By (2.3) there is a unique w in U(T(J)) such that/(x) = wx and ux = u281(w). More-

over, each square of the diagram below commutes (we write e(i,j) = e¡(Uj) for

7 = 0, 1,7=1,2).

1  ®/                       a ® 1                        1  ®/r1 (7
T%/)e(o.n-ii^ F2 ® Ax-> T2 ® Ax-^-* FW0-1' —> T2(J)ea-"

<*(f)

F2(</)c(0,2)

1 ® l ®y 1 ® l «o(/) «iCO

->F2

1
^r2

1
-> T'2cy)e<0'2)_>. F2(J)e<1,2>

Now from the definition of vt and w we obtain that £0(^)^2 = vxex(w), or vx = t?2¿°(v»').

Thus («i, vx) = (u2, v2)D°(w), showing <px to be well defined.

We now define 9 : H\J, T/R) -> K(J, T/R). Let (77, v) in F(F(72)) © U(T2(J)) bea

1-cocycle of the total complex. Define A(u, v) = {x in F(F)U | ve0(x) = ex(x)}. Letting

e(i) = ex(u), we have the map e0 : T(J)U -> T2(J)em is a ring homomorphism, as is the

similar map ex. The map l(v): T2(J)em -> T2(J)eil), given by left multiplication by v,

is a ring homomorphism by (2.3) and by the fact that £0(m) = £1(i7)S1(i'). Thus
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A(u, v), being the set on which ex and l(v)ea agree, is a subring of T(J)U. By (3.3)

and the relation d1(v)= 1, we have that A(u, v) is a projective /?(J)-module of rank 1,

and J acts as a group of F-algebra automorphisms of A(u, v), since J acts as a group

of F-algebra automorphisms of T(J)U. Now the map / : F (g ¿((w, zz) -> T(J)U

defined as in (3.3) by/(i <g x) = /x, is a F(J)-module isomorphism, and is clearly a

F-algebra isomorphism as well. Thus by (b) of (1.5), A(u, v) is a Galois extension of

R with group J. Set <p(class (u, v)) = (A(u, v)).

We wish to show that (A(u, v)) is independent of the choice of representative for

class (u, v). Let w be in U(T(J)) and suppose (u', v') = (u, v)D°(w) = (u81(w), vd°(w)).

By (2.3), the map j: T(J)U' -> T(J)U, defined by multiplication by w, is an iso-

morphism of Galois extensions. Now the diagrams below are easily seen to com-

mute

e0 .    l(v')
T(Jf —U T2(J)e (0) —-

J
Y

T(J)U

e0(j)

«o

T2(J) e(0) .

l(v)

^i(i)

* T2(jym

T(jy

j

Tijy -

T2,jym

^i(j)

T2(J) e(l)

where e'(i) = ei(u') for z' = 0, 1. It follows trivially that A(u, v)^A(u', v) as Galois

extensions, and q>x is well defined.

99 and <px are inverse maps. Let (u, v) be a cocycle giving rise to T(J)U and to

A=A(u, v). As in the proof of (3.3), there is an isomorphism

= /T1: Tijy

of Galois extensions, where T <g A is considered as a subset of T2(J), and j is

defined by/(x) = zz_1£i(x). In particular, the cocycle uA, can be taken to be u itself.

Now vA is defined by a composite map/given as in (3.8), i.e. for y in T2(J),

vAy =}(y) = Hi <g j-1)^ <g l)(l ®j))(y).

Now for x in A, it is easy to see that the relation j(x) = v~ 1ex(x) = e0(x) implies the

relation/(£0(x)) = £i(x). Thus vAe0(x) = ve0(x) for x in A. But since/ is an isomor-

phism, £0(^) generates T2(J) as a F%/)-module. Since multiplication by vA and by

v are each F2(7)-module maps, we have that v=vA, and cpxcp is the identity map.

Conversely, let (A) be in K(J, T/R), and let /: F(/) -^ ^' = F <g A be a F(J)-

isomorphism. Let u=uA-, v = vA. Then f: TiJ)u-> T ® A is an isomorphism of

Galois extensions. The diagrams below commute, where vx is defined by letting v
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act on T2 ® A, the latter being considered as a F2(7)-module :

l(v)
T(Jf

A
T2(jy

«o 1
-+T2

*o(/)

)A-

> T2(J)em

<i(f)

l(Vl)

-+T2

T(jy

f\

+ T2fJym

«iCO

->F2 ®A

£l   ® 1

By an easy computation, and by [7, Lemma 3.8] we conclude that

A = {x in F ® A | v(e0 ® l)(x) = (ex ® l)(x)}.

