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Let D be an integral domain with identity which has quotient field L. If there

exists a chain F c p1 c ... c pn of « +1 prime ideals of D, where F„ c D, but no such

chain of n + 2 prime ideals, then we say that D has dimension n and we write

dim D = n [6]. In [6] and [7] Seidenberg has shown that if dim D = n, and if D is a

Noetherian domain or a Prüfer domain, then dim D[Xy,..., Xm] = n + m, where

Xy,..., Xm are indeterminates over D. In the special case in which dim D= 1 he

has proved that the following statements are equivalent.

(1) din\D[Xx]=2.

(2) dim D[XX,..., Xm]=m+1   for any m.

More recently Gilmer has established the equivalence of the following properties

for an «-dimensional domain D [1].

(3) Every domain between D and L has dimension less than or equal to n.

(4) dim D[tx,..., íB]á»for {tx,..., tn}çL.

For n = 1 he further showed that (3) and (4) are equivalent to (1).

In this paper we consider domains D having finite dimension n and having the

property that each domain between D and its quotient field has dimension less than

or equal to co for some positive integer co = n. For such a domain we obtain equiva-

lent statements analogous to statements (l)-(4). The main results of this paper are

contained in Theorems 2 and 5.

Throughout this paper D will denote an integral domain with identity having

quotient field L, and X, Xx,..., Xm will denote indeterminates over D. By an

averring of D we mean an integral domain D' such that D^D'^L. By a valuation

overring of D we mean an overring of D which is a valuation ring. Our notation

will be that of Zariski-Samuel [8] with the one exception: <= denotes proper

containment and ç denotes containment.

I. If dim D = n and co^n, we wish to find necessary and sufficient conditions in

order that each overring of D have dimension less than or equal to co. One such set

of conditions is given by the following theorem.

Theorem 1. Suppose that dim D = n. Then the following statements are equivalent.

(1) Each overring of D has dimension less than or equal to co.
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(2) Each valuation overring of D has dimension less than or equal to cu.

(3) For {h, ■-., Q=X, dim D[tu ..., rm]^cu.

Proof. Clearly (2) and (3) follow from (1). To show that (2) implies (1) we suppose

that D' is an overring of D such that dim D' > cu. Then there exists a chain (0) cp1

c... <=PS^D' of prime ideals of D' such that j>cu. By Theorem 11.9 of [5, p. 37]

there exists a valuation overring V of D' such that V has prime ideals Qu ..., Qs

which lie over Pu-. -,P, respectively. It follows that V is a valuation overring

of D such that dim V> cu.

The proof that (3) implies (1) is given by Gilmer in [1] for the case cu = «. The

same method of proof is used here.

Suppose that there exists an overring D' of D such that dim D'^o+l. Let

(0)cpm+1c •.. <zp1cD' be a chain of prime ideals of D' and let t( ePt-Pt+1,

l = /=cu. If Pi-Pi r\D[tlt ...,ta], láiáw+1, then P¡ is a prime ideal of

D[tu ■ ■ -, tj and tieP'i-P{+1, 1 ¡SijSeu. Now let r/sePa+1, where r, seD-{0}.

Then r=sir/s) is an element of Pw+1 n D so that reP'a+1. Further, 1 $P[ since

1 $Pu Thus, (0)c?;+1c... <zp[<=:D[tu ■ ■ -, ta] and dim D[tu ..., fJfcw+1.

Theorem 1 leads us to the consideration of domains D such that dim D[tu ■ ■ ■, la]

^cu for any subset {tu ■ ■ -, tœ} of L. More generally, for a fixed positive integer m,

we wish to find necessary and sufficient conditions in order that dim D[tu ..., tm]

= cu, where {tu ..., tm} is any subset of L, and where cu^dim D. Sufficient con-

ditions are given by the following theorem.

Theorem 2. Suppose that dim D[XU ■ ■., Xm] = w+m. Then cu^dimZ), and

given {tu ■ ■ -, tm}^L, we have dim D[tly..., rm] = cu.

If P is a prime ideal of an integral domain R, we shall denote by /¡(P)(c/(P)) the

height (depth) of P in R. Before proving Theorem 2, we require Lemma 1.

Lemma 1. Let tu - - -, tm be elements of L and let </> be the canonical D-homo-

morphism from D[Xu ..., Xm] onto D[tu ..., tm] such that <f>iX) = ti, 1 =/^am. If Q

is the kernel of<f>, then Q has height m in D[XU ..., Xm].

Proof. We have Q n Z) = (0), for if de D, then <j>id) = d. Thus, if N=D-{0},

Q extends to a proper prime ideal of

iD[Xlt..., Xm])N = DN[Xu - - -, JTJ » L[Xu ..-, Xm].

Further, if h(Q)=s in D[XU ..., Xm], the extension of Q has height j in

L[Xu ■ ■ ■, Xm\-

However, dim/p^,..., Xm]=m so that j^m.

Let Qi = Q n D[XU ..., Xt] for 1 g / g m. If t, = ajbu «„ 6, e D, then btXt - at e Qx.

