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In an earlier paper we defined and proved some properties of the tensor product

of semigroups. It turns out that the category of commutative semigroups has also

a tensor product, which is in many respects more interesting. It keeps all the main

properties of the tensor product of arbitrary semigroups (preservation of one-to-one

consistent homomorphisms, right exactness, adjoint associativity) and is further-

more colimit-preserving and an associative operation; when applied to abelian

groups, it gives the ordinary tensor product of groups.

These properties occupy the second section of this paper, the first being devoted

to some examples. In the third section, we study flat commutative semigroups. We

prove that a flat commutative semigroup with a minimal generating subset must be

free, but that flatness is not hereditary and that there exist flat commutative

semigroups which are not free. The nature of flat commutative semigroups remains

open, as well as the noncommutative case.

Heavy use is made of the properties of the tensor product of arbitrary semigroups,

which we established in [5]. For the fundamentals of semigroup theory, the reader

is referred to [1] and [2]. Throughout, the largest commutative homomorphic

image of a semigroup A will be denoted by C(A) ; the largest idempotent (resp.

normal) homomorphic image of A will be denoted by E(A) (resp. N(A)) (normal

means: (xy)n = xnyn for all x,y e A and all n [5], [8]). These are covariant functors,

in fact coreflexions, of the category of all semigroups onto the full subcategory

under consideration; as coreflexions, they preserve colimits and, for instance, the

semigroups Horn (A, B) and Horn (C(A), B) are naturally isomorphic whenever

B is commutative (if B is commutative, Horn (A, B) is the (commutative) semi-

group of all homomorphisms of A into B with pointwise multiplication; for core-

flexions, see [6]).

1. Definition, existence, examples. If (A,)^, is a family of semigroups, we say

that a mapping s of the cartesian product YJieI A¡ into some semigroup C is I-linear

if for every i0 e / the mapping ato ~-> s((tf¡)ie/) is a homomorphism of Aio into C

whenever all a, are fixed except aio. If all the At's are commutative and if an /-linear

mapping t of n¡sí At into some commutative semigroup /is such that any /-linear

mapping s of n¡e/ ^i hrto any commutative semigroup C has the form u ° t for

some unique homomorphism uofT into C, then we say that the pair it, T) (or the
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semigroup T) is a commutative tensor product of the family (A¡)íe¡. In such case, we

shall denote T and t((ai)ieI) by <g)?6i A, and (g)?6i a,, or by Ax ®c A2®c--- ®c An,

ax ®c a2 ®c ■ ■ ■ ®c anif I={\,2,..., n).

By dropping all commutativity restrictions in the definition above, we obtain the

tensor product <g in the category of all semigroups. We use the notation ®c for the

commutative tensor product because (g)i6/ A¡ need not be a commutative semigroup

even when all Ai's are commutative (Example 2.3 of [5]), hence need not coincide

with <g)?e7 At.

The method used in [5, Theorem 2.1] to prove the existence of (g)i6/ Ax works in

any variety and can thus be used to establish the existence of the commutative

tensor product. However, the following method gives a very useful relationship

between our two tensor products.

Theorem 1.1. Let (A^)ieI be any family of commutative semigroups. There exists

a commutative tensor product of the family (Ai)isI and it is unique up to isomorphism.

Furthermore, (g)feí ,4¡sC((g)i6í Ax).

Proof. The uniqueness is immediate from the definition by universal property.

For the existence, let T=C((R)ie, At), p be the projection of (g)je7 At onto Tand t be

defined by t((a^ie¡)=p(^ie¡ a¡). Then t is /-linear. If i is an /-linear mapping of

riie/ A{ into a commutative semigroup C, then there is a homomorphism v of

®iei At into C such that i((a¡)i6;) = v(<S)iei ad identically; since C is commutative,

v factors through/?, v = u°p and now s((al)ieI) = u(t((al)ie,)) identically. Finally Tis

generated by the elements of the form t((ai)ieI), since (g)ie/ AK is generated by the

elements of the form (§)¡eí a¡; hence the homomorphism u is unique. This completes

the proof.

As a consequence, the two following properties of ® can be extended to ®c:

namely, E ® A s E(A) if E is a one element semigroup, N ® A^ N(A) if N is an

infinite cyclic semigroup (Propositions 1.1, 1.2 of [5]). If A is commutative, then

E ®c A^C(E ® A)^C(E(A))^E(A), N ®c A^C(N ® A)^C(N(A))^A. Observe

that E(A) is now the largest semilattice homomorphic image of A ; it is trivial if

and only if A is archimedean [1]. As for N ® A^A, the isomorphisms are given by

a ~->- a ®c b, bn ® a ~-> an, if b is the generator of N; they can be used for a direct

proof.