It follows that A^A(u, v) as Galois extensions. Thus <pcpx is the identity map.

We now show that xvx is a group homomorphism. Let (Ax), (A2) be in K(J, T/R),

and let A = (AX ® A2)H, where H={(a, a-1) in JxJ}. By definition, and by (1.10),

(A) = (AX)-(A2) in ER(J). Write w¡ for 77^., 77 for uA., etc., and let («', v') = (uxu2, vxv2).

Define j:T(jy' -*(T(J)ux ® F(/)V)« by j(a) = 2^ ßa ® a"1 for a in J. Let

/: T(J)ut -> T ® ^¡ be isomorphisms of Galois extensions for i =1,2, and let

n: ((F ® Ax) ® (F ® ^2))w -> F ® (Ax ® ^2)»

be the natural map (which is an isomorphism by (1.6)). The relations 17=77', v = v'

follow respectively from the proof of (2.2), and via a computation, from com-

mutativity of the diagram below, in which the notation is as indicated:

r2(F/o<V = Mt   for 7 = 1, 2; T2(J)S°M = M.

T2(jyw = Nt    for 1 = 1, 2; T2(J)exM = N.

eo(j)

1  ®/

J2

CT   ®  1

y2

1 0/'1

M-'-^—> Mx ®r2 M2

e0(fi) <g eo(/2)

«o(A-1)
A -> (T2 ® Ax) ®r2(F2 ® /12)

«oí*"1)

1 1

(F2 ® A) ®rs(F2 ® ^2)

M
eo(y')

-+ M x ® M2

/V
»i(y)

-> NX®N2

This completes the proof of the theorem, as naturality is easily verified.
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Theorem 3.9. Let R, i, T be as in (3.7). Then there exists a natural isomorphism

H\T/R, /F t/<   iJ)) s Ker (Et(J) : ER(J) -* ET(J)).

Proof. H1U(S)(J), as defined preceding (2.2), is the kernel of

8>:U(S(J))-+U(S(J2)),

since 8° is the trivial map. (It is easy to see that H1 t/(S)(/) = {2aej saa in S(J) \ sasB

= 8a¡gsa, and 2« sa = l}.) We have a chain map:

//1í/r(J)->//1í/r2(J)->.-

1/(7X7)) -+ C/(F(J2)) © U(T2(J)) ->• • •

where the vertical maps are the inclusions. This chain map induces a map on

cohomology h:H\T/R,HxUi ,(./))-* H\J,T/R) which is given by «(cl(v))

=class (1, zz). « is easily seen to be one-one. Using the fact that T(jy=ej(T), and

the constructions employed in the proof of (3.7), it is not difficult to verify that the

image of <ph consists of {(A) | T (g A^e¡(T) as Galois extensions}. This completes

the proof.

Proposition 3.10. Let fi:T^-T' be a homomorphism of R-algebras. Then f

induces a homomorphism of bicomplexes C(J,fi): C(J,T/R)^-C(J,T'/R). If

g: F-> 7" is another R-algebra map, then C(J,f) and C(J,g) are chain homotopic,

and thus induce the same map H(J,f): H(J, T/R) -*■ H(J, T'/R).

Proof, /induces/": Tn^T'" and also/"-"1: U(Tn+1(Jm+1))^ U(T'n+1(Jm+1)).

{/"'"■} is easily seen to be a cochain map. Define >]>?:Tn+1 -*■ T'n by

fàih (g- • • (g /n+1) =f(tx) (g- ■ • ®f(h-x)g(td ®g(tl+i) <g- • -<B>g(tn+i)

forl^/á«.

Let

&•*: C/(Fn + Vm+1))-> U(T"'+1(Jm+1))

be induced by fyf. Now define

s»,m. i/(FB + 1(ym + 1))^. c/(F'n + Vm + 1))

by sï'm = 2(n=i (- l)W,m. Let

sn-m: (7(Fn + 1(/m+1))^ i/(F'"+1(7m))

be the zero map.