Consequently, Qii=(0) and for l£i£m—l, Qi[Xi+1]^Qi+1, since bi+1Xi+1

-ai+i t Qi[Xi+1]. It now follows that (0) = QAX2,. .., Xm]<= ■ ■ ■ <= Qm-x[Xm

Œ Qm = Ô so that /¡(g) ^ tm. Thus equality holds and the lemma is proved.
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Proof of Theorem 2. Suppose that {tx,..., im}sZ and let Q be the kernel of the

/»-homomorphism </> of D[Xy,..., Xm] onto D[tx,..., tm], where <f> is such that

</>(Xi) = tt for each i. Further, let (OJcftc.c Qk^D[tx,. .., tm] be a chain of

prime ideals of D[tx,..., tm]. Then there exists a chain

Q<zPl c.cPjCDdj.J,]

of prime ideals of D[XX,..., Xm] such that <£(P¡) = 0¡, 1 S i ú k. Since Q has height

m, w+Â:^dim /»[A^,..., Xm] = m + cn. Therefore, káco as we wished to show.

Theorem 5 shows that the conditions given in Theorem 2 are also necessary in

order that dim D[tx,..., ?m]^co for {rx,..., im}sL. However, before proving

Theorem 5 we need several other results.

Theorem 3. Suppose that dim D[tx,.. .,tm]&ta for {tx,..., rm}sL. // / is an

integral domain containing D such that J is integral over D, and if F is the quotient

field of J, then dim J[sx,..., sm] £ « for {sx, ...,fJçF.

In order to prove Theorem 3, we use the following lemma.

Lemma 2. Let f(X)=fnXn+ ■ ■ ■ +fxX+f0 e D[X], fn±0, and let s be a root of

f(X) in an extension field of L. Then s is integral over D[\/fn] and fns is integral

over D.

Proof. Since f(X)/fn e D[\/fn][X] and f(s)/fn = 0, it follows that s is integral

over £>[l//n]. Also

0 =/„"-1/(i) = (fnS)n+fn-l(fns)n-1+ ■ ■ ■ +/l/nn-2(/ni)+/o/r1

so that fns is integral over D.

Proof of Theorem 3. F is algebraic over L since / is integral over D. Therefore,

if sx,..., sm are elements of F, there exists f(X) e D[X] — {0} such that/¡(s,)=0,

1 á / g m. It follows from Lemma 2 that if c/¡ is the leading coefficient of f(X), then

St is integral over D[\/dx,..., \/dm] for each i, 1 <¿i£m. Hence, J[sx,..., sm] is

integral over/) [I/o?!, ..., \/dm]. Therefore, dim J[sx,.. .,sm] = dimD[\/dx,. . .,\/dm]

by [6, Theorem 5]. But dim D[\/dx,..., \/dm]^œ since {\jdx,..., l/dm}çL.

Corollary 1. Suppose that dim D[tx,..., t„]£w fer {tit..., tm}^L. Then if

{sx,..., sm} is a set of elements algebraic over D, we have dim D[sx,..., sm] á «••

Proof. Suppose/^) e D[X]-{0} is such that/(j¡)=0, l^i^m. From Lemma 2

it follows that if di is the leading coefficient of f(X), then J=D[dxsx,. .., dmsm]

is integral over D. Moreover, {sx,..., sm} is a subset of the quotient field of /.

Therefore, since J[sx,..., sm] = D[sx,.. .,sm], it follows from Theorem 3 that

dim D[sx, ...,sm]Soj-

Theorem 4. If each overring of D has dimension less than or equal to co, then

dim D[XX,..., Xm]^w+m.
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Proof. Suppose that dim D[X±,..., Xm]=m+k, k^O.It follows from Theorem

2 of [6] that k^dim D so we have D=L if k = 0. Therefore, since the theorem is

true for D=L, we assume that tc>0. By Theorem 11.9 of [5, p. 37], there exists a

valuation overring W of D[XU ■ ■ -, Xm] such that dim W^rn+k. If V=WnL,

then V is a valuation overring of D.

Suppose now that dim V=p. Then by assumption /x^cu, and by Theorem 4 of

[7], if Zu Z2,..., Zr is any set of indeterminates over V, then dim V[ZU ..., Zr]

=P + r. In particular, if IV.., Fw+m are indeterminates over V[XU ■ • ■, Xm],

then dim V[XU ..., Xm][Yu ..., Yil + m] = 2p+2m. Therefore, by Theorem 2, if

Si, • ■ -, Su + m are elements of L[Xlt..., Xm], the quotient field of V[XU ..., Xm];

then dim V[XX,..., Xm][h^,..., 8u + m]^p, + m. It then follows from Theorem 1 that

every overring of V[X1;..., Xm] has dimension less than or equal to p.+m. But W

is an overring of V[XU..., Xm] so we have TM+A:^dim W^m + p. Therefore,

ac^/li^cu so that dim D[XX,..., Xm]^oj+m as we wished to show.