The following two properties, however, do not hold for ®. Example 2.3 of [5]

shows that A ® B need not be finite when A and B are finite. For ®c, we have

Proposition 1.2. If A is a finite commutative semigroup and if B is a finitely

generated commutative semigroup, then A ®c B is finite.

Proof. Let 5 be a finite generating subset of B; then A ®c B is generated by all

elements of the form a ®c s (a e A, s e S) hence is finitely generated. On the other

hand, each element a of A has finite order, say ar = ar + p (r,p>0), whence every

generator of A ®c B has finite order since, by bilinearity,
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(a ®c s)r = aT®cs = ar+p ®c s = (a ®c s)r+p.

Since A ®c B is commutative, it must now be finite.

Proposition 1.3. Let A andB be abelian groups. Then A ®c B is an abelian group,

namely the tensor product of A and B as abelian groups.

Proof. By [5, Proposition 1.4], A ® B is a group. Thus A ®c B is an abelian

group by 1.1. Finally, the universal property which characterizes the tensor product

of abelian groups follows for A ®c B from its very definition.

We conclude with two more examples which will be useful later.

Proposition 1.4. Let Z be the additive group of all integers and A be any com-

mutative semigroup. Then Z ®c A is union of groups.

Proof. We know that Z ®c A is generated by all elements of the form n ®c a.

By bilinearity

(n ®c d)(m ®c b) = (1 ®c anbm) ifn,m> 0,

= (-1 ®ca-nb~m)   ifn,m<0

so that the elements of Z ®c A can be written under one of the two forms n ®c a,

(n ®c a)(m ®c b). For a given a, the elements of the form n ®° a form a group,

homomorphic image of Z. For given a and b, the elements of the form

(n ®c a)(m ®c b) form also a group; indeed (0 ®c a)(0 ®c b)=0 ®c ab is idem-

potent and

(n ®c a)(m ®c b)(0 ®c a)(0 ®c b) = (n ®c a)(m ®c b),

(n ®c a)(m ®c b)(-n ®c a)(-m ®c b) = (0 ®c a)(0 ®c b)

for all n,meZ. This completes the proof.

If A and B are any commutative semigroups, A® B can be presented as the

semigroup generated by all a® b subject to all bilinearity relations : a® bb'

= (a® b)(a ® b'), ad ®b = (a® b)(d ® b) (cf. [5]). By Theorem 1.1, A ®c B can

therefore be presented as the commutative semigroup generated by all a ®c b

subject to all bilinearity relations. If A and B are themselves given by generators

and relations, the presentation of A ®c B is correspondingly simplified. We use this

technique to construct the next example.

Proposition 1.5. Let N0 be the additive semigroup of all nonnegative integers.

Let A be any commutative semigroup. Set B — E(A), C=A x B, M=A u5uC and

let p be the projection of A onto B. Define a multiplication in M by

d*a" = da",   V * b" = b'b",   (d, b') * (a", b") = (da", b'b"),

a*b = b*a = (a,b),   a* (d, b) = (d, b) * a = (ad, b),

b * (a, b') = (a, b')*b = (a, bb')

for all a, d, a" e A, b, b', b" e B. Let <€ be the smallest congruence on M such that

a <€(a,p(a))for all a e A. Let T=M/^ and k be the projection of M onto T. Then
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No ®c A^T and the isomorphism sends O ®c a onto k(p(a)) and n ®c a onto k(an)

(n>0).

Proof. The semigroup JV0 ®c A is the commutative semigroup generated by all

elements 0 ®° a (=p(a)), 1 ®c a (-a) subject to the following relations:

(0 ®c d)(0 ®c a") = 0 ®c da",   (0 ®c a)2 = 0 ®c a,

(1 ®c d)(\ ®c a") = 1 ®c da"   and (0 ®c d)(\ ®c a) = 1 ®c a.

Clearly M is the commutative semigroup generated by all these elements subject to

all relations except the last one. The result follows.

Lemma 1.6. For any a, be A, (0 ®c a)(l ®c b)¿0 ®c a in N0 ®c A.

Proof. In view of 1.5 we may prove that (b, p(a)), and p(a) are never equivalent

modulo e€. We shall prove a little more : that, if the class of me M modulo *£ has

more than one element, then m$B.