From [2, Theorem 2.7] we know that dsx+sxd=f—g, d being the Amitsur

coboundary. Thus dsx+sxd+8s2+s28=f—g, 8 being the Harrison coboundary. By

definition, s2d+ ds2 = 0, and it is easily verified that Si8 + 8si=0. By [4, p. 60],

(s., s2) defines a chain homotopy.
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We define <% to be the set of partitions of unity in F, i.e. the set of

subsets {xx,..., xn} of F for which xx+ ■ ■ ■ +xn= 1. For x in F, Rx will denote the

localization of F at {l,x,x2,...}. If V={xx,..., xn}, we will write Rv = 2f= i ® Rx¡-

If V is in <tl, Rv is a faithfully flat F-algebra [3, p. 88, Théorème 1], [3, p. 44,

Proposition 1(d)].

For V, W in °ll, write RV^RW if there exists an F-algebra homomorphism

Fy-i>- Rw. Write RV~RW if FV^FW and RW^RV. Let <?/* denote the set of equiva-

lence classes of W relative to ~, and for V in <?/, write (Rv)* for the class of Rv in

<%*. If V={xx,. .., xn} and W={yx, ...,ym} are in °U, write

^ = K; I »' = i» • • -, »;./=i»...,m; z,(J = x^y}.

Clearly Fff is in ^C, and the relation <; defines a partial order on ^C* under which

the latter is a directed set, e.g. (Rv)*S(RVw)*-

Definition 3.11. Let n^O. For Rv in <%*, define an abelian group Xv by

Xv = Hn(J,Ry/R); Xv is well defined by (3.10). If (Fv)*á(Fw)*, define «{f: Xv

-*■ Xy, by a^ = Hn(J,f) with/: Fy->FW. It is easy to see that we thus obtain

a directed system of abelian groups {Xv, {<*y}}. We define Hn(J, R) =

dir lim Hn(J, Rv/R), where the direct limit is taken over (Rv)* in °li*.

Theorem 3.12. (a) There is a natural isomorphism HX(J, F) = FB(F).

(b) There is a natural isomorphism

dir lim H\T/R, H1U{   >(./)) S {(A) in ER(J) \ AM s e/FM) as Galois extensions

for every maximal ideal M of F},

where the direct limit is taken over the elements of6?/*.

Proof. Because of (3.7), it suffices to show that ER(J) = \JTE& K(J, T/R). Let A

be a Galois extension of F with group J. For M a maximal ideal of F, we have

from (1.4) and from [6, Theorem 4.2(c)] that

FM ® A = RM ® RM(J) z RM ® e}(R)

as FM(F)-modules (the proof of [6, Theorem 4.2(c)], and the results used in that

proof, hold when A is not necessarily commutative; we also refer the reader to the

comments at the beginning of the proof of (1.2)). Now [7, Lemma 5.1 and Theorem

5.2] may be applied to obtain a partition of 1, call it V, such that

Rv ®A^ Rv ® ej(R) £ eA\RY)

as FF(F)-modules ; we remark that the results of [7] hold under somewhat weaker

hypotheses than stated, and that the proof of [7, Lemma 5.1] can be easily cor-

rected. Thus (a) is proved.

(b) Suppose F=2"=i © RXi is such that F ® A^e}(T) as Galois extensions of

F, where 2^=1- Tensoring with each direct summand of F, and using the fact

that S ® ej(T)se}(S ® F) as Galois extensions, we get that Rx¡ ® A^e}(Rx) as
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Galois extensions for i g n. Let M be a maximal ideal of F. Choose j such that x; is

in R-M. We have a homomorphism of F-algebras, S=RXj -v FM. Thus we obtain

isomorphisms RM ® A^RM ® (5 ® yi)sFM ®s evOS) = ^jÍ^aí)- Thus the direct

limit of (3.12)(b) is a subset of the indicated subset of ER(J).

We now prove the reverse inclusion. To begin with, we make the following

observation : Let A be a Galois extension of F with group /, and let M be a maximal

ideal of F such that AM^eA\RM) as Galois extensions of FM; then there exists din

R-M such that Ad^ej(Rd) as Galois extensions of Rd. For let {rjb in AM | raisin A,

b is in R-M, a is in J} be a set in AM such that rarß/b2 = (8a^)ra/b, (2« ra)/b=l, and

ß(ra)/b = raß/b in /1M. It is easily seen that there exists an element c in R-M such that

c(brare — b28aßra) = 0, c(2a ra —/3) = 0, and Z>c(/aj5 — /3(ra)) = 0in .4. Let d= be. We can

compute that {rtt/d | ce in 7} is a set of mutually orthogonal idempotents in Ad,

whose sum is 1, and which are a normal basis for Ad over Rd. Thus Ad^ej(Rd) as

Galois extensions of Rd.