Lemma 3. Suppose that dim D[tu ..., tm]^w for {t±,..., rm}sL, and let P be a

prime ideal of D such that h(P) = k. If F is the quotient field of D/P, then

dim (D¡P)[su ...,sn]úa>-k   for {s,,..., sm} S F.

Proof. Fis isomorphic to DP¡PDP, since DP/PDP^(D/P)PIP [8, p. 227], and D/P

is isomorphic to {d+PDP \ de D}^DP/PDP. Thus suppose that {jlf..., jm}£

DpjPDp—say Si = t¡+PDP, where r¡ e DP, and let D' = D[tu ■ ■■, tm].

If (OJcPuC... cPk=P is a chain of prime ideals of D, then (0)<=P1Dpa . ■.

<=PkDp=PDp<=DP is a chain of prime ideals of DP such that PiDP n D=PU

1 = / = /c. Now D^D'^Dp so that ifP¡=PiDP n D', then Pi=P¡ n D. Therefore,

(0) <=p[<z ... cp^p' c D' is a chain of prime ideals of D' and h(P')^k.

It is easily seen that

D'/P' s {d'+PDp | d'eD'}

= {f(h, ---, tm}+PDp | fiXu ...,Xm)e D[XU ..., Xm]}

= {(do +Idni...nmr?i• • • tfr)+PDP \dieD}

S {d0+PDp+ 2(dni...nm+PDP)(t1+PDPyi- ■ -(tm+PDP)^ \diED}

Z(D/P)[su...,sm].

But by assumption dimD'^cu, and we have seen that h(P')^k. Therefore,

dim D'/P'^w-k; that is, dim (D/P)^,..., jm] ̂  w - k, and the proof of Lemma 3

is complete.

Lemma 4. Let P be a prime ideal of D, P^D, and let Q1<=Q2e:i ■ ■ ■ <=QS be a

chain of prime ideals of D[XU ..., Xm] such that Q¡ n D=P for each i, lt>i£*s.

Then j^tm + 1 and there exists a chain P[XU ..., Xm] = F1<= ■ ■ ■ <=rm+1 of prime

ideals of D[XU ..., Xm] such that r¡ n D=P for each i and such that {Qu ..., Qs}

s ttV. .,rm+1}.
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Proof. If Pe=P[Xx,..., Xm], then Qx/Pe<= ■ ■ • <= QJPe is a chain of prime ideals

D[Xy,..., Xm]/Pe = (D/P)[Xy,..., Xm] meeting D/P in (0). Thus, it suffices to

prove Lemma 4 for the case in which F = (0). But if F = (0), then

(D[Xy, ..., Xm])D.P = L[Xy, ..., Xm].

Lemma 4 now follows from the results in [9, p. 194].

Lemma 5. Let D be a quasi-local domain with maximal ideal M. If dim D =

n^w¿m  and if dim D[XX,..., Xm]^oj + m+\,  then  there  exists a chain  of

prime ideals of D[XX, ...,Xm] of the form M[XX,..., IJ^^ ■ ■ • => 0^(0),

where either Qy—P[Xy,..., Xm]for some prime idealP of D, or Qy n D = (0) but

Qx n D[Xy]¿(0).

For convenience we number the following remark since it will be used repeatedly

in the proof of Lemma 5.

Remark 1. If dim D[XX,..., Xm]^w+m + \, then by Theorem 4 some over-

ring of D has dimension greater than or equal to co+ 1. Hence, by Theorem 1, we

have dim D[tx,..., iw]äco+l for some {ty,..., iw}sL so that, by Theorem 2,

dimD[Xy,..., A"M] = 2co+l.

Proof of Lemma 5. If the lemma were true in the special case in which m = w,

there would exist a chain of prime ideals of D[XX,..., Xa] of the form

M[Xx,...,Xa]=> Q^--= Qx^(0),

where either Qx=P[Xy,..., Xa] for some prime ideal P of D, or Qy n D=(0)

but  Qy  n  D[Xy]¿(0).

Since co^/m,

M[Xy, ...,Xm]=> Qa[Xa+1, ...,Xm]^---^  Qy[Xm+y, . . . , Xm] => (0)

is a chain of prime ideals of D[XX,..., Xm] having the desired form.

Therefore, it suffices to prove Lemma 5 for the special case in which co=w.

The proof will be by induction on n, where n = dim D.

We first consider the special case in which there exists a chain of prime ideals

D[Xy,..., Xm]^Q2m+1^-- -^Qy^(0) such that if ßi n Z>#(0),then ß, n D = M,

l£i£2m+l. Since this is the case when n=l we will have the first step of an

induction argument.

By taking F=(0) in Lemma 4, we see that Qm+1 n D ^ (0) so that, by hypothesis,

Qm+y n D = M. Then Qm+1^M[Xy,..., Xm], and it follows from Lemma 4 that

M[XX,..., Xm]  has depth  m  in  D[XX,..., Xm].   But  d(Qm+1)^m,  so  gm+1

= M[Xy,...,Xm].