The proof uses the construction of the smallest congruence ^ on a semigroup M

which contains a given binary relation 3/t on M. This construction will be used again

later and is as follows. Let 38 be the binary relation on M defined by m38n if and

only if there exist u,veM^ and p,qe M such that m = upv, n = uqv and either p = q

or p0tq or q3$p. Then <€ is the transitive closure of <€ (cf. [2]).

In the particular situation of the lemma, let m e B be such that the class of

m modulo # has more than one element. Then there exists ne M such that m38n,

m^n. Write m-up, n = uq, where u e M1 and either p3?q or q3ip. Looking at the

multiplication table of M we observe that p must be in B, which makes p3iq and

qStp impossible. Therefore, if m e B, the class of m modulo ^ cannot have more

than one element, which completes the proof.

2. Functorial properties of the commutative tensor product. If (A¡)ieI, (5¡)is7 are

families of commutative semigroups over the same index set / and if, for each i e I,

/ is a homomorphism of A into B, then there exists a unique homomorphism

¿)¡e// of ®L/^i into ®¡e¡Bl such that (®S,/./D«g&/fli)=®te//f(fli) identically.

This makes a multifunctor of / variables, covariant in each variable, provided that

we can select a commutative tensor product for each family (which is ensured by

Theorem 2.1 of [5] and Theorem 1.1). Observe then that <8>f6// = C((g)ie//).

As was the case with ®, A ®c B and B ®c A are naturally equivalent bifunctors.

The following property, however, does not hold for ® [5, Example 2.3]:

Proposition 2.1. A ®c B ®c C, A ®c (B ®c C)and(A ®c B) ®c C are naturally

equivalent trifunctors.

Proof. It parallels closely the proof of the similar property for, say, abelian

groups. Therefore we prove only the natural equivalence of A ®c B ®c C and

(A ®c B) ®c C in case the reader wants to see where the commutativity is used. For

the same reason we leave out the more general forms of associativity of ®c.
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Since the mapping (a, b, c) ~~+ (a ®c b) ®c c is trilinear, there exists a homo-

morphism u of A®° B®c C into (A ®c B) ®c C such that u(a ®c b ®c c) =

(a ®c b) ®c c identically. On the other hand, (a, b) —> a ®c b ®° c is bilinear for

each ce C, whence there is a homomorphism vc of A ®c B into A ®c B ®c C such

that v0(a ®° b) = a®° b ®c c identically. If now c', c" e C, then ve--vc- is also a

homomorphism (since A ®c B ®c C is commutative); it agrees with ve,c. on all

generators a ®c b of A ®c B, which makes vc(t) a bilinear mapping of (A ®c B)xC

into A ®c B ®c C. Therefore there exists a homomorphism v of (A ®c B) ®c Cinto

A ®c B ®c C such that

v((a ®c b) ®c c) = vc(a ®c b) = a ®° b ®c c

identically. It is immediate that u and v are inverse isomorphisms and are natural

in A, B, C.

In order to obtain deeper properties of <gc we need a preliminary study of the

functor C. First we say that a semigroup homomorphism/of A into B is consistent

if b'b" £ im/ implies V £ im/ and b" e im/ (where im/ is the range of/); i.e. if

B — im/is either empty or an ideal (cf. [4], [2]).

Lemma 2.2. Iff is consistent, then C(f) is consistent; if furthermore fis one-to-one,

then C(f) is one-to-one.

Proof. Let /be of A into B and p: A-> C(A), q: B-> C(B) be the projections,

so that C(f) is given by: Cif) ° p=q °fi The congruence (£ = kerp induced by p is

the smallest congruence on A such that a'a'"tfa"a' identically; thus it is the transitive

closure of the binary relation (€x on A defined by: axc€xa2 if and only if there exist

u, v £ A1, s, t £ A such that ax = usv, a2 = utv and either s = t or s=a'a", t = a"a' for

some a', a" e A. The congruence ££ = ker q has a similar description from the cor-

responding binary relation 2X on B.

Since/is consistent, bx2xb2 and bx e im/implies b2 e im/ Therefore bx2b2 and

bxeimf implies b2 e im/ It follows that Cif) is consistent: if qib')qib")

= C(f)(p(a)) for some aeA, then b'b"2f(a), whence V, b" e im/ and q(b'), q(b")

eim C(f).
If/is also one-to-one, suppose that C(f)ipia')) = C(f)ipia")), where a', a" e A.

Then f(a')3>f(a") so that there exist bx,...,bneB such that fa') = bx, bßxbi+x

for all i= 1,...,« — 1 and bn=f(a"). By induction on i, there exist ax,. .., ane A

such that bj =f(al) for all i, by the first part of the proof. Now the assumptions on

/make that a$xal+x for all ;'=1,..., «— 1. Therefore a'Wa", i.e. p(a')=p(a"),

which shows that C(f) is one-to-one and completes the proof.

