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Introduction. This work constitutes a step in the direction of a "global"

theory of differential algebra. The main result (Theorem 1 of §2) is the following:

Let K be an ordinary differential field of characteristic zero. Then there is a pre-

model of K with the property that every maximal differential homomorphism from

a differential subring of K, whose differential field of quotients is K, induces a

point on this pre-model. Under a certain condition these points will be uniquely

determined.

It is not yet known whether there exist differential fields of the form k(xx,..., x„>,

where the x, belong to some universal differential field extension of k, which do not

admit complete models over k. Even in the case where xx,.. .,xn are differentially

algebraically independent the answer is not apparent. For definitions, see the

discussion preceding the above-mentioned Theorem 1.

The author would like to thank Professors A. Seidenberg and E. R. Kolchin

for their helpful comments and suggestions.

Notation and Conventions. We denote the integers, rationals, reals, and com-

plex numbers by Z, Q, R, C, respectively, and usually consider Z as a differ-

ential ring, and Q, R, and C as differential fields of constants. If F is an integral

domain, we write "qf (F)" for its quotient field. If 5 is a differential integral

domain, "S{y}" will denote the ring of differential polynomials with coefficients

in S. The letter "y" will represent a differential indeterminate, while "x", "z"

will stand for differential quantities which may or may not be differential

indeterminates.

We begin by examining some of the elementary properties of the category D

of differential rings and differential homomorphisms (these are ordinary differential

rings, although many of the arguments remain valid in the partial case). For the

moment, no restriction is placed on zero divisors or characteristic.

First of all, D admits coproducts in the sense that if A, Be D we can define

A <S> B by taking the usual tensor product of A and F (considered as Z-algebras)

and setting (a ®b)' = a' ®b + a ® b'. This makes A (g> F into a differential ring

satisfying the conditions for a coproduct in a category. In fact, we have differential
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homomorphisms A, B-> A ® B by a\-+a®l, 6 h-> 1 ®b and the universal

property

B
!

A ® B-» C.
t
A

Note that it is not obvious that every ring in D has a differential prime since a

maximal differential ideal need not be prime as the following example shows: let A-

be a differential field of characteristic p>0, and in k{y} consider the differential

ideal/= [y", y' — 1]. It is clear that 1 ̂  /, and hence (by Zorn's lemma)/is contained

in a maximal differential ideal M; but y' — l e M and hence y $ M; since y" e M,

M cannot be prime.

Of course, this cannot happen in characteristic zero : if M is a maximal differential

ideal of a differential overring of Q, then M is prime. To see this, first observe that

M is perfect (because in this case the perfect differential ideal generated by M does

not contain 1 and hence coincides with M), and then recall that every perfect

differential ideal is an intersection of prime differential ideals.

In general, a differential ring A contains a prime differential ideal provided A

has no nilpotent elements. Indeed, then (0) is a perfect differential ideal and hence

is an intersection of prime differential ideals.

Although a maximal differential ideal M need not be prime, we can at least

prove that M is primary: suppose xz e M, x $ M; then [A/, x] = (l) so that

( + ): 1 = m + z-0x + z-1x'+ • • • +rnx(n).

But by Raudenbush's lemma (see [2, p. 8, §10]) zk+1x{k) e M for all k. Hence from

( + ) we get zn + 1 = mzn + 1 + r0xzn + 1+ ■ ■ ■ +rnx<n)zn + 1 e M which finishes the proof.

It follows that even the weaker statement that every maximal differential ideal is

perfect, is false. For a differential ideal which is primary and perfect is prime.

Next we show the existence of inductive limits in D. If {Aa, </>aB} is a filtering

inductive system of differential rings and differential homomorphisms, let A

= ind lim Aa in the category of rings and for each a, let </>„ :/(«-> A denote the

canonical ring homomorphism. If </>A(aÁ) = </>u(au) there is a v such that <f>*v(aA)

= <¿üv(a«), so that

</>\(a'x) = <¿v(<¿avK)) = </Wav(öa)') = <f>v(<PuÁau)') = H<f>uv(a'u)) = </>*(a'u)-

Therefore, if a e A we may define a' by choosing any A and any ah e AK with

a = 4>Aah) and then setting a' =</>A(a'A). If a, b e A then we can write û = <£A(aA),

l) = <f>Áb\) for a suitable A, so that ab = <j>K(axbÁ), whence (ab)'= </>K(a'Kbx + ahb'K)

=a'b + b'a. Thus, A is now a differential ring and each </>a is a differential homo-

morphism. This establishes the existence of inductive limits in D.

Next we show that localization is possible in D without restriction on zero

divisors. If A is any differential ring and S is a multiplicative system in A, then in
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S~XA we define (a/s)' = (sa' — as')/s2. To see that this makes sense, suppose a/s = b/t

so that there exists an r e S such that r(at -bs) = 0. First check that (a/s)' = (asx/ssx)'.

Then one has (a/s)' = (rat/rst)' = (rbs/rst)' = (b/t)'. This completes the proof.

1. Differential places. In this section we study the relationship between de-

rivations and integral closure by pointing out some of the difficulties involved and

proposing a definition of "differentially integral" for elements of the quotient field

of a differential integral domain. We assume throughout this section that every

differential ring under consideration contains Q.

One reason for not defining "differentially integral" to mean "integral" is that

Seidenberg [3, p. 172] has shown that if F is a differential domain with differential

field of quotients K, then the integral closure F' of F need not be closed under the

derivation on K.

A second problem concerns morphisms. We know that integral closures are

intimately related to valuation rings which, in turn, are tied up with ring homo-

morphisms. But the morphisms in D must commute with the derivation and this

leads us to make the following definition: let F and K be as above, </>: R -> </>(R)

a differential homomorphism whose image is also a differential domain. </> is called

a differential place of K if </> cannot be properly extended to a differential homo-

morphism of a larger differential subring of K into an extension of the differential

quotient field of (f>(R). The domain of </> (denoted "F/') is called the ring of the

differential place <$>.

