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The tensor product of semigroups is defined like the tensor product of modules,

by means of multilinear mappings. Surprisingly enough, it has most of the im-

portant properties of its homological cousin, together with some others of its own,

so that, in view of such results as [4], it is not unreasonable to hope that it will

become a very helpful tool for the study of semigroups. The only thing it lacks as

an operation is associativity; this is apparently due to the use of noncommutative

semigroups throughout this paper, and results in our concentrating on the tensor

product of two semigroups, even though such restriction is not necessary for some

of our results.

In §1 we give the definition and some examples: If B is a one-element semigroup,

then A ® Bis the largest idempotent homomorphic image of A ; if B is an infinite

cyclic semigroup, then A ® Bis the largest normal homomorphic image N(A) of A

(normal means that (xy)n = xnyn holds identically for all n). In §2 we prove

the existence of the tensor product of any family of semigroups. §3 brings a

fundamental result, which describes the congruence induced by / ® g when the

homomorphisms/and g are onto (in which case/ ® g is also onto). As a first conse-

quence, we prove also that A ® B depends only on the largest normal homomor-

phic images of A and B; namely, A ® B is naturally isomorphic to N(A) ® N(B).

In §4, we prove a very peculiar property of the tensor product of semigroups,

namely that it preserves consistent monomorphisms (a semigroup homomorphism

is consistent if the complement of its image is an ideal or is empty). The fundamental

result of §3 can then be extended to consistent morphisms. In §5 we show that the

tensor product of semigroups is cokernel preserving in the following sense. Call a

sequence A' ■!> A A- A" çoexact if the congruence induced by /' is the smallest

in a class in which the image of/is contained. Then the tensor product by any

i-indecomposable semigroup X preserves such coexact sequences where/' is onto

(or consistent). We also establish the adjoint associativity. In the right exactness

result of §5, the assumption on X cannot be lifted, but we show in §6 that this can be

fixed by defining another tensor product for semigroups with zero, which is

closely related to the tensor product of semigroups and otherwise keeps most of its

properties.

Our paper is self-contained except that we do not bother to redefine elementary

concepts of semigroup theory, which is better done in [1]. Also, the reader will have
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a better appreciation with a little knowledge of homological algebra (see [6]). We

shall denote by y the category of semigroups; by Im/the image f(X) of a mapping

/of A'into Y (Im/may mean a semigroup if/is a semigroup homomorphism); by

ker/ the equivalence relation or congruence induced by/

1. Definition. Examples. If (At)is, is a family of semigroups, we say that a

mapping 5 of the cartesian product Yliei ¿i into a semigroup C is I-linear if for every

70 e /, the mapping ßio—^ s((adiei) is a homomorphism of Aio into C whenever all

a{ are fixed except for aio. If an /-linear mapping t of ri¡e/ ^ into a semigroup J

has the property that, for any /-linear mapping s of fTjeí /4¡ into some semigroup C,

there exists a unique homomorphism uofT into C such that s = u° t, then we call

the pair (r, T), and also the semigroup T, a tensor product of the family (/4¡)íeí-

If (^i)ie; has a tensor product (r, T) we shall denote Tby 0ieí/á{ and t((a^)ieI) by

<S>is/ fl¡- We shall be mostly concerned with the case when /is finite, /={1,2,..., «};

in that case, (g)ie/ At is also denoted by Ax <g> ̂42 <g ■ ■ • (g An and (x)iei of by ax (g cr2

<g • • • <g an ; /-linear mappings are called also n-linear (bilinear, trilinear if « = 2, 3).

Before proving that any family of semigroups has a tensor product, we give

some examples.

Proposition 1.1. Let A be any semigroup and E={e} be a one-element semigroup.

Then any largest idempotent homomorphic image E(A) of A is a tensor product of

A and E.

Proof. E(A) comes with a homomorphism/of A onto E(A). Then t: (a, e) ~~—>f(a)

is a bilinear mapping of A x E into E(A). Let s be any bilinear mapping of A x E into

some semigroup D; then *: a~—»-¿(a, e) is a homomorphism of A into D. Further-

more, the image Im g of g is án idempotent subsemigroup of D, for s(a, e)s(a, e)

= s(a, ee) = s(a, e) for all ae A. Therefore, there exists a unique homomorphism u

of E(A) into D such that g = u°f; i.e. s = u° t. This completes the proof.

Call a semigroup S normal if (xy)n = xnyn holds identically in S (cf. [5]). It is clear

that any semigroup A has a largest normal homomorphic image; it can be described

as quotient of A by the smallest congruence on A containing all pairs of the form

((xy)n, xnyn); we shall denote it by N(A).

Proposition 1.2. Let A be any semigroup and B be an infinite cyclic semigroup

generated by b. Then N(A) is a tensor product of A and B.