If/and * are one-to-one and consistent, thenf® g is one-to-one and consistent

[5, Theorem 4.1]. Then so is/®c g = C(f® g) by the lemma. This proves

Theorem 2.3. If fand g are homomorphisms of commutative semigroups, and iff

and g are one-to-one and consistent, then f®° g is one-to-one and consistent.

If on the other hand fand g are onto, thenf® g is onto and so is C(f® g)=f®cg-
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We defined in [5] a coexact sequence as a sequence A.!> B £_>. C of semigroups

and homomorphisms such that ker g is the smallest congruence on B some class of

which contains im/

Theorem 2.4. Let AL^BL^Cbea coexact sequence of commutative semigroups,

where g is consistent (for instance, onto). Let X be an archimedean commutative

semigroup. Then the sequence

f®cidx                  g®cidx
A ®c X--► B ®c X—-> C ®c X

(where idx is the identity on X) is coexact, and g ®c idx is consistent (onto, if g is

onto).

Proof. Since E(X) is trivial, the sequence

f ® id x                  g ® id x
A ® X—->B® X—->C® X

is coexact, with g ® idx consistent, by Theorem 5.1 of [5].

Suppose first that g is onto (so that g ® idx is also onto). In this case the sequence

of Theorem 2.4 is coexact with g ®c idx onto because C preserves colimits. Indeed

observe that a sequence FJi> Qjl> R is coexact, with v onto, if and only if R is

(with v) the colimit of the following diagram with three vertices (full arrows) :

u
P->Q

i
\v

Y Y

E-+R

where F is a one-element semigroup.

In the general case, g can be written as g=g' ° g", where g" is onto and g' one-to-

one and consistent. Then the sequence (/ ®c idx, g" ®c idx) is coexact, with

g" ®c idx onto, by the previous case. Also Theorem 2.3 implies that g' ®c idx is

consistent, so that g ®c idx = (g' ®c idx) ° (g" ®c idx) is consistent, and one-to-one,

so that the sequence (/®c idx, g ®c idx) is coexact. This completes the proof.

As in the case of ®, it is possible to remove the assumption on X by restricting

the tensor product further, to the subcategory of commutative semigroups with

zero (or identity) (see [5]).

Finally ® has the following adjoint associativity property, that Horn (A ® B, C)

and Horn (A, Horn (B, C)) are naturally isomorphic semigroups whenever C is

commutative (follows from [5, Theorem 5.6]).

Theorem 2.5. For any  commutative semigroups   A, B, C,   Horn (A ®° B, C) '

^Hom (A, Horn (B, C)) by an isomorphism which is natural in A, B, C.

Proof. We have the sequence of natural isomorphisms :

Horn (A ®c B, C) s Horn (C(A ® B), C) £ Horn (A ® B, C)

S Horn (A, Horn (B, C)).
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The two following lemmas will be of use. First let <$ (Si) be a congruence on the

commutative semigroup A (B). Let 'S ®c 9 be the smallest congruence on A ®° B

which contains all pairs (d ®c b, a" ®c b) such that (d, a") e % and all pairs

(a ®c b', a ®c b") such that (b", b") e 9. A congruence # ® 9 was defined analo-

gously in [5, Definition 3.3], (using ® instead of (gc).

To deal with these congruences, it is useful to define, for each congruence ¿rf

on a semigroup S, a congruence C(si) on C(S) as the smallest congruence on C(S)

which contains all pairs (p(s'), p(s")) such that (s', s") e sí (where p is the projection

of S onto C(S)). Indeed it is clear that C(% ® 9)=% ®c 9. What we shall use is

the following sublemma: iff is a homomorphism of S onto some semigroup T,

then C(ker/) = ker C(f).

Let q be the projection of T onto C(T), so that Of) °p=q °fi If /\s') =f\s"),

then C(f)(p(s')) = C(f)(p(s")), whence C(ker/)sker C(f). To obtain the converse

inclusion, let C=C(S)/C(ker/) and k be the projection of C(S) onto C. Then

f(s')=f(s") implies k(p(s'))=k(p(s")) by definition of C(ker/); hence ker/ç

ker k °p, so that k °p=g °ffor some homomorphism * of Tinto C, for/is onto.

Since C is commutative, g=u ° q for some homomorphism u. Then

k op = go/= u°q of = «o C(/) ° /?

so that k = uo C(f) and ker C(/)eker k = C(kerf). This proves our sublemma.