Since Qm+y^Qm, our assumption implies that Qmn D = (0). However, by

Lemma 4, Qm n D[Xy]^(0)—say Qm n D[Xx] = Q'y. If D'= D[Xy]Qb then D'^L

since Q'y n D = (0), and every valuation overring of D' has dimension less than or

equal to one [9, p. 50]. Therefore, by Theorem 1, /)' is a one-dimensional domain

such that every overring has dimension less than or equal to one. It then follows
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from Theorem 4 that dim (D')[X2, ...,Xm] = m. Let (Q\)e = (Q'1)D'. By Lemma 4,

(Q'i)e[X2,..., Xm] has depth tm-1 in (D')[X2,..., Xm], so it is minimal. Since

(D')[X2,..., Xm] is a quotient ring of D[XU ■. -, Xm] with respect to the multi-

plicative system

DÍXJ-QI Ql = (Q[)[X2,..., Xm] = (Q[y[X2, ...,Xm]n D[XU ...,Xm]

is minimal in D[XU ..., Xm].

Now g?£gmand Ql n JD[Jr1] = f3'1 = Öm n D[X,]. If g=>gm, then «(g) = tm+1,

so by Lemma 4 we have g n D^(0). Hence g n £[*i]^ gi since g; n D = (0).

Since gi is minimal there exists, by Lemma 4, prime ideals Q2,..., Q"m-\ of

D[XU ..., Xm] such that (O)cgjcr^c:... cg;_lC:gm. Then M[Zl5..., JTJ

3 Qm 3 gm -1 => • • • = Q2 => gí => (0) is the desired chain.

We now assume that the result is true for n<k and that dim D=k. If

dimD[X1,...,Xm] ^ 2m+l

and if D[XU . ■., Xm]=> Q2m+1'=' ■ ■ -^gi^^is a chain of prime ideals of

D[Xu...,Xm],

then, from what we have just shown, we may assume that (0) <= g( n D <= M for

some i, 1 ̂ ¡'^2tm +1. Thus we choose a, 1 ̂ a = 2tm + 1, such that Qa n D^(0)

but ga_! n D = (0). (We take g0 = (0).) Suppose that Qa n D=P and suppose

that dim Z>p=/a. By assumption P^M so that /x<&. Let ^c^c ... ^pu_1cp

be a chain, having length p, of prime ideals of D which are contained in P. Let A

be the maximal length of a proper chain of prime ideals of D[XU ..., Xm] which is

contained properly between g^andP^,.. .,Xm](letX=—l if Qa=P[X1,.. .,Xm]),

and let r = (2TM+l)-(a-l) = 2TM-a + 2. Then P^Xu - ■ -, Xm] has depth greater

than or equal to t + \ + p—l in D[XU ..., Xm].

If r + A+^ = 2TM + l, then dim(D¡P1)[X1,..., Xm]^2m = (m-l) + m+l and

tm — 1 ̂ dim D/Pi (since TM^dimD and P1^(0)). Taking cu = tm-1, Remark 1

implies that dim (D/P^Xu ..., Xm„1]^2(m-l)+I. But dim D/P1<dim D=k,

so by the induction hypothesis there is a chain of prime ideals of

(DIPt)[Xu . - ; *,-x]

of the form (M/P^X,,. . -, Xm^]=>Q"m^ • • -^gï^(O). If for 1 ̂ tm-1, g,'is

the unique prime ideal of D[XU ..., Xm] such that gi^PJZi,..., AVJ and

(Q'i)IP1[X1,...,Xm.1]^Q';,then

M[Xu...,Xm^]^ &_!=>■■• = QÍ^Pi[Xu-;X«~iÍ

Clearly, M[XU ..., Xn]^(Q'm.1)[Xm]^ ■ • • ̂ (giM^ml^FiL*!, • • -, Xm] is a chain-

of the desired form.

We now suppose that r+A+/Lt<2TM-l-l. We first show the existence of a chain

M[X„ ., Xm]^ g^= • • • => Qi=>P[Xlt..., Xm] of prime ideals of D[Xlt ...,Xm]

such that ß + m +1 > t + A.
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Thus, if t+A s; m+dim D/P, we take ß+1 =dim D/P. Then there exists a chain

M=> Qe=> ..=>Qy=>Pof prime ideals of D and M[Xy, ...,Xnp> Qß[Xy,..., Xm]

=> • • •=> Qy[Xx,. . ., Xm\=>P[Xx,..., Xm] is the desired chain. If, on the other hand,

t+X^dimD/P+m+l, we take ß to be such that t + X=ß+m + l. Then ßädim

Z)/F and by assumption / + A + ¡j.<2m +1, so that ß+m+l =t+X<2m + l. There-

fore we have ß<m; that is, dim D/P<m. But dim (D/P)[XX,.. .,Xm]Zt + A =ß

+ m+ 1, so it follows from Remark 1 that dim (D/P)[XX,..., Xß]^2ß+1. Since

dim D/P <k, the induction hypothesis is applicable. Hence, using the same

method of proof given above for D/Px, there exist prime ideals Q'fi,...,Q'x of

D[Xy, ...,Xm] such that M[Xy,..., Xm]^ ßj=> ■ • ;.= ßi^W. - • -, &1

We now consider the domain /),.. Since QtnD^P for 1^/á«, if we set

Qt=QtDP[Xx,..., Xm], l^i^a, Pt=PiDP, l£i<n-% and Pe=PDP, then we

have ÍO)c0c...c ßS, (0)^^)^,..., Jfje... c^^,..., *m]c(P«)