By Zorn's lemma, every differential homomorphism from a differential domain F

can be extended to a differential place of qf (F).

If S is a differential domain containing Q, we define the differential integral

closure of S (in its differential field of quotients K) to be the intersection of all the

rings of differential places of F which contain S, and we denote this intersection by

S'. Now to characterize the elements of S".

First, let </>: R ->- K' be a differential place of K. Then F is a local differential ring

since Ker </> is prime and </> can be extended to RKeTt by </>(a/s) = <f>(a)/<f>(s) which is

again a differential homomorphism. Thus F is local and Ker </> is its maximal ideal,

so that the image F=<j>(R) is a differential field.

If a e K— R, we have the diagram

0-*/->F{.y}-^F{a}^0

* 4>

F{y)

where / is the prime differential ideal of relations satisfied by a over F ; >b is the

differential homomorphism obtained by applying <f> to the coefficients of an

element of R{y}. 1^(0), or else we could extend <j> to R{a). Thus I =</>(!) is a differ-

ential ideal in F{y} (since xb is surjective) and the top row is exact. If 1 <£ /, / has a



312 PETER BLUM [March

zero x in an extension of F, and we can complete the bottom line of the above

diagram to the bottom line of the following diagram.

0-> I-> R{y}-► R{a}-> 0

4-

i

<A

v
I-> F{y) -¿-+ F{x}.

Now r¡ ° z'=0 so we can define $ by >J>(f(a)) = (y¡¿)(fi(y)). Then \J> is a differential

homomorphism which properly extends </>. This contradiction shows that /=(1),

i.e. there exists a differential polynomial/e /such that </>(/)= 1- Let us agree to call

a differential polynomial/e K{y} ¿-special if fie R{y} and </<(/)= 1- Then we have

shown that if a e K—R, then a is a zero of a ^-special polynomial.

Conversely, if a e K is a zero of a ^-special differential polynomial/then a i R,

for otherwise we should have 0 = <p(f(a)) = t/i(f)((p(a))= I.

Hence we can state

Theorem 1. If S is a differential integral domain containing the rationals, with

quotient field K, then a e K is differentially integral over S if and only if for every

differential place </> of K finite on S and every ¿-special differential polynomial fi

f(a)*0.

Thus we have described the elements of 5".

Note that if the derivation is trivial we have shown that a is integral over S if and

only if a does not satisfy any ^-special polynomial where </> is a place of K finite on 5.

Monic polynomials of positive degree are never ^-special.

Since every differential homomorphism can be extended to an ordinary place of

K, we see that every ring of a differential place is contained in a valuation ring.

If R^S^qf (R) are differential rings (it is understood that the derivation on R

is the restriction of that on 5), then S is differentially integral over R if every

element of 5 is. That is, for all a e S, if </> is a differential place of qf (R) finite on R,

then <p is finite on a. We write </>(a) = co to indicate a $ R$.

Remark. Let S be differentially integral over R, M a multiplicative system in R,

then M~XS is differentially integral over M~1R.

Proof. If x/«z e M~lS and ^ is a differential place of qf (R) finite on M'^-R,

then R<^M~1R implies </>(x)^co and <j>(m)^ao, 0 (if(/>(m) = 0, m isa nonunit in R$

so that </>(l/m) = oo; but l/«z e A/"1/?). Therefore </>(x/m)^oD.   Q.E.D.

Let S be differentially integral over R and let pcR be a differential prime ideal.

Then the differential homomorphism R -^ R/p extends to a differential place </> of

the quotient field of R, and by hypothesis S^RÓ. Let M he the maximal ideal in

F¿ and set P=M n S. Then F is a prime differential ideal in S lying over p. Thus

the Lying Over Theorem is true for differential primes.

Let k be an algebraically closed field of characteristic zero and make ATA'] into a

differential ring by setting X'=f(X) where f(X) is an arbitrary element of k[X],
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and c' = 0, c e k. Recall that every local ring between k[X] and k(X) is a discrete

valuation ring. It follows that every differential place of k(X) finite on k[X] is a

differential homomorphism which is also a place. Conversely, any differential

homomorphism which is a place of k(X) (or any other differential field) is a

differential place.

Proposition 1. k[X] with this differential structure is differentially integrally

closed if and only if X' = 0.

Proof. There is a one-to-one correspondence between nontrivial differential

places finite on k[X] and roots of X' given by taking the place at each root. If

X'^0, then there are a finite number of roots (if any) of A", say rx, r2,...,rn with

corresponding differential places </>x, <f>2,..., <f>n. Then k[X\ = f)"=x ^«^Pl« F*

= k[X], the last intersection being taken over all places </> of k(X) finite on X. If

A" = 0, then for all c e k, Mc = {g(X)/h(X) | h(c) ¿0, g(c) = 0} is a differential ideal

in the ring of the place at c, so that every place is differential.    Q.E.D.

Proposition 2. (a) If A is a differential integral domain, then (A')'= A'.

(b) Let A, B, C be differential integral domains such that C^B^A cqf (C).

If A is differentially integral over B and B is differentially integral over C, then A is

differentially integral over C.

(c) If B<^A <=qf (B) are differential integral domains, then B'^A'.

Proof, (a) Any differential place finite on A' is finite on A and conversely,

(b) and (c), clear.

Proposition 3. Let P'x, P2 be distinct differential primes in A' both lying over

p<=A. Then Ap is not differentially integrally closed.

Proof. We know that A'P¡ dominates Av, ;'=1,2 (i.e., they contain Ap and

P¡A'P¡ n Ap=pAP). If S=A—p, S~1A' is differentially integral over Ap. If Ap were

differentially integrally closed, we should have S~lA' = Ap, but if reP'x — P'2, then

r/l e S~1A' — Ap. Contradiction.