Proof. Let / be the canonical homomorphism of A onto N(A). Since N(A) is

normal, t : (a, bn) ~~-^f(an) is a bilinear mapping of A x B into N(A). Let s be any

bilinear mapping of A x B into some semigroup D. Then *: a ~—> s(a,b) is a homo-

morphism of A into D. Observing that s(x, yn)=s(x, y)n=s(xn, y) holds identically

for any bilinear mapping s, we conclude that

s((xy)n, b) = s(xy, bn) = s(x, bn)s(y, b»)

= s(xn, b)s(yn, b) = s(xny\ b),
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for all x, y e A and all n. Therefore Im g is a normal subsemigroup of D. Hence

there is a unique homomorphism u of N(A) into D such that g=u of; since s(a, bn)

=s(an,b)=g(an) = u(f(an)) = u(t(a,bn)) identically, we have also s=«»i. Con-

versely, if v is any homomorphism such that s = v ° t, then also g=v °f so that

v = u is unique. This completes the proof.

Using a similar reasoning, one can show easily that:

Proposition 1.3. Let A be any semigroup and B be a cyclic semigroup generated

by an element b, subject to the relation bn=bn+p (where n,P>0). Let C be a largest

homomorphic image of A such that C is normal and the identity xn = xn + p holds in C.

Then C is a tensor product of A and B.

From this it is easily deduced that the tensor product of a cyclic semigroup of

index n and period p and a cyclic semigroup of index m and period q is again a

cyclic semigroup of index inf (n, m) and of period the g.c.d. ofp and q. In particular,

the tensor product of two finite cyclic groups is a finite cyclic group. More generally,

Proposition 1.4. If A and B are groups, then A ® B is a group.

Proof. We may anticipate and use here the general results of the next section,

which insure the existence of A ® B and the fact that it is generated by all elements

of the form a® b. Let e(f) be the identity of A(B). For any V e B, e ® V is an

identity element of A <g B; indeed, if a ® b is any generator of A ® B, and if

b = b'u, then, by bilinearity,

(e ® b')(a <g b) = (e ® b')(a ® b')(a ® u) = (a ® b')(a ® u) = a ® b

and, similarly, (a ® b)(e ® b') = a <g b (writing b = vb'). Likewise, a ® f is an

identity element of A ® B for all a e A. In particular, a ® /= e ® f= e ® b for all

a, b.

If now a'1 is the inverse of a in A, then

(a'1 ® b)(a ®b) = e®b = (a® ¿)(a_1 ® b),

which shows that any generator of A ® B has an inverse. Therefore, A ® B is a

group.

Since the universal property of A ® B applies in particular for bilinear mappings

of AxB into a group, one may restate Proposition 1.4 as follows: The tensor

product of two semigroups has a restriction to the variety of groups, which is

precisely the tensor product in that variety. (We shall not say more about the

tensor product in the variety of all groups, for the following reasons. Observe that

a group is normal if and only if it is abelian. Then it will follow from Proposition

3.7 that the tensor product of two groups A and B depends only on the abelian

groups A/[A, A], B/[B, B\ Thus we do not think that it can be an interesting

tool.)
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2. Existence and first properties.

Theorem 2.1. Let (At)teI be any family of semigroups. There exists a tensor

product of that family and it is unique up to isomorphism.

Proof. The uniqueness is clear from the definition of the tensor product as a

solution of a universal problem. To show the existence, we construct one as follows.

Since this construction will be used again later, we give the notation first.

Notation 2.2. Let F be a free semigroup on the set TJi£, A{ and w be the canon-

ical inclusion of Y~[ie, At into F. Let 38 be the set of all pairs of the form

W(«Jw),»K«Ww(«W)

where au a\, d{ e A{ are such that aio=a'¡0a¡0 for some index z'0> and ai=a'l—a" for

all other indexes. Let ^ be the smallest congruence on F containing 88. Let T=Fß,

k be the canonical homomorphism of F onto T and t = k °w.

This construction provides us with a pair (t, T) which is a tensor product of the

given family. Indeed t is an /-linear mapping by the choice of (€. Let s be any

/-linear mapping of \~[iE, At into some semigroup C. First there exists a unique

homomorphism/of Finto C such that s=f° w. Since s is /-linear, ker/contains all

pairs of (é¡; therefore ker fc='^'sker/ so that/=w° k for some unique homo-

morphism u of T into C. We see that u is such that s—f° w = u°k ° w = uo t.

Finally any homomorphism v of T into D such that j=¡)oí(=¡)ofcoHí)is such that

v o k=f by uniqueness of/ so that v = u is unique. This completes the proof.

Using the same method, it can be proved that any variety has a tensor product

of its own.

The construction above provides us with a presentation of the tensor product.

For example, if we start with two semigroups A, 5, we may construct A <g B as the

semigroup generated by all "symbols" a (g b, subject to all the bilinearity re-

lations. Therefore, if A and B are finitely generated, or finitely presented, so is

A (g B. The following example uses this description to show that, if A and B are

finite, A (g B need not be finite.