Lemma 2.6. Let fand g be onto homomorphisms of commutative semigroups. Then

ker (/ ®c g) = kerf ®c ker *.

Proof. By Theorem 3.4 of [5], ker (/ <g *) = ker/ (g ker *, since/and * are onto.

Since / (g * is also onto, the sublemma yields

ker (f®cg) = ker C(f®g) = C(ker/(g*) = C(ker/<g ker*) - ker/®c ker*.

Lemma 2.7. Let 8PÍ&) be a binary relation on the commutative semigroup A(B)

and 1¡i9) be the smallest congruence on AiB) containing ^(J). 77¡e« ̂  ®c 9 is the

smallest congruence on A ®c B which contains all pairs id ®c b, a" ®c b) such that

id, a") £ 8s and all pair's (a ®c b', a ®c b") such that (b', b") e 1.

Proof. Same as the proof of Lemma 3.6 of [5].

We are now in position to prove that ®c preserves colimits. First, we have

Theorem 2.8. Let X be any commutative semigroup. The functor A -~> A ®c X

preserves direct sums. More precisely, if iA¡)ie, is any family of commutative semi-

groups, there exists an isomorphism 8 ofHJie, At) ®c X onto \Jie, (/4, ®° X) which

is natural in X andiA^)ie, and such that 8 o (m¡ <gc idx)=nlfor all i e I, where mt («¡)

m the injection of A¡ iA¡ ®c X) into ]Jie/ At (TJieí (^¡ ®° X)).

Proof. For some descriptions of the direct sum, see [2] (the direct sum is there

denoted by 2)- All we use is the fact that it is a direct sum in the category of all

commutative semigroups.
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Observe that (a¡, x) ~--> m^ai) ®c x is a bilinear mapping of At x X into (Hie/ A)

®c X. Hence it induces for each i a homomorphism ?>, of At ®c X into (UieI A¡)

®c X, whence there is a homomorphism <p of LLe/ (At ®c X) into (liie/ ^¡) ®c X

such that <p(«¡(a¡ ®c x)) = w¡(a¡) ®c x identically.

On the other hand, for every i el, xe X, 8¡ iÄ(a()=«i(a( ® x) defines a homo-

morphism of Ai into ¡Jie/ (Ai ®c A"), whence there is, for each x e X, a homo-

morphism 8X of LJte/^i into TJts/ (At ®c X) such that dx(m¡(ai))=ni(ai ®c x).

Since JJjej (Ai ®c X) is commutative, the pointwise product 8X,-8X., is a homo-

morphism for any x', x" e X; it agrees with 8X.X» on each generator m^) of J_Jie, At,

whence 8X.X, = 8X,-8X... This proves that 9x(a) is a bilinear function of (a, x).

Therefore there exists a homomorphism 6 of (LLe/ A¡) ®c X into T_Jisi (Ai ®c X)

such that o(m¡(a¡) ®c Ar)=«¡(ai ®c x) identically.

It is now clear that 0 and <p are inverse isomorphisms and that 8 has all the

properties required in the theorem.

Observe that a very short proof of this theorem can be given, using adjoint

associativity (Theorem 2.5), but it will not give the formula 8 o (mt ®cidx)=«f

which we shall need later (and does not follow from the naturality in this case!).

Theorem 2.9. Let X be any commutative semigroup. The functor A ~~> A ®° X

preserves colimits.

Proof. Let D be a diagram of commutative semigroups, i.e. a family (Ai)ie¡ of

commutative semigroups with, for each i,jel, a (perhaps empty) family (fm)msMtt

of homomorphisms of A¡ into A¡. The colimit of D consists of a commutative semi-

group A and a family (/i)ie/ of homomorphisms / of At into A, and it can be

constructed as follows : let «¡ be the injection of A¡ into T_Jis, At and <€ be the

smallest congruence on T_Jie7 A¡ which contains all pairs (n.,(/m(tf¡))> «¡(ûO) such that

ateAi and meMu; then we may take A = J_[ieiAfâ and/=fcon(, where k

is the projection of T_Jj6/ ̂4, onto A.

To prove that A ®° X together with the family (/ ®c /x)iei is a colimit of the

diagram D ®c X, we shall verify that our functor preserves each step of the

construction above, up to isomorphism. Theorem 2.8 gives an isomorphism 8 of

(liie/ A) ®c X onto TJie/ (Ai ®c X) such that 8 ° («, ®c Ix) is the injection qt of

Ai ®c X into TJje7 (Ai ®c X), which is a first step.