•[!Ti,...,JrjSßt Ôfn/>p = (0) for l¿/á<x-l, Ö^n/>P=Fe, and A is the

maximum length of a proper chain of prime ideals of DP[Xy,..., Xm] contained

properly between Q% and (Pe)[Xy,..., Xm] (A= -1 if ßS=P«Lr1,..., Xm]). By

Lemma 4 there is a chain of prime ideals of DP[XX,..., Xm] of the form

(P°)[Xy, ...,Xm] = Hm+1 dHmc..cHi

such that //, n DP=Pe for each /, and Ql = Hs for some i, l^i^w + 1. Then

(0)ciQ{<z...czQi_1<zHsd--^HyCDP[Xy,..., Xm] is a chain of prime ideals

of DP[XX,..., Xm] so that dim Z^A^,..., Xm]^a— l+s. But by assumption

li+X + t<2m + l. Hence, p. + X<2m + l-t = a-l and we have p. + X+s<a-l+s.

By choice of the integer A and the ideals Hx,..., Hs=Ql, it follows from Lemma 4

that X+s=m. Consequently, p. + m<a— l+s. By Lemma 4, a —lam (since

i^a— 1 implies g, n Z> = (0)), and j^m + 1 by choice. Then a- l+j = 2m + l,

so we may choose yim such that a— l+s=y+m+l. We now have fj.+m<a

— l+s = y + m+l^dim DP[Xy,..., Xm], from which it follows that p.fiyim

(we recall that /x = dim Z)P). Remark 1 now implies that dim DP[XX,..., Xy]

£2y+l.
Since P <= M, dim />,><: fc, so by the induction hypothesis there is a chain of prime

ideals of DP[Xy, ...,XY] of the form Pe[Xy,..., 1,]=^ • • .=>ri=3(0), where

either F'y=P'[Xy,..., Xy] for some prime ideal P' of DP, or F'x n DP = (0) but

ri n DP[Xy]^(0). If we let r, = ri n D[Xy,..., Xy], lúiúy, then

p[Xy,...,xy]^ ry =>•••=> Pi3>.<o)

is a chain of prime ideals of Z)[A'1,..., A',]. Further, if ri = (F')[A'1,..., A",,], then

FX = (P")[XX, ...,Xy] where P"=P' n D; or, if ri n DP = (0) but F'x n D[Xy]¿(0),

then Fx n D = (0) but I\ n /»[XJtKO). We now show that

M[Xy,..., JTJ => ßi = • • ■=> Q'i ̂  /[A^,..., A-m]

= ¿r[A;+1,..., A-m]3 • • • => rjA-y+1,..., Xm] => (0)

is the desired chain of prime ideals.
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Certainly T^Xy+u ■ ■ -, Xm] has the desired form, so it suffices to show that

ß + y+l^m. Buty+A + j+l=y + TM+l=a-l+J = 2TM-l-l-í-l-j. Hence, y + A+1

= 2tm+1-í so that y + X + t+l=2m+l. By choice of ß, ß+m+l^t+\ and it

follows that y+j8 + TM + 2^y + / + A+l=2TM+l. Therefore, j8 + y+l^TM as we

wished to show.

This completes the proof of Lemma 5.

We are now in position to show that the conditions given in Theorem 2 are

necessary in order that dim D[tx,..., rm] = cu for {tu ■ ■ -, tm}^L. Theorem 5 is ihe

main result of this paper.

Theorem 5. If dim D=n and ifm, w are nonnegative integers such that

dim D[tu - ■-, tm] á w   for {tu ■ • -, U S L,

then the following conditions hold.

(1) dimD[Xu..'., Xm]£to+m.

(2) If there exist elements tl3..., tm in L such that dim D[tu

dim D[Xu ■ ■ -, Xm] = ui + m.

Proof of (1). The proof of (1) will be by induction on « and tm. Thus, we first

show that (1) is true when either «= 1 or tm= 1.

Suppose that «= 1. By a theorem of Sedenberg [7, p. 608], D one-dimensional

implies that for any tm, dim D[XU ..., Xm]^2m+ 1. Clearly then (1) holds if

cuäTM+1, so we assume that cu^tm. Since dim D[ty,..., rm]^cu for {tu ■ ■ -, tm}^L,

it follows, by taking ta = ti0+1= ■ ■ ■ =tm, that dim D[tu ..., tm]£w for {tu ...,ta}

£L. Theorem 1 now implies that each overring of D has dimension less than or

equal to cu so that, by Theorem 4 dim D[XU • • -, Xm]^m + w.