Example 2.3. Let A and B be semigroups of order 2 consisting of a zero and an

identity. Then the tensor product of A and B is the semigroup generated by

0=0®0, 1 = 1 (g> 1, e=0 (g 1, /=1 (g0 subject to all bilinearity relations:

00=0, 11 = 1, ee = e,ff=f 0e=e0=0=0/=/0, el = \e = e,f\ = lf=f. From these
relations it follows that 01 =0el =0e = 0 and, similarly, 10=0; hence 0 is a zero of

A (g B, 1 is an identity of A (g B, and we can describe A (g B as C u {0, 1}, where

C is the semigroup generated by e, f subject to the relations e2 = e, f2=f. It is

immediate to verify that any element of C can be written uniquely as either (ef)n or

(fe)n or (ef)"e or (fe)"f for some «>0 or some/?2:0. Thus C is infinite. Therefore

A (g B is also infinite.

It is easy to verify that the tensor product is a commutative operation (e.g.

A (g B^B (g A), but it fails to be associative (we mean, of course, the tensor
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product of semigroups). A counterexample is furnished by Example 2.3. Since B is

idempotent there, B ® E^B by 1.1, so that A ® (B ® E)^A ® B. However

(A ® B) ® E, which is an idempotent semigroup by Proposition 1.1, is not iso-

morphic to A ® B since ef, for example, is not idempotent. (A description of

(A <g B) ® E is easily obtained from Proposition 1.1 as the quotient of A ® B by

the congruence whose classes are {0}, {1}, {e}, {/}, {(e/)n;n>0}, {(/e)n;n>0},

{(ef)ne;n>0}, {(fe)nf;n>0}.) It turns out that in this case A® B® E^A®

(B ® E). All we can say when A, B, C are any semigroups is that there exist

canonical homomorphisms of A ® B ® C onto (A ® B) ® C and A ® (B ® C).

Finally, it follows at once from the definition that, if (A¡)lf¡¡, (B^)isI are families of

semigroups and if a homomorphism/ of Ai into B{ is given for each i e /, then there

exists a unique homomorphism of 0ieI A{ into 0,e/ Bh which shall be denoted by

'S'teifi, such that (<S>ieí/)(0ieí ai) = (S>i€i/i(ai) identically. By Theorem 2.1 it is

possible to choose a tensor product for any family and any such choice defines

then a functor, covariant in each variable.

3. Action on onto homomorphisms. Throughout this section, / (g) is a given

semigroup homomorphism of A (B) into A' (B'). To study f® g we shall have to

use the tensor product construction of §2 ; in such case, we shall use the following

Notation 3.1. We use the Notation 2.2 for the construction of A ® B and

A' ® B'; primes will refer to A' ® B'. In addition, h denotes the mapping of A x B

into A ' x B' defined by : h(a, b) = (f(a), g(b)) ; h denotes the unique homomorphism

of F into F' such that h ° w=w' ° h.

By the definition of f® g, we see that fc'»i» w=k' ° w' ° h = (f® g) o k ° w,

so that k' o h=(f® g) ° k.

Proposition 3.2. If fand g are onto, thenf® g is onto.

Proof. Then h is onto, so that h is onto; hence (f® g) o k=k' ° h is onto and

therefore / ® g is onto.

Now we want to describe kerf® g.

Definition 3.3. If ¿f (S£) is a congruence on A (S), ¿f <g Z£ is the smallest

congruence on A ® B containing all pairs (ax ® bx, a2 ® b2) such that (ax, a2) e Ctf,

(by,b2)e<e.

Theorem 3.4. Without any assumption on / g : kerf® kerg^kerf® g. If

fand g are onto, then the equality holds.

Proof. If (ax, a2) e kerf, (by, b2) e ker g, then

(/® g)(ax ® bx) = f(ax) ® g(by) = f(a2) ® g(b2) = (f® g)(a2 ® b2)

and (ay ® by, a2 ® b2) e kerf®g. Therefore kerf® ker g^kerf® g.

To prove the converse inclusion in the case when / and g are onto, consider the

quotient C of A ® B by kerf® ker g, and the canonical homomorphism p of

A ® B onto C. We show first that ker ÄÇ ker p°k.
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Indeed, suppose that xx,..., xn, yx,. . .,y„eA, zx,..., zn,tx,. . .,tpe B are

such that

h(w(xx, zx)- --w(xn, zj) = h(w(yx, tx)- ■ -w(yp, tp)).

Then, successively,

Wifix,), g(zx))- ■ • w'(f(xn), g(zn)) = w'(f(yi), g(tx))- ■ -w'(f(yp), g(Q);

n=p   and   f(xl)=f(yi),   g(zt) = g(t¡)   for all /;

(k(w(x¡, z¡)), k(w(y{, tt))) = (x¡ (g z¡, yt (g r() e kerf® ker * = ker p   for all i;

p(k(w(xx, zx)- ■ -w(xn, zn))) = p(k(w(yx, tx)- ■ -w(yp, tp))).

Therefore ker h^ ker p ° k.

Since h is onto, there is a homomorphism v of F' into C such that p ° k = v o h.