If </>: F0-i- K' is a differential place, let S^R0{y} = A be the set of ^-special

polynomials in y. Then S is a multiplicative system in A and S~1A has a natural

structure of differential ring, a e qf (R0) is not in R$ if and only if a is a zero of an

element of A that is a unit in S~lA. The differential homomorphism </>: A -+ K'{y}

induced by </> maps each element of S onto 1 ; hence <j> extends to a differential

homomorphism /': S'lA -> K'{y).

Let S^>R be differential rings. We say S covers R if over every prime differential

ideal in F there lies a prime differential ideal in S. Then a is differentially integral

over F if and only if R{a} covers F and a satisfies the condition: if a is in the ring

of a differential place <f> finite on F, then a is in all rings of differential places

extending </>\B.

Example. Let k be a differential field of characteristic zero (ordinary or partial;

if it is partial then "'" denotes any of the derivations). Let x be a differential
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quantity in an extension field of k and set R = k{x}. Then it is a special case of a

result of Seidenberg (Algebraic proof of a theorem of Ritt, unpublished) that

R{x'/x} covers R.

Of course, it is not true that any homomorphism from R into a differential field

can be extended to F{x'/x}. In fact, if R is any unique factorization domain and

a/b e qf(R) — R is in lowest terms, let p be an irreducible factor of b. Then R

-> R/(p) cannot be extended to a/b.

One might conjecture that if R{x} covers R, then x is differentially integral over R.

The following example shows that this and its algebraic analogue (which amounts

to the converse of the Lying Over Theorem) are false: take any singular curve

whose normalization has two points over the singular point

Let R be the local ring of the singularity and S its integral closure. Suppose P^Q

both lie over P<=R. Choose t e P— Q. Then 1/i is not integral over R, or else we

would have 1/i e S and then 1 =t(l/t) e P. We show that over every prime ideal F

of R there lies a prime ideal in R[l/t].

Proof. Let M={t, t2,..., tn,...} and consider the diagram

F is the only prime in R. Since Q n M= 0, there exists a prime Q' in M XS lying

over Q. Then Q' r\ R[l/t]r\ R=P.   Q.E.D.

Note that this also provides a counterexample to the differential algebraic

question, for if we take the trivial derivation, "integral closure" equals "differ-

ential integral closure" and primes are the same as differential primes.

Now we turn to the relationship between localizing and passing to the differential

integral closure.

If S is a multiplicative system in a differential domain R, then since S-1/?' is

differentially integral over S~1R we have S~1R'c:(S-1R)'. Let C(R',R) be the

conductor of R in R'. C={r e R | rR'^R} = C(R', R) is a differential ideal in R and

R'. If s e C n S, then R'^(l/s)Rc=S-1R. Hence, if C n SV 0, then S^R'^S^R.
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2. Complete models of differential fields. Let K be an ordinary differential field

of characteristic zero and let k be a differential subring of K. The affine model

determined by the ring k{y], that is, the set of all k{y}& as f£ ranges over the prime

differential ideals in k{y), is not complete in the sense that there exist differential

places of the quotient field which have no center on k{y}. For example, any differ-

ential place sending l/y to zero. We begin the study of this situation with the

observation that certain algebraic facts can be carried over to the differential case.

Let /leflbe local differential rings. By this we mean that their maximal ideals

consist of all the nonunits andaré differential ideals, but this latter assumption will

not be needed for the moment. Let m(A), m(B) denote their maximal ideals. Then

the following are equivalent : ( 1 ) m(B) n A = m(A ), (2) m(A) c m(B), (3) 1 $ m(A) ■ B.

If any of these holds, we say B dominates A (written B^A).

If F is a differential field as above and A<= K is any differential subring, then

L(A) = {AP | p e Spec A} is in one-to-one correspondence with Spec A since AP

= A0 => P = m(AP) n A=m(AQ) n A = Q.We define Ld(A)^L(A) to be the set of

all Ap such that P is a nonzero differential prime ideal in A.

For the proofs of the following lemmas, we refer to [I, pp. 164-165], noting that

the word "differential" may be inserted as indicated.

Lemma 1. If A ̂ K is a differential subring and M is a local differential ring with

A e M < F=qf (A), then M dominates a unique member of La(A).

Lemma 2. Let M and N be local differential subrings of K, P = {M, N} = the

differential subring generated by M and N. Then the following are equivalent:

( 1 ) There is a differential prime i? <= /> such that m(M) = ¥ n M, m(N) = £t° n N.

(2) There is a local differential ring Q ä M, N.

If either of these conditions holds, we say M and N are siblings.

Lemma 3. If M and N are arbitrary differential subrings of K, the following are

equivalent:

(1) If A e L(M), B 6 L(N) are siblings, then A = B.

(2) L(M) n L(N) = L(P). (P is still {M, N}.)

Let k be a differential subring of K. We topologize C~(k), the set of all local

differential rings in K containing k, by taking as basic opens all sets of the form

C(k {<*!,...«„}), a, e A:. One checks that (r(k{ax,.... aj) n f(k{ßx...., ßn}) =

f(k{ax,...,am,ß1.ßn}).

Proposition I. If M e C(k), then the topological closure Cl {M} of {M} equals

{MxeC(k) | M=>Mi=>k}.

Proof. Let Q be the set just described. If Cr(k)-(r(B) is a basic closed set containing

{A/}, then M$B so that MX3>B for any differential ring Mx<= M. Thus any basic

closed set containing {A/} also contains Q. Conversely, MX<^M implies that there

exists xe Mx-M. Let B=k{.\}. Then MeC(k)-C(B) and «, $ (r(k)-C(B). and

Mx$Cl{M}.
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Definition. An affine model of K over A is a subspace of G(k) of the form

Ld(k{ax,..., an}), where qf(k{ax,..., an}) = K. A pre-model of K over A is a finite

union of affine models. Let M be a pre-model of K over k. M is complete if every

differential place of K finite on A dominates some point in M. M is called a model

of K over A if M has no two distinct siblings.