Now suppose that tm= 1. We have just seen that (1) holds for «= 1, so we assume

that (1) is true for «<«, that dim £>=«, and that dim D[/]^cu for teL. Let

(0)c gic ■ • • c Qsc D[X] be a chain of prime ideajs of D[X], where Q1 is chosen

to be minimal. If Q1 n D = (0), then D[X]¡Qu9\X\ where X=X+QU and

f(X) = 0 for any/E Qu so Xis algebraic over D. It foflows from Corollary 1 that

dim D[X]-¿ío and this iniplies that gj has depth less than or equal to cu in D[X].

Therefore, j^cu+ 1. On the other hand, if Qx n D + ifS), then Qxn D^P, where

P is a minimal prime ideal of D. By choice, Qx is minimal, and gx ^P[X]. Thus,

g1=P[A']. From Lemma 3 we have dim (F»/P)[a]^cu-1 for each a in the quotient

field of D/P. Further, dim (Z)/P)<«, and by assumption (1) holds; that is,

dim iD/P)[X] <: cu.

But iD/P)[X]zD[X]/P[X] so that P[X]= Q1 has depth less than or equal to cu.

Consequently j = cu +1 and it follows by induction that (1) is true for tm= 1.

From what we have just shown, we may make the following inductive assump-

tions.

(A) Suppose that (1) is true for any n when m<k.

..., tm] = cu, then
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(B) Suppose that (1) is true for n<h when m=k.

Now let dim D=h and suppose that dim D[Xy,..., A"fc] - co + fc + 1, co_A.

We wish to establish the existence of tx,..., tk in L such that dimD[tx,.. .,tk]

= co+l.

If dim D[X] = co + 2, then by the case in which m = 1 there exists t e L such that

dim />[?] = co + 1. If we set t = tx = ■ ■ ■ =tk, it follows that dim D[tx,. .., ifc] = co + l

and we are finished.

Suppose, then, that dim D[Xx]^oj + \. The assumption that

dim D[Xy][X2,..., Xk] £ w+k+l

then implies, by (A), that there exist elements S2,..., 8k in L(Xy) such that

dim ZJtA'JfSa,..., Sk] = co + 2. Let ß be the kernel of the canonical /»[A'J-homo-

morphism <f> which maps /)[A"1][A'2,..., Xk] onto Z)[A'1][S2,. .., 8k] in such a way

that <f>(X,) = 8¡ for each i. Then ß must have depth greater than or equal to co 4- 2,

and by Lemma 1, ß has height k—\. Hence, there exists a chain of prime ideals

of D[Xy,..., Xk] of the form

(0) c Qy c . • • c Qk_2 cgc&c.c Qk+m+1 c D[Xy,..., Xk}.

Iff(Xy) e D[Xy], then <p(f(Xx))=f(Xx). Therefore, ß n D[Xy] = (0). However,

since h(Q) = k— 1, Lemma 4 implies that Qk n /)[A"¡]/(0) for i, l¿i£k. We now

consider the two cases in which Qkn D = (0) and Qkn D + (0).

If Qk n D = (0), then D[Xlf..., Xk]/Qk^D[Xy,..., Xk], where X = Xi + Qk,

and since Qk n D[Xi]=£(0), X¡ is algebraic over D for each i. But

dim D[XX,..., Xk] = co-fl,

so by Corollary 1 there exist elements tx,..., tk in L such that dim D[tx,..., tk]

= co+1 and we are finished.

Thus, suppose that Qkn Z) # (0)—say Qkn D=P, where F is a prime ideal of D

such that h(P) = fj.. Then Qk^P[Xx,. . ., Xk] and there exists a chain (0)^P!<= • • •

c?, _ y <=p of prime ideals of D. Let A be the maximal length of a proper chain of

prime ideals of D[XX,..., Xk] contained properly between Qk and P[Xy,..., Xk]

(let A= —1 if Qk=P[Xy,..., Xk]). We proceed now to show the existence of a

chain of prime ideals of D[XX,..., Xk] which has length greater than or equal to

k + ui + l and which is of the form Qk+01+y=> ■ ■ -^Qk^- ■ ■ ̂ P[Xy,..., Xk]

=> ß;=> • • • => ßi=>(0) where either ßi=F'[Ar1,..., Xk] for some prime ideal P' of

D, or Q'y n D = (0) but Q[ n D[Xy]^(0). (Here we understand that a proper

chain of length A is contained between Qk and F[A"1;..., Xk].) We shall say that

such a chain has form (C). Thus, we seek a chain of form (C) for which y + X + w + 3

^k + w + l.

Iffi+X^k-l, then

Qk+a+i =>•••=> ß* 2-- 2 F[A-l5..., A",] = F^itZi,..., Z,]

=>..=p1[jr1,...,jrfc]=>(0)
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(where a proper chain of length A is included between Qk and P[XU ■ ■ ■, Xk]) is

such a chain since (/c-1)-|-A-|-cu + 3=|li + A-|-cu-|-2 = /c-1-I-cu-|-2=/: + cu+1.