Then v ° w' ° h = v °h° w =p o k ° w is bilinear. Thus y o w' is also bilinear and can

be written under the form v ° w' = u o k' ° w' for some homomorphism uof A' ® B'

into C. Finally

p ° k o w = fovv'on = u° k' ° w' ° h = M°(/(g*)°&°H',

so that p = u° (f ® g) and ker/® *£ker/? = ker/(g ker*. This completes the

proof.

Corollary 3.5. If Jf (JSf) is a congruence on A (B), then A¡$C ® B/af^

A ® Bief ® £f.

The following lemma is useful.

Lemma 3.6. Suppose that Jf (=SP) is the smallest congruence on A (B) containing a

given binary relation a2 (1). Then Jf <g S£ is the smallest congruence on A ® B

containing all pairs (a' ® b, a" ® b) such that (a!, a") e 8? and all pairs (a ® V,

a ® b") such that (b', b") e J.

Proof. Clearly JT ® =S? contains all these pairs, so that, if Jt is the smallest

congruence with that property, Ji'Q. Jf ® S£. To prove the converse inclusion,

for every b e B let Jib be the binary relation on A defined by: (a', a") e Jlb if and

only if (a' ® b, a" ®b)eJ(. Since a ~—> a® bisa homomorphism, J(b is in fact a

congruence; also 8Pç^J(0 by definition of JÏ. Therefore ctC<^Jth; in other words,

(a', a") e Jf implies (a' ® b, a" ®b)eJi. Similarly, (b', b") e =S? implies (a ® b',

a ® b") e Jt. Therefore (d, a") e Jf and (b', b") e Se implies (a' ® b', a" ® b')eJl,

(a" ® b', a" ® b") e JÍ and eventually (a' ® b', a" ® b") e J/. Thus JT ® ¡e^Ji,

which completes the proof.

As an application of these results, we show that A® B depends only on N(A)

and N(B). More precisely,

Proposition 3.7. For any two semigroups A and B, A ® B^N(A) ® N(B), by an

isomorphism which is natural in A and B.
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Proof. Let/(g) be the canonical homomorphism of A (B) onto N(A) (N(B)). By

Proposition 3.2, Theorem 3.4, and Lemma 3.6, f® g is a homomorphism of

A ® B onto N(A) ® N(B) and kerf ® g is the smallest congruence on A ® B

containing all pairs ((xy)n ® b, xnyn ® b), (a ® (zt)n, a ® zntn), where a, x, y e A,

b,z,te B. But

(xyf ®b = xy ®bn = (x ® bn)(y ® bn)

= (xn ® b)(yn ®b) = xnyn ® b

and similarly a ® (zt)n = a ® zntn identically. Therefore ker/ ® g is the equality.

Then / ® g is an isomorphism of A ® B onto N(A) ® N(B). Naturality is clear.

It is to be observed that a tensor product of two (normal) semigroups is not

necessarily normal. For instance, in Example 2.3, (c0do)n=(ay)n=an, (c0)n(d0)n

= c0d0 = ay.

4. Action on one-to-one homomorphisms. Coming back to the general situation

of §3, we assume now that/and g are one-to-one. In this case/ <g g need not be

one-to-one, as shown by the following example. Let A, A', B = B' be cyclic groups

of order 2, 4, 6 generated by a, a', b, respectively. By the remark following Prop-

osition 1.3, A ® B, A' ® B are groups of order 2, generated by a ® b, a' ® b,

respectively. Let/be defined by f(a) = a'2 and g = idB, so that/and g are one-to-one.

Then f® g is defined by: (f ® g)(a ®b) = a'2 ® b = (a' ® è)2=l ; it is constant

hence not one-to-one.

Yet there is one case when we can say that/ ® g is one-to-one. Recall that a sub-

set K of a semigroup S is consistent (cf. [2]) if xy e K implies xe K and y e K; in

other words, if S—AT is an ideal or is empty. We say that/, g are consistent if

Im/ Im g are.

Theorem 4.1. /// and g are one-to-one and consistent, then f® g is one-to-one

and consistent.

Proof. The proof uses the tensor product construction of §2; we shall keep the

notation in 2.2 and 3.1. Furthermore, we shall need the complete description of

(€, W from 3a, áS", for which we use the following

Notation 4.2. Let 3d be the binary relation on F defined by: (M, N) e 3S if and

only if either (M, N) e 3S or (N, M) e 3$ or M=N. Let ¡T be the binary relation on

F defined by: (M, N) e F if and only if M= UPV, N= UQV for some U, Kef1,

P,QeF such that (P, Q) e ~38. Then ^ is the transitive closure of F. The (formal)

identity of F1 can be considered as the "empty word" and h shall be extended to

F1byÄ(l) = l.

Coming back to the proof of the theorem, we first observe that, if we can prove

that (h(M), h(N)) e <€' implies (M, N) e <<?, then it will follow that (f®g)(k(M))

= (/(g g)(k(N)) implies k(M)=k(N), i.e. that/(g g is one-to-one (since k is onto).

This will be established using the construction above and the two following general

properties of h: (1) h preserves the length of words; (2) h is consistent; more
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precisely, if h(M)=P'Q', then, since F' is free, there exists P, QeF such that

P'=h(P), Q'=h(Q), M=PQ. Furthermore, his one-to-one.