Several comments are in order: first of all, an affine model is indeed a model, for

if Rsrx ¥= R&2 thereexistsae R such that a is a unit of R&v say, but not R&2 (aeä?2—f£x).

Then R^ and R&2 cannot be siblings. Second, note that the ring of a differential

place can dominate at most one member of a model. In other words, a model is

"irredundant" in Zariski's terminology [4].

Let Jl be an irreducible Ritt manifold over a differential field A of characteristic

zero (the set of zeros in some universal extension of A of a prime differential ideal

P<=k{yx, y2,..., yn}) with generic point x. Then A<x> is uniquely determined by Jl

up to isomorphism over A, and for any r¡ e Jl, the set

«V,.ur = {fi(x)/g(x) \fige k{yx,..., yn}, g(v) * 0}

is a local differential ring. Then {®nije \ r¡ e Jl} is an affine model of A<x> over k.

Unlike its algebraic counterpart, an affine model of a differential field /¿does not

necessarily determine its coordinate ring. For example, take two nonisomorphic

differentially simple rings in K. This shows why in some cases one needs to consider

all the primes in a differential ring.

Finally, note that a maximal element of @(k), with respect to domination, is a

ring of a differential place and conversely. Every member of <P(k) is dominated by

one of these.

Let </> be a differential place of any ordinary differential field K of characteristic

zero, with ring R and maximal ideal M. The U=R — M is a subgroup of K* = K

— {0}. Ifv: K* -> K*/U=F is the natural homomorphism of abelian groups where

T is written additively, then F+=v(M*) is closed under addition. cc = t'(x)er +

implies 1/x <£ R, so that v(l/x)= —a £ F +. x e R if and only if a e T+ or a = 0. For

a, ,8 er, we shall say that agß if ß-aer + \J {0} = v(R*). This relation is re-

flexive, antisymmetric, and transitive and hence F becomes an ordered abelian

group (but not necessarily totally ordered).

Let a, x,z e K and choose a differential indeterminate y over K. The following

conditions are easily verified (where t'(0) = oo><x for every aeT): (1) v(x)^0

=>v(x')£0, (V) v(x)>0 => v(x')>0. (2) v(a)Sv(x), v(z) => v(a)Sv(x + z), (2')

i'(a)<z;(x), v(z) => v(a)<v(x + z), (3) for aeK, if v(a)^0, then there exists a

differential polynomial fie R{y} such that t'(c)>0 for each coefficient c in / and

v(f(a)) = 0. (4) qf (i>"1(r+ u {co, 0}))=*.

[Proof of (2) (resp. 2'): x/a, y/a e R (resp. M) => (x+y)/a e R (resp. M). (3): If

zi(a)^0, then a satisfies a ^-special polynomial. That is, there is a polynomial/such

that 1 =fi(a) and the coefficients of/are in M. Then 0 = f(/(a)).]

We call any homomorphism v of A"* into a (not necessarily totally) ordered
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abelian group F, satisfying the conditions (1), (!'•), (2), (2'), (3), and (4), a differ-

ential valuation of K.

Given a differential valuation v of K, we can recover from it a differential place </>.

To see this, set M* = v~1(F + ), F = r"1(0), M=M* U {0}, R=M u U; then Risa

differential ring, U is its group of units, and M is a differential ideal, so that R

is local with maximal ideal M. If the natural homomorphism </>: R-> R/M were

not a differential place of K, then it could be extended to one, say </>, and by

condition (4) there would exist an element a e R¡,— R: condition (3) would imply

that a is a zero of a «¿-special differential polynomial, hence of a «/¡-special one,

so that a could not be an element of R$.

Remark. Let r be a differential valuation of K whose ring contains k and let

Xi, x2,..., xn e K*. Then there is an x e K* such that v(x)S v(xx),..., v(xn).

Proof. There exist nonzero elements ax,...,an, b in the ring of r such that

x, = b/a, for every/ Setting z=l/(ax- ■ -an), we see that v(:)Sv(I/a))Sv{Xj) for

every j.

Theorem 1. Let K be an ordinary differential field, k a differential subring of K

containing the rationals, with K = qf(k{xx,..., x„}), where Xj = 1. Then there exists

a complete pre-model of K over k.

Proof. Let V be the set of all nontrivial differential valuations r of K that are

finite on k. That is, v e V if the ring of v contains k and is properly contained in K.

Then for each ve V, choose an xveK* such that r(x„)Sv(xt), for /=1,...,«.

Set />v = k{xx/xv,..., x„/xv} and M = (JveVLd(r-V). Then if F,. is the ring of any

differential place of K which is finite on k, then F„ dominates at least one member

of M (in fact, a member of Ld(ov)). We shall show that M can be replaced by a finite

union having the same property.

Now we can identify V with i" = {Rv \ v e V}<^<P(k); then the induced topology

on V has for basic opens sets of the form

B(k{ax,..., an}) = {v e V | Fv => k{ax,..., «„}}.

If S is a differential subring of K containing k, let R(S) = f~ n (V(S).

Claim. There is a finite subset F of V such that

r = U R(<>v) = U *(*»)•

Proof. First we show that V is quasi-compact (see [4, p. 113]). Any v e V is

determined if for every x 6 K, we know whether v(x) is 0, +, or □ (neither one),

where we take r(0) = oo to be" + ". LetZ={0, +, D} so that yean be considered asa

map from FtoZ. Call a subset of Zopen if it is 0,Z, or{0, +}and put the product

topology on ZK. One checks that the topology on V induced by that on ZK is

identical with the topology on V induced by that on C(k) and so V is a subspace of

ZK. As in the reference, we add the trivial differential valuation vt to Kand call the

new space V*. (The topology on V* is defined in the same way as on V.) Then V
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is a subspace of V* and since every basic open of V* contains vt, we see that V is

quasi-compact if and only if V* is.