Suppose, then, that p + \<k— 1 and consider the domain DP. For l^i^k, let

Qi = QiDp[Xu ..., Xk], and for lúiúp, let Pf=P¡.Dp, where we set gfc_i = g and

PU=P. Then (0)<= Q{^ ■ ■ • c g£ is a chain of prime ideals of Z)P, gf n DP = i0)

for láisSJk-1, gfc2(Pe)[^i> • • -, Xk], Ql n DP=Pe, and A is the maximal length

of a chain of prime ideals of DP[XX,..., Xk] contained properly between Qk and

Pe[Xu • -, Xk]. By Lemma 4 there is a chain of prime ideals Pe[Xx,..., Xk] =

I\+icI\c • • • cric¿M^i, • •.,**] such that r¡ n DP=Pe for each i and such

that gfc = Ts for some s, l^s^k+l. From Lemma 4, and by choice of A, it

follows that \=k—s; that is, j+A=A:. We now have the chain iO)^Qxcz ■..

cgfc-ic:rsc:- • ■ cTicDp[Xu ..., Xk] of prime ideals of DP[XU ..., Xk], from

which it follows that dim DP[Xlt..., Xk]^s + k— 1 >s + \ + p = k + p. Let y be

chosen so that j+tc—l=Tc+y+l. Then y^p=dim DP and, by choice of j, we

have j^tc+1, so that A:+y+l=J+A:-lS2fc. Consequently, we have p-¿y^k — 1

and dim DP[XU ..., Xk]^k+y+l. Therefore, by Lemma 5, there exists a chain of

prime ideals of DP[XU ...,Xk]of the form Pe[Xu - --, Xk]=> Q"y=> ■ - - => ßi=>(0),

where either Ql=P"[Xu ■ ■ -, Xk] for some prime ideal P" of DP, or Q'[nDP

= (0) but Ql n Dptf^O). Let Q'i = Q¡ n D[XX,..., Xk] for each i, 1 =

i£y. Then gra+fc+1= • • • => gfc2 ■ • • =>P[XU ..., Xk]=> Q'r^ ■ ■ ■ = ßi=>(0) is a

chain of prime ideals of D[XU ■ ■ -, Xk] having form (C), for if Ql=P"[Xi,

..., Xk] for some prime ideal P" of DP, theng^P'^,..., Xk], where P'=P"

n D. On the other hand, if Ql n DP = (0) but Ql n Z>P[A\]5¿(0), then Q\ n D =

(0) but Q[n D[XX]¿(0). Further, j + /c-1 =Ar + y+l =A + j + y+l so that

Tc-l = A+y+l. It then follows that tc + cu + 1 =A+y + cu + 3.

Lemma 6. Suppose that dim D = h and dim D[tu ..., tk] f¿oj for {ti,..., rJsL.

Then ifP is a proper prime ideal of D, P[XU ..., Xk] has depth less than or equal to

w + k—l in D[XU ..., Xk], and if Q is a prime ideal of D[XU ..., Xk] such that

Qn D = (0) but Qn D[A'1]#(0), then Q has depth less than or equal to u+k-1

inD[XL,...,Xk].

Proof. If P is a proper prime ideal of D, then by Lemma 3 we have

dim(/)/P)[j1;...,jfc] ^ cu-«(P)

for any set of elements {j1; ..., sk} contained in the quotient field of D/P. From

assumption (B) it then follows that dim iD/P)[Xu ..., Xk]-£w+k-h(P). But

(D/P)[X1,...,Xk]^D[X1,...,Xk]/P[X1,...,Xk], so that P[Xt,..., Xk) has

depth less than or equal to co+k—h(P).

Suppose that g is a prime ideal of D[XU ■ ■ -, Xk] such that g n Z> = (0) but

g n D[Xj]#(0)—say g n D[XX] = Q'. Then Q^(Q')[X2,..., Xk] and

D[XU ..., Xk]/(Q')[X2, ...,Xk]^ (DtfJ/Q'KX,,..., Xk].
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But D[Xy]/Q'^D[Xy], where XX = XX + Q', and Xx is algebraic over D. Since

dim /)[/]:£co for t eL, it follows from Corollary 1 that dim D[Xx]-¿w. Moreover,

by Lemma 2, there exists a nonzero element din D such that Xy is integral over

D[\/d]. But / is the quotient field of D[\/d] and dim D[\/d][tx,. .., tk-y]u«» for

{ii,..., tk-y}^L. Therefore, by Theorem 3, we have dim D[Xx][sx,..., sk-y]^co

for any set of elements {sy,..., sk-y} of the quotient field of Z>[AJ. It now follows

from assumption (A) that dim D[Xy][X2,..., Xk]^w + k — 1. Consequently,

ß'[A"2,..., Xk] must have depth less than or equal to oj+k — 1 so that ß also has

depth less than or equal to to+k — 1 as we wished to show.

We now complete the proof of Theorem 5.