If first (h(M), h(N)) e 3S', then, for instance, h(M) = w'(dyd2, V),

h~(N) = w'(a'x, b')w'(a'2, b')

for some a'x, a'2 e A', V e B'. Now h preserves length and so we must have M

= w(a, b), N=w(ax, bx)w(a2, b2) for some a, ax, a2 e A, b, bx, b2 e B, which must

satisfy f (a) = dxd2, f(ax)=dx, f(a2) = d2, g(b)=g(bx)=g(b2)=b'. Since/and g are

one-to-one, we have a=axa2, b=bx = b2 so that (M, N) e 38. The other case, when

h(M) = w'(d, b'xb'2), h~(N) = w'(d, b'x)w'(a', b2) is treated similarly.

Furthermore, (h(M),N')e38' implies, for instance, h(M) = w'(dxd2,b'), N'

= w'(a'y, b')w'(a'2, b') for some dy, d2 e A', V e B. If M=w(a, b), then dyd2=f(a),

b'=g(b). Since/is consistent, dy=f(ay), d2=f(a2) for some ax, a2e A; therefore

N'=h(w(ax, b)w(a2, b)) elm h. The other case is treated similarly, using the

consistency of g. In a similar manner, one shows that (M', h(N)) e 38' implies

M' e Im h.

From this follows immediately that (h(M), h(N)) e #' implies (M, N)e38 and

that (h(M), N') e <%' implies N' e Im h.

If now (h(M),h~(N)) e V, then h(M) = U'P'V, ñ(N)=U'Q'V, where U', V

e F'1 and (P\ Q') e 38', and we can find U,VeF\P,QeF such that h(U)=U',

h(V)=V, h(P)=P', h~(Q)=Q', M^UPV, N=UQV. Since (h(P),h(Q))e!%', we
have (F, Q) e 38 and therefore (M, N)e3~.

Furthermore if (h(M),N')_e^", then h(M)=U'P'V, N'=U'Q'V, where

U', V e F'1 and (P', Q') e §6'. Since h is consistent, £/', F', V e Im h; since

(P', Q') e ä', we have also Q' elmh and N' = U'Q' V e Im h.

If finally (h(M),E(N))eW, then we can find P'0, P'x,..., P'n e F' such that

P'0=h(M), (P\,P'iJFy)e3" for all possible i and P'n=h(N). Since (P'0, P[) e 3~'

and P'ü=íi(M), we have P'x e Im H, say P'x=h~(Px); and (h(M), h(Px)) e T' implies

(M, Px) e F. Inductively, we obtain P¡ =h(Pt) for some Pie F and (F¡, Pi+1) e F,

for all possible I Eventually h(Pn)=h(N), so that Pn = N. Therefore (M, N)e^.

From this we conclude that/(g g is one-to-one.

Furthermore, proceeding as above, we see that (h(M), N') e #' implies N' e Im A.

Therefore k'(M')k'(N') = (f®g)(k(P)) implies successively: (M'N',h(P))e^';

M'N' = h~(Q) for some geF; M' = /i(M), N' = h(N) for some M, N e F; and

finally k'(M') = k'(h(M)) = (f® g)(k(M)) e Im/® g, &'(#') e Im/ ® g, therefore

f® gis consistent (since k, k' are onto) which completes the proof of the theorem.

Using this result, we can extend Theorem 3.4 to the case when / and g are

consistent.

Theorem 4.3. If fand g are consistent, then kerf ® g=kerf® ker g; further-

more Im/® g^lmf® Im g, andf ® g is consistent.

Proof. Let i (j) be the inclusion mapping of Im/ (Im g) into Ä (B'), and q (r) be

the canonical homomorphism of A (B) onto Im/ (Im g), so that/= i ° q (g =j o /•).
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Since Im i=Im / Im j=Im *, i and j are consistent. Then f ® g = (i ® j) ° (q ® r);

since i ® j is one-to-one by 4.1 : ker/ ® g = kerq ® r = kerq ® ker r = kerf

® ker g by 3.4. Furthermore, Im/ ® g=lm q ® r = lmf® Im g. Finally, i <g j is

consistent by Theorem 4.1, so that/ ® g is also consistent.

5. "Right exactness " and adjoint associativity. In this section, we show that the

tensor product of semigroups keeps, to a certain extent, the right exactness and

adjoint associativity properties of the tensor product of modules.

While exactness is self-dual in an abelian category, its natural generalization

to a nonabelian category like S? is not (see [3]). Therefore we shall consider two

kinds of "exact" sequences. We say that a sequence Ä l^Aîl^. A" is exact if Im/

is a class of ker/', and coexact (cf. [3]) if ker/' is the smallest congruence Jf on A

such that Im/is contained in only one class of X; if the sequence above is either

exact or coexact, then it is null, i.e. Im (/' °/) consists only of one (idempotent)

element of A". For a null sequence, exactness, coexactness do not imply each other;

if, however, the sequence Ä ±>A I^.A" is coexact and if Im/is an ideal of A, then

the sequence is exact (and A is an ideal extension of Im/by Im/').