Now introduce the discrete topology on Z which is Hausdorff. Then ZK is

compact in the new product topology by the Tychonoff Theorem. We shall show

that V* is closed in ZK, and hence compact, in this stronger topology, from which it

follows that V* is quasi-compact in the weaker (original) topology.

Let/eZK. Then fie V* if and only if/satisfies the following three conditions:

(1) R = {x e K \f(x) e {0, +}} is a differential ring containing A.

(2) This ring is local with maximal ideal M={x \f(x) e{ + }} which is differential.

(3) If/(x) = □, then there exists g e R{y}, where y is a differential indeterminate,

such that every coefficient of g is in M and g(x) e R— M.

These conditions are equivalent to the following three conditions:

(l1) \fx,yeK, then either/(x) = D or/(y) = D or fi(x+y),f(xy),f(x') belong to

{0, +} ; and if a e A, then f(a) e {0, +}.

(20 (a) If x, y e K, then either/(x) e {0, D} or/( y) e {0, D} orf(x+y),f(x')e{ +}.

(b) If/(x) e {0, +} and/(y) e {+}, then/(xy) e {+}.

(c) /(0)= + (these say that M is a differential ideal in R).

(d) If for x^0,f(x) = 0, then/(l/x) e {0, +}.

(e) /(1) = 0 (i.e. M contains precisely the nonunits in R).

(30 Either f(x) e {0, +} or there exists gsK{y} such that f(g(x)) = 0 and

f(d)= + for every coefficient a in g.

For each x in K the map nx; ZK ->Z, defined by the formula ^x(f)=f(x), is

continuous. Set

Fx,y = [rrZKU) yj ̂ vHO) yj nHUO, +)] n fc^(D) U ̂ (D) U t,V(0, +)]
n k^(D) u TTy^n) yj ̂ (o, +)],

a closed set. Then (F) says that/e r]x,yeK Fx,y n (~)xekrrxl(0, +). (2') (a) says that

/is in a similar closed set, (b) says that

/e n [»rHD) yj »»Ho, D) u «äH+)1.

(c) says that/e7To1( + ), (d) says that/e H«*-G*, where Gx=ir;HD. +) ^

^f/KO, +), and (e) says that/e^i"1^). Finally, (30 asserts that

fie       H       KH0,+)u7r^)(0)]n[7r-1(0,+)u      H     «îH+M.
Ä"€iT;ff(x)eJf{x} m = coeffin<7

Since these are all closed sets, V* is closed and, as remarked earlier, V is quasi-

compact. This proves the claim.

To complete the proof of the theorem, note that F(o„) is open in P~ since R(<\)

= "P" n O(ov), and \JveV R("v) is an open cover of "P" because given any veV,

Rv e R(ov). Thus there is a finite subcover (JveF R(*>v)- Let Mx = \JveF Ld(ov). Then

Mx is the required pre-model since if Rv is a differential valuation ring containing A,

then Rv e R(eu) for some w e F, and hence F„ dominates some member of Ld(#u).

Q.E.D.
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Before proceeding to the question of the existence of complete models of a

differential field, we need to derive more information concerning the structure of

differential valuation rings.

Let A be an ordinary differential field of characteristic zero. Kolchin has shown

that if F e A[ y] is a cubic polynomial with distinct roots and if fP denotes the general

component of the differential polynomial A =zy'2 — Pe k{y, z} having (r¡. I) as

generic zero, then there is a differential homomorphism </>: k{t] -*■ A with £ i-> 0 and

no element a in any extension of A such that </> extends to a differential homo-

morphism k{q, z} ->■ A{a} or to a differential homomorphism A^-1, £}->A{a}.

Now let K be an ordinary differential field of characteristic zero, R a differential

valuation ring with quotient field K. Then for certain x e K— R we can prove that a

different expression in x, not its reciprocal in general, will belong to the maximal

ideal of R.

Definition. Let ¿ be a differential place of the differential field K, and let x e K.

We say that x is ¿-reducible if there exist a polynomial 1 +fe R¿{y} and a natural

number / such that y(i) divides/and 1 +/(x) = 0.

Proposition 3. Let v be a differential valuation of K with ring R and let ¿ be the

corresponding differential place. Let x be ¿-reducible, x $ R. Then there exist non-

negative integers n, N, z"0,..., z'n, with at least one i, > 0 such that l/zNxl° ■ • • (x^')'» e M

(the maximal ideal in R) where z is any element ofiK such that v(z) S 0, v(x),..., z;(x<n0-

Notice that if we allow all the i, to be zero, the proposition is trivially true since

c(z)#0.

Proof. There exist a differential polynomial /= 2?= i »fy/zo • • ■ (/"O1'» with

mx,.. .,mpe R, and an integer / with OS IS", such that tlt,..., iPl> 0 and 1 +f(x)

= 0. Choose z e K such that v(z)S0, v(x),..., v(xin)); for each index A set ik =

min{i¡k,.. .,z'pj, andletA'=l+maxlSjSp{/;oH-hiJn}, and setr = zNx'o• • .(x<n))'».

Then z',>0. Also

[xV • ■(xw)i'n]/r = [(x/z^o-'o.. .(x<n)/z)ii»"i"]•[2-'v + 2:^ = o(^-i(c,]

which is in M so that v(x'io- ■ ■(x'-n))iinjr)>0 for every/ whence

v(l/r) = vi- ¿ mjX'io- ■ ■(xM)iin/r\ > 0   and    1/r e M.        Q.E.D.

Let A be an arbitrary integral domain. One sees easily that A is a valuation ring

if and only if qf (A) — A is multiplicatively closed. Half of this result can be gen-

eralized to differential algebra, namely

Theorem 2. If R is the ring of a differential place ¿ of an ordinary differential field

K of characteristic zero and s,se K— R, then there exist nonnegative integers i, j

such that sa)sw $ R.
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Proof. Suppose that for all i, jèO, swsU) e R. There is a unit b in F such that

b=Po + l.l=i PjS'io- ■ -(smy>r, where thep¡ are nonunits in F. We may assume p0 = 0

by replacing b by b— p0 if necessary.