Next k yields a homomorphism R = (k ®c idx) »Ö"1 of JJiei (At ®c X) onto

A ®c X; it follows from 2.6, 2.7 that ker k is the smallest congruence on

Liie/ (A ®c X) which contains all pairs (g/(/m ®c idx)(a¡ ®c x)), qt(ai ®° x)) such

that öj e A¡, me Miti (since 0 ° (n¡ ®c idx)=<7¡).

Finally/ yields a homomorphism/ ®c idx of At ®c Xinto A ®c Zsuch that

/ ®c idx = (A: ®e idx) o («, ®c idx) =b9o(n,®c idx) = £ o?l.

This completes the proof of the theorem.
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3. Flat commutative semigroups. A commutative semigroup K is flat iff ®c idK

is one-to-one whenever / is a one-to-one homomorphism of commutative semi-

groups. For instance,

Proposition 3.1. Any free commutative semigroup is flat.

Proof. Let F be a free commutative semigroup on some set /# 0 ; we can write

F as a direct sum J_Tie7 N¡ of infinite cyclic semigroups. Let also A and B be com-

mutative semigroups and /be a one-to-one homomorphism of A into B. Theorem

2.8 provides an isomorphism 8A of A ®c F onto Tjie7 A¡, where At = A ®c N¡^A,

and an isomorphism 8B of B ®c F onto TJje7 B¡, where Bt^B. The homomorphism

/ induces a homomorphism / of At into Bt which is one-to-one, for all i e I; now

His// is also one-to-one and, since 8B o (/(geidí.) = (TJi67/) ° 8A by naturality,

f®° idF is one-to-one.

From other results of §1 we can obtain some properties of flat commutative

semigroups.

Proposition 3.2. Any flat commutative semigroup K is separative.

Proof. Separative is equivalent to: each archimedean component of Kis cancel-

lative, and to: Á"can be embedded into a union of groups (see, for instance [1]). We

prove the latter. Let N(Z) be the additive semigroup of all positive integers (all

integers) ; the embedding of N into Z yields, if K is flat, an embedding of N ®c K^ K

into Z ®c K, which is a union of groups by 1.4.

Proposition 3.3: Let K be a flat commutative semigroup; for any x,yeK,

x^xv. In particular aflat commutative semigroup contains no idempotent.

Proof. Let N0 be the additive semigroup of all nonnegative integers and Z be as

above. If K is flat, the embedding of N0 into Z yields an embedding of N0 ®c K

into Z <gc K. Let x, y e K; by 1.6, 0 <gc x^(0 ®c x)(l ®c y) in N0 ®c K. Yet if

xy = x, then we have in Z ®c K the equality

(0(gcx)(l ®cy) = (-1 ®c x)(l <gcx)(l ®cy) = (-1 <gcx)(l ®c x) = 0 ®° x,

which is impossible if K is flat.

It follows from 3.3 that a flat ( = torsionless) abelian group is not flat in the cate-

gory of commutative semigroups. In fact, flatness is a fairly strong condition for a

commutative semigroup, as shown by the following

Theorem 3.4. Let K be a commutative semigroup having a minimal generating

subset X. Then K is flat if and only if it is free.

Proof. The converse is just 3.1. To prove the direct part, we assume that K is flat,

but not free. In this case, K is not free on X, so that a nontrivial relation holds in K

between some elements of X; we can always suppose that this relation is of the form

jtfucS»-•■*£» =AlA*---A*,
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where the pt's and <7¡'s are positive integers. Since the relation is not trivial there

exist indices such that Pt^qi and we may further assume that these come first, that

is that there is an integer m, lámán such that Pi¥=q¡ whenever i¿m and /j¡ = í¡

whenever i>m. Also we may assume that n> 1 ; if n= 1, then AT contains an idem-

potent, which is impossible by 3.3.

Let B be the free commutative semigroup on n+1 generators b, bx, b2,..., bn.

Consider the elements ai=bib"i, di = bib^; these are n + m elements of B since

ai = a'i whenever i>m. In B ®c K we have

(ay ®c Xy)- ■ -(an ®c xn) = (bxbpi ®c xx)- ■ -(¿„¿A ®c xn)

= (by ®C Xy)- ■ -(bn ®C Xn)(bPl  ®C Xy)- ■ ■ (*»» ®c xn)

=  (by  ®C Xy)- ■ -(bn ®C Xn)(b ®C Xif -XPnn)

= (bx ®c xy)--- (bn ®c xn)(b ®c xl* • • ■ x«n»)

= ■■■=   (byb"l  ®C Xy)- ■    (b^n   ®c Xn)

=   (dy®CXy)---(dn®CXn).