Another difficulty is that, if A'1+AL+A" is null, then A' ® X-+ A ® X-*A"

® X need not be null. We shall see in fact that there is no trouble if X is s-in-

decomposable (i.e. if the largest idempotent homomorphic image of X is trivial,

cf. [7]).

Theorem 5.1. If A' 1+ A £> A" is coexact and if X is s-indecomposable and f

consistent (for instance, onto), then

A'®X  f®id* >A®Xf'®ià*iA°®X

is coexact.

Proof. Set/(g idx=/,/' <g idx=J. First we prove that A' ® XJ± A ® Xl^. A"

® X is null. Define a homomorphism p of X into A" ® X by: p(x) = e" ® x,

where {e"} = Im (/' of). Since e" is idempotent, every element of Im p is idempotent

and, by the condition on X, Imp is trivial, say lmp = {ë"}, where ë" e A" ® X is

necessarily idempotent. Now

/'(/(« ® x)) - f'{f{d)) ® x = e" ® x = r

for all a e A, x e X. Since A ® A'is generated by all elements of the form a ® x, it

follows that Im/' °f={e"}. This shows that our sequence is null. In other words,

Im/is contained in only one class of ker/'.

On the other hand, ker/' is the smallest congruence on A containing all pairs

(/(fliX/teO) (ctx, ct2 e A'), by coexactness : so that, by Theorem 4.3 and Lemma 3.6,

ker/' is the smallest congruence on A ® X containing all pairs

(f(ax) ® x,f(a2) ® x),
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where ax, a2 e A, x e X. But any congruence with the property that Im/is contained

in only one class contains all these pairs, and so must contain kerf. This means

that A' ® Xl> A ® Xl> A" ® X is coexact.

Corollary 5.2. If Ä l^AL^A" is coexact and iff is consistent, then N(A')

-> N(A) -> N(A") is coexact.

Corollary 5.3. If A' l^AL^A" is coexact and iff is consistent, then E(A')

-> E(A) -> E(A") is coexact.

Proof. The corollaries follow from Propositions 1.2, 1.1, since any infinite

cyclic semigroup, any one-element semigroup, are i-indecomposable.

Whether the tensor product by an j-indecomposable semigroup preserves exact

sequences Ä 1>AL> A" (with/' onto) is a question we could not solve. Yet we have

the following result.

Theorem 5.4. Let A' 1+ AIV A" be an exact and coexact sequence, where fand'/'

are consistent. Let X be an s-indecomposable semigroup. Then the sequence

A'®X f®idx>A®Xf'®[d*>A"®X

is exact and coexact. Furthermore f ® idx,f ® idx are consistent and if fis one-to-

one, so is f® idx.

Proof. Observe that a nonempty consistent subsemigroup K of a semigroup S

is a class of some congruence on S (since S—K is either empty or a prime ideal).

Since by Theorem 4.3 f® idx is consistent, Im/® id* is a class of some congru-

ence on A ® X and by coexactness (by Theorem 5.1) must be a class of ker/'

® idx. The other conclusions of the theorem follow from Theorems 4.1, 4.3.

The reader will be able to state the corresponding corollaries concerning N(A),

E(A).

Finally we turn to the adjoint associativity. A first difficulty is that the set

Mory (A, B) of all semigroup homomorphisms of A into B may be empty and

in general will not inherit more than a structure of a partial groupoid. By a partial

groupoid we mean, following [1], a set P together with a partial binary operation.

A homomorphism of a partial groupoid P into a partial groupoid Q is a mapping

/of P into Q such that/(x)/(j) is defined in Q and equal to f(x-y) whenever x-y

is defined in P. Partial groupoids and their homomorphisms obviously form a

category which shall be denoted by 0". The category £f of semigroups is a full

subcategory of a8. Finally the set Mor^ (P, Q) of all partial groupoid homomor-

phisms of P into Q inherits a structure of partial groupoid in the following fashion:

If/ *, « £ Mora» (P, Q) we say that/*=« if and only if/(x)*(x) is defined in Q

and equal to h(x) for all x e P. If in particular P and Q are semigroups, Mor^ (P, Q)

becomes a partial groupoid, which can always be embedded into a semigroup but

need not be one. The following result is of interest. First, call a semigroup S
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subcommutative if and only if the identity xyzt = xzyt holds in S (various other

names for these semigroups can be found in the literature). Clearly, any commuta-

tive semigroup is subcommutative, and any subcommutative semigroup is normal.

Proposition 5.5. Let B be a semigroup. Then Mor^ (A, B) is a semigroup for any

semigroup A if and only if B is subcommutative.

Proof. Clearly Mor^ (A, B) is a semigroup if and only if fg is defined for all

fi g e Mory (A, B). If B is subcommutative, then the mapping x~~^*f(x)g(x) of A

into B is a homomorphism for any/ geMory (A, B), so that/-gis always defined.