We assume [l] = (/'ir,. ■ -, i'ir),..., [n] = (ino,..., /„,) are in lexicographic in-

creasing order with respect to N([i]) = J.k = 0 iJk, i,0,..., i,t and that b is chosen so

that N([n]) is minimal. Let M([n]) = N([n])-(the number of times N([n]) is assumed

in b). Similarly
m

b = 2w''o-'(í1rl)¡"
t = i

where N([m]) is minimal.

Suppose /V([«])e N([m]) (we know N([m])>0). Then

m m

P^no- ■ -(s^Ynrb   =   2 PiPn^O ' ' " (S™)'«'? 0 • ■ • (S(r))')r   =   ̂ P,pnS^- ■ -(SW)\
1=1 i=l

where the p0,...,pn are nonunits in F and 0á #([<*])<N([ri\). Hence

n— 1 m

65 = 2 Sp^to- ■ ■(s")i,r + 2 PkPnS""- ■ -(SWY'.
1=1 fc=l

But bb is a unit in F so that if M([n]) = N([n]) this contradicts the minimality of b.

If A/([«])/W([«]) = /> 1, then repeating the argument / times contradicts the mini-

mality of b.    Q.E.D.

Corollary 1. If x is a constant in K, then x or I/x is in R.

Corollary 2. If x is a constant in K, « a positive integer such that xn e F, then

x e R. Thus if v is the corresponding differential valuation, then nv(x)^0 implies

v(x)^0.

Now we are ready to write down a certain condition which if satisfied by a

differential field implies the existence of a complete model ofthat field.

As before, let k be a differential ring containing the rationals and contained in a

differential field A'. Then if a, b e K, we write a = b (mod k) if a/b is a unit in k. We

shall omit the "mod k" when no confusion can arise. This is clearly an equivalence

relation and now we can state

Theorem 3. Let k, K be as above with K=qf (k{.Xj,..., x„}), where the x¡ are not

necessarily differential indeterminates, satisfying the following condition: ( + ) ifv is a

differential valuation of K whose ring Rv contains k, then x, can be written in the form

Xi=fiv/giv, i=l,2,..., n, where fiv, giv e F„ and such that whenever w is any other

differential valuation of K whose ring contains k, we have

giwlgiv e rX\jXw, . . . ,Jnwi g\u» • • •, gnw) =  °v>'

Then there exists a complete model of K over k.
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Proof. Let V be the set of all differential valuations v of K such that Rv=>k.

For each v e V, write Xi=fiv/giv, /=!,...,«, and form ov as in ( + ). Then the quo-

tient field of ov is AT and Rv^>"v. By the proof of Theorem 1, there is a finite subset

F of F and a complete pre-model M = {JveF Ld(ov). We claim M is in fact a model.

Suppose there exists ueV and v, w in F such that Fuä(«„)Pu and Ru^(»w)pw

for some differential prime ideals F„, Pw in t>v, «w respectively. Set (Pv = (ov)Pv and

®w=(cw)Pw. Then there is a differential prime ideal fPcz«={r>„, <>w} such that

»se è ®v, ®w We shall show o& = 0V. It suffices to show /> <=■ Cv for in that case if a/ß

e ¿^ where a,ße<> and ß$&, then «,)3e 0„. Write ß = a/b, a = c/d, where a, ¿z, c, d

g<?„, Z>, d$Pv, so that a/ß = cb/da with ¿fa ̂ F„(if a eF, then 6/8 = a implies ß e ¿P).

Hence a/ße(9v and eg<^®v. Thus we are reduced to showing that ew^(Pm i.e.

that/«,, giw e 0V for /= 1,..., «. NoW flwsgl^xtsgiv,ftvgi-„1=fJ(gtJgi1B) and £,„,=

(giw/giv)giv=gj(giv/giw) for all /= 1, 2,..., «. By ( + ), g(v/g(1„ e «„, and &J&,, g <>„

so that «(&„) = u(giw) and ufo») £ ufeiv). Hence KfoB) = u(giw), so that &„/&» £ Fv,

and thus/M, giu, g Cs. It follows that «^ci; Similarly e& = 0w.    Q.E.D.

Example. Let A be an ordinary differential field of characteristic zero and let x

be an exponential of an integral of any element of A, so that x'/x = de A. We claim

there is a complete model of A<x> over A.

Let v be a differential valuation of A<x> whose ring R contains A. We first show

that x or 1/x belongs to R.

Proof. If not, then by Theorem 2 there exist nonnegative integers i,j such that

x(i)(l/x)0) £ R. But x{i) = dxx and (l/x)(j) = d2/x, where dx,d2e A. This is a contra-

diction.

To complete the proof, we shall show that A<x> satisfies the condition ( + ).

Let V be the set of differential valuations v of A<x>, whose ring Rv contains A;

for each v e V, write x = x/l if xe Rv (so that/. = x and gv= 1) and write x= l/(l/x)

if x £ Rv. Then if v, w e V, one sees by checking cases that gjgv g k{fw, gw}. Thus

there exists a complete model of A<x> over k.

Moreover, we claim that if v e V and i>(x)#0, then the value group F„ of v is

isomorphic to Z; indeed if/(x) g A{x} has degree « and z»(x)>0, then we can write

f(x)/xn = mx(x)/xn + ■ ■ • +mk(x)/xn where the m¡(x) are homogeneous differential

polynomials of decreasing degrees, and this equals c0 + c1/xli + • • • +ck/x'*, where

z;(c¡) = 0 for all i and lx< ■ ■ ■ <lk = n — l (I denotes the lowest degree of any mono-

mial appearing in/).

Now, in general, if v(xx)< v(x2),..., r(x„), then i'(2?=i x¡) = v(xx); in fact,

2?-1 xjxi = 1 + x2/xx +■■■+ xjxx g Rv - Mv.