Now we proceed to show that (ay ®c Xy) ■ ■ ■ (an ®c xn) and (ai ®c xx)

■ ■ ■ (a'n ®c xn) are different in A ®c K, where A is the subsemigroup of B generated

by the a¡'s and a"s. This will contradict the assumption that K is flat and complete

the proof. This would be very easy if A were free (which can be shown to happen

only for m = 1). As it may not be the case, we seek a presentation of A. The follow-

ing presentation will serve, even though it could be replaced by a finite presentation,

since A is finitely generated [7].

Lemma 3.5. The semigroup A is isomorphic to the commutative semigroup generated

by ax,..., an, a'x,..., a'm subject to all relations which hold in A and have the form

ai1 ■ ■ ■ d¿?dysí ■ ■ ■ a'& - a* ■ ■ • d*dysi ■ ■ ■ a>,

where, for each i 1km, either í¡ = 0 or s[ = 0; a°, dt0 are considered as a formal

identity; for some i^m, either s¡^0 or s'¡^0.

Proof. It is enough to show that any relation between aly..., an, a'x,..., a'm is

a consequence of one of these. Suppose that

<# • • • aWi ■ ■ ■ dfr = a\i ■ ■ ■ a«.ai»i ■ • • <¿£~

holds in A, where tu t[, u¡, u[ are nonnegative integers but not all zero, and that

ti^Ui or tl^u'i for some i, so that the relation is not trivial. Since B is free on

b, by,..., bn, one must have t¡ +1¡ = u¡ + u[ for all i^m, ?i = Wi for all i>m. Since A

is cancellative, we obtain by cancellation a relation of the form described in the

lemma, which holds in A, and of which the given relation is a consequence since it

can be obtained by multiplying both sides by some element of A.

Let 3i be the set of all relations described in 3.5. This presentation of A gives a

homomorphism <p of the free commutative semigroup F generated by ay,.. .,an,a'y,
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• • -, a'm onto A, such that ker y is the smallest congruence on F which contains 8%.

Since Fis the direct sum of all (infinite cyclic) subsemigroups Nai, Nai generated in

F by a¡, at, Theorem 2.8 gives an isomorphism 8 of F ®c K onto Kai U Ka2 H

• • • II Ka¡t U Kai LI ■ • • II Ka-m, where Kat = Na¡ ®c K is isomorphic to K by y ~-■> a{

®c y=yat, and similarly for Ka-. Then we have a homomorphism i/< = (<p ®c idK)

o Ö-1 of Kai U ■ ■ ■ II *„„ Il^n-U^i^S onto A ®c K; by 2.6, 2.7, ker</-=íí

is the smallest congruence on the direct sum which contains all pairs

such that

of • • -a^d/i ■ ■ ■<& = ai1 • • -a^i- ■ -a'£-

is one of the relations described in 3.5, and y e K.

To show that (ax ®c xx) ■ ■ ■ (an ®c xn) and (a'x ®c xx) ■ ■ ■ (a'n ®c xn) are different

in A ®c K is now equivalent to proving that (xx)ai ■ ■ ■ (xn)an and (x^j • • • (xn)ai¡ are

not equivalent modulo <€ in S. This is done as follows. If they are equivalent, then

there will exist vx,..., vr e S such that vx = (xx)ai- ■ -(xn)0n, vr=(xx)ai- ■ -(xnyn and

that Vj, vj+x are related as follows: either Vj = vj+X or there exist WjeS1 and a

relation of the kind described in 3.5:

(1) aï1 • • • *ais! • • ■ dfr = asi ■ ■ ■ a%d{i ■ ■ ■ itf«

such that

»/+i = wiysl---ytysa\---ysal

for some y e K (observe that the roles of the st's and s['s can be exchanged).

Suppose first that vx^v2. By the condition on vx, we must have s'x= ■ ■ ■ =s'm = 0

in the direct sum S; furthermore, equating the components in Kai yields xi=zivs'

for all i^m, where z, e K1 is the component of wx. Since K is generated by X, we

obtain for each iima relation between the elements of X.

Suppose that this relation is trivial for all i^m. Then for each i^m, zt= 1, y=x{

and st= 1, or else z¡ = x¡, s¡=0. If there is only one i^m such that ^^0, (1) reads:

ai = a'i, which is impossible since/j,^^ as i^m. If there exist i,jtüm, i +j such that

jj^O, Sjj^O, then Xi=j=x„ which is impossible. Therefore, we can find i£m such

that x4 = Zjjs' is a nontrivial relation between the elements of X.