Suppose conversely that Mor^ (A, B) is a semigroup for any semigroup A and take

x, y, z,te B. Let A be the free semigroup on two generators d, a", and/(g) be the

homomorphism of A into B such that f(d) = x, f(d') = z (g(d)=y, g(a") = t).

Since f-g is defined,

xyzt = f(d)g(d)f(a")g(a") = (/• g)(d)(f g)(a") = (f-g)(da")

= f(d)f(a")g(d)g(a") = xzyt.

Therefore B is subcommutative, which completes the proof.

Theorem 5.6. Let A, B, C be semigroups. There exists a canonical one-to-one

homomorphism of Mor^ (A ® B, C) onto Mor<? (A, Mory (B, C)), which is natural

in A, B, C and becomes a semigroup isomorphism if C is subcommutative.

Proof. Define a mapping <p by: ((<p(u))(a))(b) = u(a ® b) for all aeA, beB,

u e Mor^ (A ® B, C). Then, for any a, d, a" e A, b, V, b" e B, u, «', u" e

Mor<^L4 ®B,C):

((<p(u))(a))(b'b") = u(a ® b'b") = u(a ® b')u(a ® b")

= ((<p(u))(d))(b')((9(u))(d))(b"),

whence (<p(u))(a) e Mor^ (B, C) ;

((<p(u))(da"))(b) = u(da" ® b) = u(d ® b)u(a" ® b)

= ((<p(u))(d))(b)((<p(u))(a"))(b);

whence <p(u) e Mor^ (A, Mor^ (B, C))\

((<p(u'-u"))(a))(b) = (u'u")(a ® b) = u'(a ® b)u"(a ® b)

= ((<p(u'))(a))(b)((<p(u"))(a"))(b)

whenever u' ■ u" is defined, whence

(<p(u'-u"))(a) = (<p(u'))(a)-(cp(u''))(a),<p(u'u")

= <p(d)<p(u")

and <p is a homomorphism.

Let also o be a homomorphism of A into Mor^ (B, C). For all a e A, b e B,

define s(a, b) = (a(a))(b). Then s is bilinear. Therefore one can find

u e Mor^ (A ® B, C)
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such that s(a,b) = u(a®b), i.e. (a(a))(b) = ((<p(u))(a))(b) for all a, b, i.e. a=<p(u).

Therefore <p is onto; since furthermore u is unique above, <p is also one-to-one.

Finally, if C is subcommutative, then Mory (A <g> B, C) and Mor^ (B, C) are

semigroups ; furthermore it is immediate that Mor^ (B, C) is also subcommutative,

so that Mor¡3» (A, Mory (B, C)) is a semigroup too. Therefore <p is then a semigroup

isomorphism. Naturality is left to the reader.

It should be noted that if C is not subcommutative, then <p need not be an iso-

morphism. For example, take A and B as in Example 2.3 and C=A ® B. Then

idc e Mor^ (A ® B, A ® B); idc-idc is not defined in that partial semigroup since

(idc-idc)(e)(idc-idc)(/) = eeff= e/V (ef)2 =. (idc • idc)(e/).

However a=<p(idc) is defined by (o(x))(y)=x ® y for all x e A, yeB; that is,

(<r(0))(0)=0, (a(l))(l)=l, (a(0))(l) = e, (a(l))(0)=/. Hence a-o is defined in

Mor¿» (A, Mor^ (B, A ® B))

and equal to a, since 0, 1, e,/are idempotents. Hence <p is not in this case an iso-

morphism.

On the other hand, <p may be an isomorphism even though C is not subcom-

mutative. Let C be any idempotent semigroup, for instance the semigroup given

by the table

I a   b   c   d

a a a a a

b b b b b

cabed

d    a   b   c   d

(which is not subcommutative since cabd=a, cbad=b). Let A, B be any one element

semigroups. Then Mor^ (B, C)^C; similarly, Mor¿> (A, Mor^ (B, C)) and

Mory (A ® B, C) are isomorphic to C, since A and A ® B have only one element.

In this case, <p is the natural isomorphism

Mor^ (A®B,C)^Cc¿ Mor^» (A, Mor^ (B, C)).

6. Tensor product in ¿^Q. By ¿f0 we understand the category whose objects are

all semigroups with zero (all the zeros shall be denoted by 0) and whose morphisms

are all semigroup homomorphisms/such that/(0) = 0.

If (v4,)ie/ is any family of semigroups with zero, a mapping j of fiiez At into some

semigroup with zero C is zero-I-linear if for every /0 e /, the mapping aio —-> s((a¡)i£¡)

is a homomorphism of ¿f0 of Aio into C whenever all at are fixed except for a,0. In

other words, s is zero-/-linear if and only if it is /-linear and satisfies s((a,)ie,)=0

whenever one of the af is 0. Expressions like zerobilinear, zerotrilinear, shall have
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the obvious meaning when / has few elements. We define a zero tensor product of

the family just as we defined the tensor product, but replacing /-linear mappings by

zero-/-linear mappings and homomorphisms by homomorphisms of ¿f0. We

keep the same notation, with ®° instead of ®.