Hence in our example, v(f(x)) = nv(x)-(n-l)v(x) = lv(x). Therefore, if f(x)/g(x)

represents any element of Rv, v(f(x)/g(x)) equals //-/, where I, (resp. lg) denotes

the lowest degree of any monomial appearing in/(resp. g).

On the other hand, if r(x)<0, we merely get the integers with the reverse order by

considering 1/x. Thus Fv is totally ordered. Note that if z'(x) = 0, the argument

breaks down.
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We now consider the question of higher dimensional examples, beginning with

the following generalization of Corollary 1 to Theorem 2.

Proposition. Let K be a differential field, z e K and v a differential valuation of K

with ring R such that z'/z e R. Then either z or l/z belongs to R.

Proof. If not, there exist nonnegative integers i,j not both zero such that

zm(l/zfnxiR. Let n = i+j>0. But (l/z)0)=/;(z)/zi + 1 or zero, where f is a homo-

geneous differential polynomial in z of degree j with integral coefficients (this is

easily seen by induction). Then z(i)(l/z)(,,=/}+1(z)/z,+1 $ F where/;+1 is homo-

geneous of degree j+ 1, and hence some monomial mj+x(z)/zi + 1 $ R, m,+ x also

being of degree j+l. But z'/z e R implies z(n)/z e R for all « = 0, 1,... (again by

induction), so that m,+ x(z)lzi + 1 e R, a contradiction.    Q.E.D.

Corollary 1. Let k be a subfield of K (ordinary differential fields of character-

istic zero, as usual) such that K=k<[xx,..., x„>.

Then there exists a complete model of Kover R, where R = k{x'x/xx,..., x'n/xn}.

Proof. If v is a differential valuation of K whose ring contains F, set fiv = Xi,

giv=l if Xj belongs to the ring off and/(1J=l, gn,= l/x¡ if x¡ does not belong to the

ring oft'. Then check condition ( + ).

Corollary 2. If <f>: S —> U is a differential homomorphism of a differential

domain S into a differential field V, both of characteristic zero, and if z e qf(S) is

such that <f> does not extend to z or l/z, then <f> does not extend to z'/z.

Corollary 3. Let v be a differential valuation of K with differential value group

Fv. Then Fv is torsion free.

Proof. If « is a nonzero integer such that «f(x) = 0 for some xe K, then xn is a

unit in F, the differential valuation ring off. Hence xn " lx'/xn = x'/x e R. Thus f(x)

must compare with zero. If f(x) is strictly positive or negative, the same is true of

«f(x). Hence f(x) = 0.

As a final example, let k be an ordinary differential field of characteristic zero, y

a differential indeterminate over k, dek*. Let A—y"y — y'2 — dyy' e k{y}; let Pg be

the general component of {A} in k{y) and let x be the residue of y modulo Pg. We

shall prove the existence of a complete model of F=£<x> over k. (Remark. For a

concrete example, take C(ee")—in that case d = I.) Note that &<x>=k(x, x'), a pure

transcendental extension of k of algebraic dimension two.

Now (x'/x)'/(x'/x) = (xx" - x'2/x2) ■ (x/x') = d e k* so that if Rv is any differential

valuation ring of a differential valuation v of K over k, we have x'/x e Rv or x/x'

e Mv, the maximal ideal in F„. It suffices to show that x or 1/x belongs to Rv for in

that case one can show that condition ( + ) is satisfied by K.

If not, then x/x' e Mv, i.e. r(x) > y(x'). Let S = v(x) — f(x'), a positive element of

r„, the differential value group. Also set t'j = f(x(i)),/'=0, 1,.... We claim that

ui = l'i+i + S> or equivalently, x<i)/x(i +1} = (x/x')u, where « is a unit in F„.
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We first establish by induction that t>,>Pj+i for all i. The case z'=0 is clear.

Suppose xm=xu + 1)m, where meMv. Then xli + 1)(l-m') = xii + 2)m, where the left

side has value i>i+1 and the right side has value strictly greater than vi+2. Thus

f 0 > f !>•••> t'j >•••.

The claim is certainly true for /=0. Suppose ux{i) = xa + l)m, where « is a unit in

Rv and w=x/x' so that t>(m) = S. Then w'x(f) + Hx<i + 1) = x<i + 1)m'-rx(i + 2)«7

= (-c/x(i + 1)+x<i + 2>)m. The value of the right side is t>1+2 + 8 and that of the left

side is vi+x since r(M'x(i))^iv This proves the claim.

Next we shall show that if a and b are integers, a # 0, with av0 + b8 ä 0 in r„, then

av0 + (b-1)8^0. In fact, suppose xa(x/x'f e Rv. Then axa-xx'(x/x'f + bxa(x/x'f-1

■( — dxjx') e Rv. The second summand has value av0 + b8 and hence belongs to Rv.

Thus the same is true of the first summand and we see that av0 + (b— l)SâO.

In particular, v0 and S are rationally independent for if avQ + b8 = 0, a^O, then

av0 + (b— 1)8^0. But this is impossible since the latter value is strictly smaller than

the former. Hence a=b=0.

Let z=l/x. Then ¿<z> = F<x> and in fact zz"-z'2 = dzz', v(z)=—v0 does not

compare with zero, z/z'= —x/x', v(zm) = v(zu+1)) + 8 exactly as before.

Now since x<0 = «ijX" +1}, mt e Mv, i=0, 1, 2,..., we have the following chain of

rings: Rv[x]czRv[x']c:.. .cRv[x^]<= ■ ■ ■ with F„{x} = U"=o F„[x(i)]. We must have

1 eMv-Rv{x) since F„ is a differential valuation ring and x xi Rv. Thus 1 e Mv

■ F„[x(i><>] for some i0. Therefore [x"«1]-1 belongs to every proper prime ideal in the

integral closure of F„ in its quotient field (see [4, p. 325]). Thus if Rs is a valuation

ring containing Rv, [x""']-1 belongs to the maximal ideal of Fc.