Choosing i thus, this relation expresses x¡ as a product of elements of X. It is

impossible that this product does not contain x¡, since Xis a minimal generating

subset. But if it contains x¡, then we have in K an equality of the form Xi=x¡? for

some t e K, which is impossible by 3.3.

Thus vx = v2. By induction on j, we obtain similarly that vx = v} for all/'=r, in

particular vx = vr. But the conditions on vx, vr make such equality impossible in the

direct sum S.

This completes the proof of the theorem.
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There are a few more things we can say about flatness. First we have the following

consequences of Theorem 3.4.

Proposition 3.6. For commutative semigroups, flatness is not hereditary.

Proof. Let F be the free commutative semigroup on two generators a, b. Then F

is flat by 3.1. However, the ideal A of F consisting of all elements of the form

anbm, where n, m>0, is not flat; for it has a minimal generating subset

X = {abm,anb;m,n > 0},

yet it is not free since it is not free on X.

Corollary 3.7. There exists a commutative semigroup X such that f®°idx is

one-to-one whenever f is a one-to-one homomorphism of a free commutative semi-

group A into a commutative semigroup B, yet which is not flat.

Proof. Suppose it were not so; then any commutative semigroup having the

property indicated in the statement would be flat. Then any subsemigroup L of any

flat semigroup K would be flat, since, for any one-to-one homomorphism / of a

free commutative semigroup A into a commutative semigroup B, the commuta-

tivity of the diagram

/®cidL
A ®c L-> B®CL

id4 ®c / idB ®c /

/®cidx
K--► B®CK

(where / is the inclusion of L in K) and the flatness of AT and A imply that/®0 idL

is one-to-one. But this contradicts 3.6.

In particular, the proof of Theorem 3.4 cannot be shortened by a more ingenious

choice of A and B in which A would be free.

There is, however, a weak form of hereditary property which applies to flatness.

Proposition 3.8. Any consistent subsemigroup of a flat commutative semigroup

is flat.

Proof. Let K be flat, and consider the diagram in the proof of 3.7, where now we

do not suppose that A is free, but take / consistent. Then id¿ ®c / is one-to-one

by Theorem 2.3 and the commutativity of the diagram yields that L is flat.

Finally, 3.1 will yield more examples of flat commutative semigroups, due to the

following result :

Proposition 3.9. For commutative semigroups, flatness is a local property.

Proof. This means that any locally flat commutative semigroup is flat (see [3]).

Let K be locally flat, so that K is the union of a directed family (K^)le, of flat (com-

mutative) subsemigroups of K. The inclusion relations between the Kt preorder /

in the obvious manner, and then / becomes a directed preordered set and the
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family (Ki)le, together with the inclusion homomorphisms becomes a directed

/-system; then Kis the inductive (or direct) limit of the system: AT=inj lim Ku

Let A and B be commutative semigroups and /be a one-to-one homomorphism

of A into B. Since each Kt is flat,/®0 idX| is one-to-one for all i e I; but the A ®c Ku

B ®c Ki form directed /-systems, and, taking the inductive limit, we obtain a one-

to-one homomorphism inj lim (/ ®° id^) of inj lim (A ®° Kt) into inj lim (B ®c Kt).

Finally the tensor product preserves colimits (Theorem 2.9), in particular inductive

limits, which yields natural isomorphisms inj lim (A ®° Kt)^A ®c K,

inj lim (B ®° Ki) s B ®° K

and a commutative diagram

inj lim (/®° \dK)
inj lim (A ®c Kt) —-i-> inj lim (B ®° Kt)

" /8-id, "
A ®° K —-> B®CK

from which follows that/®0 idx is one-to-one, which completes the proof.

Corollary 3.10. Any locally free commutative semigroup is flat.

Consider for instance the additive semigroup Q of all positive rational numbers.

This semigroup is locally free, in fact locally infinite cyclic; the subsemigroups

of the local system can be taken as the subsemigroups Qn={pM',p>0}; these form

a directed family since Qn u Qm s Qnm. Therefore Q is flat. Observe that it is not

free.

Problem. Is it true that a commutative semigroup is flat if and only if it is locally

free ?

Added in proof. We also wish to acknowledge that the existence of the tensor

product of commutative semigroups, and some of its properties (in particular 1.3,

1.4) were discovered independently by T. J. Head (J. Natur. Sei. and Math. 7

(1967), 39-49).
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