Observe that, if each At is a semigroup with zero, (x)16; At will also be a semigroup

with a zero (namely, ^°eI) but need not be a zero tensor product of (A^)isI; a

counterexample is furnished by Example 2.3 in which 0 ® 1^0.

It is easy to show the existence of (x),°eí Ai for any family 04¡)ie/ of semigroups with

zero, using the same method as in Theorem 2.1 and an analogous construction.

The following result gives a quicker construction and establishes a relationship

between ®° and ®.

Theorem 6.1. Let (At)ieI be any family of semigroups with zero. Let Z be the

ideal o/0iei At generated by all elements (§)¡eí a¡ such that a¡ = 0 for some i. Then

(§),eí At/Z is a zero tensor product of(At)ieI.

Proof. Let p be the canonical homomorphism of (x)i6; At onto (x)i6í AJZ. Then

(x)ieJ AJZ is a semigroup with zero and /: (a¡)¡eí 'w—>/>(<SW ad a zero-7-linear map-

ping. Let s be any zero-/-linear mapping of F]¡6/ At into some semigroup with zero

C. Since s is in particular /-linear, there is a unique homomorphism u of (g)ie/ At

into C such that s((a¡)ieI) = u((¡x)ie¡ a¡) identically. Since s is zero-7-linear,

"(<8>ie/ d) = 0

whenever a¡=0 for some /; hence u is null on Z and there exists a unique homo-

morphism v of 016/ Ai/Z into C such that u = v° p. Then v is also such that

v o t=s. Since (X)je/ AJZ is generated by Im t, such v is unique, which completes

the proof.

For the next result, we switch for simplicity to the case when / has two elements.

For any semigroup S, denote by 5° any semigroup resulting from the adjunction

of a formal zero to S.

Theorem 6.2. If A, B are any semigroups, A° ®° B°^(A ® B)°.

Proof. Let/(g) be the canonical inclusion homomorphism of A (B) into A° (B°).

Since/and g are one-to-one and consistent, the homomorphism/® g of A ® B

into A0 ® B° is consistent by Theorem 4.1. In particular Y=A° ® B°—lmf® g

is either empty or an ideal of A0 ® 5°. We are going to prove that Y coincides

with the ideal Z of A° ® B° generated by all elements of the form 0 ® b', d ® 0

(d eA,b'e B).

We keep the notation of 3.1, the primes indicating now that we deal with A0 ®B°.

First it follows from the proof of Theorem 4.1 that (h(M), N') e W implies

N' e Im h. Next it is clear that M' = w'(dx, b'y) ■ ■ ■ w'(a'„, b'n) is in Im h if and only if

a't^O, b[=£0 for all i. From this we deduce that Zs Y. If t' eZ, then it can be

written under the form t' = (dy ® b[)- ■ (a'n ® b'n), where a¡ e A, b[eB for all i,
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and a't = 0 or b'(=0 for some i. Setting N' = w'(a'x, b'x)- • -w'fX, b'n), so that t'

= k'(N'), we conclude that N' $ Im h. If now t ' $ Y, then t' elmf® g and, for

some MeF,t' would be equal to if ® g)(k(M))=k'(h\M)) ; then (h(M), N') e «"

and JV" £ Im A, which is impossible.

On the other hand, if t' e Y, then t' $ \mf® *. If t' is written under the form

k'(M') for some M' = w'(a'x, b'x) ■ ■ ■ w'(a'n, b'n), then M' £ Im«" and therefore ^ = 0

or ¿>i = 0 for some ;'. Hence t' = (a'x ® b'x)- ■ -(a'n ® b'n) eZ.

Therefore Y—Z. Since Im/(g * is a subsemigroup of A0 ® B°, we have

A0 <g B°/Z = A°®B°/Y^ (Imf® *)°.

Since f® g is one-to-one by Theorem 4.1, we conclude that

(A ® B)° ~ (Im/(g *)° ^ A0® B°/Z £ ,4° <g° 5°,

in view of Theorem 6.1. This completes the proof.

It is immediate to verify that, except for 1.1 and 5.3, all properties of §§1, 3, 5

extend to <g° (replacing B by B° in 1.2, 1.3). We do not mention §4, since a con-

sistent homomorphism of £f0 is necessarily onto. Yet the main reason we intro-

duced ®° is that 5.1 improves with ®°. Namely, we can now lift all restriction on

X in 5.1 to obtain :

Theorem 6.3. Let Ä 1> A L> A" be a coexact sequence (of £f0), where f is onto,

and let X be any semigroup with zero. Then the following sequence:

is coexact.

Proof. The reason is that X <g° {0} = {0} by the definition of a zerobilinear map-

ping. With the same notation as in 5.1 (except for ®°), we have e" = 0, and e" <g°

x=0 for all x e X (even if X is not i-indecomposable). Using the same reasoning

as in the proof of 5.1, one concludes that the sequence A' ®° X -> A ®° X ^- A"

®° X is null, then coexact.
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