Let i = x<io) so that s_1 is integral over Rv, and hence s'1 is quasi-integral over

Rv, i.e. there is a dx e Rv, dx^0, such that d^s'1)* e Rv for all r = 0, 1,_By a

theorem of Seidenberg, [3, p. 168], (s'1)' is also quasi-integral over F„. Thus there

is a d2 e Rv such that (x(io+ 1)/x<fo)2)ri/2 e F„, r = 0, I,_Applying v, we see that for

r = 0, l,...,r(fio+1-2tio) + y^0, where yäO. Then r(v0-(iQ+l)8-2v0 + 2i08)

+ y^0, or K-fo + O'o- l)8) + y^0, r = 0, 1,.... Therefore -rvio.x+y^O for all r

and thus d2/(x(i°~1})r e F„. But this means that l/x(io_1) is quasi-integral over Rv.

Continuing, we see that 1/x is quasi-integral over Rv.

Lemma. Let Rbea domain with qf (R) = K, z e K, such that z is quasi-integral over

R. Then z belongs to the intersection of all rank one valuation rings of K which

contain R.

Proof. Suppose dxzr e R for r=0, I,... where dx e R, and let <v be a rank one

valuation whose ring contains F. Then v(dx) + rv(z)^0 for all r, so that v(dx)

ä —rv(z), r = 0, 1,.... If 0(z)<O, then — y(z)>0, and by the Archimedean prop-

erty there is an r such that r( — v(z))>v(dx), a contradiction.

Thus, in our example, z=l/x belongs to all rank one valuation rings which

contain Rv and the same is true for l/s, (l/s)', (l/s)", etc. Suppose we could find a

rank one place xb of Fover k whose ring dominates Rv. Then since l/s xt Rv, we know
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that \/s satisfies a «^-special differential polynomial, where ¿ is the differential

place corresponding to v: (*) 2 b,(l/s)[i]= I, b¡ e Mv. Then, applying ¿ we get the

contradiction 1 =0.

Thus if ¿ is any place extending ¿ we must have rank ¿ = 2, and hence the di-

mension of ¿ is zero. Let RB be the corresponding valuation ring with nonzero

prime ideals ¿Px < ¿P2. Then (Rv)se\ is a discrete, one-dimensional, rank one valuation

ring containing Fs, call it Ff, with valuation v.

We shall show v(z(i>)>0 for all / so that we obtain the contradiction 1 =0 by

applying ¿ to the equation yblzin=l analogous to (*). Now z/z'=—m in our

previousnotation.andz'íwíeO. Wesawthatz(z(i,) = z(z(i + 1))+S.Thenfor/ = 0,1,...,

:'i)u, = zu + 1)m, where u¡ is a unit in R-v. If £(«?)>0, then z5(z)>z5(zO> • - • >5(z(i>)

> • • ■ would be a strictly decreasing sequence of nonnegative integers since each

r"1 is quasi-integral over /?,.. Therefore v(m) = 0. But in that case, v(z'i)) = v(z) for all

/. If v(z) = 0, then since x(l>ui = x<l + 1>m, where w, is a unit in F,-, we would have that

v(x(i)) = v(x) = 0 for all i. But we saw that pfx"»') < 0. It follows that there is no such v

and therefore there exists a complete model of k(x; over A.

Let M and M' be models of a differential field K. Then if there is a differential

valuation ring R which dominates C\ e M and C'2e M', we say Cx corresponds

differentially to C2. If M' is complete, then for every t\ e M there is an <S2e M' such

that €x corresponds differentially to &2.

Remark. If C\ and C2 are differentially corresponding points on models of a

differential field A" with iri<=rj2 then CxS(r2, for if F is a differential valuation ring

dominating both Cx and C2 and if x is a nonunit in &x, then x e m(R) implies

v g m(C2). Moreover, if M and M' are models of Fand fe M, §' e M' are such that

CS&, then (P is the unique point of M' corresponding differentially to 0; indeed,

if R is any differential valuation ring of A" which dominates €, then F = (F, and if

for some C" eM', R^C", then 6'= €" because M' is a model. Under certain

conditions we can assert the converse.

Proposition. Let A be an ordinary differential field of characteristic zero, K a

differential extension field of k. Suppose M and Mx are models of K over A with Mx

complete over A and that £ g M is differentially integrally closed and such that there

is no differential prime ideal Q with 0<Q< m(C°). Then if'0 corresponds differentially

to a unique element &x e Mx, then 6X S ®.

Proof. It suffices to show G^O. Now c = f)Rv^c Rv where Rv isa ring of anon-

trivial differential place of K over A. We claim C' = r)Rv^e Rv. In fact, if RV=>C = »si',

then Mv n <L■<= m(C°) = SPo<e so that A/„ n o^fP. But Mv n a is a nonzero differ-

ential prime ideal since qf (<>) = K and v is nontrivial. Thus Mv n <■=<£ and there-

fore RK^C and the claim is established.

Now if F is a differential valuation ring such that R^G, then R^Crx, since Mx

is complete and Cx is the only member of Mx corresponding differentially to C.

Thus0,c:0.    Q.E.D.



1969] COMPLETE MODELS OF DIFFERENTIAL FIELDS 325

References

1. A. Grothendieck, Éléments de géométrie algébrique. I, Publ. Math. Inst. Hautes Études

Sei. IH ES, Paris, 1960.

2. J. F. Ritt, Differential algebra, Amer. Math. Soc. Colloq. Publ., Vol. 33, Amer. Math.

Soc, Providence, R. I., 1950.

3. A. Seidenberg, Derivations and integral closure, Pacific J. Math. 16 (1966), 167-173.

4. O. Zariski and P. Samuel, Commutative algebra. II, Van Nostrand, Princeton, N. J., 1960.

University of California,

Berkeley, California

Columbia University,

New York, New York