Now suppose AM^ej(RM) as Galois extensions for all maximal ideals M of F.

Let / be the ideal in F generated by {x in F | Ax^e,(Rx) as Galois extensions}. By

the observation above, we conclude that /= F. Thus there exist zx,..., zn in F and

yx, ...,yn in /such that zxyx+ ■ ■ ■ +znyn=l. Let x^zjv Letting F=2"=i © RXi,

we see that F ® A^e;(T) as Galois extensions of F. This completes the proof.

4. A spectral sequence and the semilocal case. We begin by proving a normal

basis theorem.

Theorem 4.1. Let R be of characteristic p, and let J be a finite abelian group of

exponent p. Then

(a) IfTis a faithfully flat R-algebra, we have that Hn(J, T/R)^Hn + 1UR(J) for

n^O.

(b) AR(J) = ER(J), i.e. every Galois extension of R with group J is a Galois (R, J)-

algebra.

Proof. By [13, Theorem 3.4], the maps «„: T(Jn) -> Fdefined by an(2 txx) = J tx

induce isomorphisms ßn: Hn(T(Jn)/R(Jn), U)^Hn(T/R, U) for n>0; (note that

the definition of H°(T/R, U) in [13] differs from ours). Then

Hp(T/R, U) s '//"•" = Ker(¿"'9)/Im(a'!,-1-S)

under the isomorphism ßq+x; it is not difficult to see that the composite

ßQ+i^,qß^+x ■ H"(T/R, U) -> 'H"-- -* 'Hp-" + 1 -> HP(T/R, U)

is either the zero map or the identity map, depending on whether a is odd or even

respectively; this follows by noting that S": U(R(Jn))^ U(R(Jn+1)), when re-

stricted to U(R), is the zero map or the identity map depending on whether n is even

or odd respectively. Thus, the homology of the double complex taken with respect

to first d, and then 8, is 0 for q > 0 and by [10, p. 89, Théorème 4.8.1] we see that the

injection of Ker (U(T(Jn)) -> U(T2(Jn))) into the bicomplex induces an isomorphism
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of cohomology. But if Fis faithfully flat over R, the kernel in question is U(R(J")).

Thus we have isomorphisms Hn + 1UR^Hn(J,T/R). Now (b) follows from (2.2),

from (3.12), and from the fact that the isomorphism obtained in (a) is induced by

inclusion maps.

Theorem 4.2. Suppose that R is a semilocal ring, and that T is a faithfully flat

R-algebra. Then H\J, T/R)^H2UR(J).

Proof. The exact sequence associated with the first spectral sequence of our

bicomplex [4, chapter XV, §6] yields

O^Elx-+HXJ,T/R)^Elo,

where Ep¡¡¡ is the homology of the double complex taken with respect to d and 8 in

that order. The faithful flatness of F implies that Ea,x = H2UR(J). Now

F?,0 = Ker(H\T(J)/R(J), U)^ H\T(J2)/R(J2), U)),

a subset of H1(T(J)/R(J), U); the last set may be considered as a subgroup of

Pic (R(J)) by (3.3) and (3.5). If S is semilocal, Pic (S) = 0 by [3, p. 143, Proposition

5]. If we show Pic (R(J)) = 0 we will be done. For M a maximal ideal of R, only

finitely many maximal ideals of R(J) contain M. For if K=R/M, there is a one-one

correspondence between the maximal ideals of R(J) containing M and the maximal

ideals of R(J)/MR(J) = K(J). But K is a field, so that K(J) has the descending chain

conditions on ideals, and is thus semilocal by a Nakayama's lemma argument.

Thus only finitely many maximal ideals of R(J) contain M. Now R(J) is an integral

extension of R [15, p. 254] since it is a finitely generated /î-module. Thus every

maximal ideal of R(J) lies over some maximal ideal of R [15, p. 259]. This completes

the proof.

Using (4.2), (3.12) and the fact that every Galois extension over a semilocal ring

has a normal basis, we can recover the isomorphism between H2UR(J) and AR(J)

described in (2.2).
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