By assumption the ideal ßi in a chain having form (C) has depth greater than

or equal to k + co. However, Q[ has one of the forms described in Lemma 6 so it

follows that dim D[tx,..., ik] = co+1 for some set {tx,..., tk}^L.

Statement (1) of Theorem 5 now follows by induction.

Assume now that dim D[tx,..., im] = co for some {tx,..., fm}£/. From (1) it

follows that dim D[XX,..., Xm]^w+m. But if dim D[XX,..., Xm] = a + m, where

a g co, it follows from Theorem 2 that dim D[sx,..., sm] á a for {sx,. .., sm}^L. In

particular, dim D[tx,..., tm] = w^a, so that a = to. Statement (2) of Theorem 5

now follows.

This completes the proof of Theorem 5.

In [3] Jaffard defines the valuative dimension, denoted by dim„ D, of the domain D

to be the maximal rank of the valuation overrings of D. With this notation and

terminology, we now relate many of the results of this paper in the following

theorem.

Theorem 6. Let D be a finite-dimensional integral domain with identity having

quotientfield L, and let m be a positive integer such that co ̂  dim D. Then the following

statements are equivalent.

(1) dim„ Z> = co.

(2) Each overring of D has dimension less than or equal to co and co is minimal.

(3) For any nonnegative integer m, dim D[tx,. .., tm]^uifor {tx,..., fm}£Z„ and

for maco —1 there exists {ty,..., fm}sL such that dim D[ty,..., im] = co.

(4) For any nonnegative integer m, dim D[XX,..., Xm] S m + co and for m^cu—l

equality holds.

(5) dimD[Xx,...,Xa] = 2co.

(6) dim D[tx,..., fj^co for any set {tx,..., ?„}£/, and there exists a set

{sx,..., Jffl}sF such that dim D[sx,.. .,sa] = w.

Proof. It was shown in the proof of Theorem 1 that if />' is an overring of D

such that dim D'=k, then there exists a valuation overring V of D such that

dim F=k. This fact together with Theorem 1 shows that (1) and (2) are equivalent.

To show that (2) implies (3), it clearly suffices to show that for any positive

integer m = co-l, there exists {tx,..., tm}^L such that dim D[tx,..., tm] = oj.
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However, it follows from the proof of Theorem 1 that if there exists an overring />'

of D such that dim D' = w, then dim D[tx,..., tœ-x]^oj for some {rx,..., tm-x}

£/. Thus, equality holds and for any w^co—1, dim D[tx,..., tm] = u>, where

l<ú — 1      1(0      * lm-

That (3) implies (4) is an immediate consequence of Theorem 5 and certainly (4)

implies (5). If (5) holds, then by Theorem 2 we have dim D[tx, ...,?<»] Ú o> for

{tx,..., ta}^L. But if dim D[tx, ...,ta]&k for any k^a>, then it follows from

Theorem 5 that dim D[XX,..., Xa]^k + co so that k^w. Thus k = w, and it follows

that dim D[sy,..., vl = co for some {sx,..., sa}^L. Therefore (6) holds.

It is immediate from Theorem 1 that (6) implies (2) and Theorem 6 is proved.

Remark 2. If we take co=dimZ>, then for any nonnegative integer m and

{ii,..., im}s/, we have dim D[tx,..., tm] = w. Thus from Theorem 6,

dim D[XX,..., Xm] = w + dim D

for all m if and only if dim D = dimv D.

II. Suppose now that D is integrally closed. Let {Va} be the set of all valuation

overrings of D, and let A be an ideal of D. Then Ä= (~)a A Va is an ideal of D called

the completion of A. If A" is an indeterminate over D and/e D[X], then we denote

by A; the ideal of D generated by the coefficients off. We now define the Kronecker

function ring of D as follows :

Dk = {f/g\fgeD[X],Är^Äg}.

In [4], Krull shows that Dk is an integral domain having quotient field Z(A") and

that Dk n L = D. He further showed that Dk is a Bezout domain, where a Bezout

domain is defined to be a domain in which each finitely generated ideal is principal.

Now let V be a valuation overring of D and let v be a valuation associated with V.

lffeL[X]-{0},f=f0+fxX+ ■ ■ ■ +fnXn, we define i>*(/) = min0SiSn {v(fd |/^0}.
Then v* defines a valuation on L(A") having the same value group as v. In particular,

v and v* have the same rank. We call v* the trivial extension ofv to L(X), and if V*

is the valuation ring of Z(A") associated with v*, then V* is called the trivial ex-

tension of V to L(X). Krull has shown in [4, p. 560] that if {Va} is the collection of

valuation overrings of D, then {V*} is the collection of valuation overrings of Dk.

An integral domain R with identity is said to be a Prüfer domain provided each

finitely generated nonzero ideal of R is invertible. In particular, a Bezout domain

if a Prüfer domain, so DK is a Prüfer domain. Therefore, dim„ DK=dim DK [3,

p. 56]. But from the previous remarks we see that dim„ Z> = dim„ DK. We have thus

proved the following result.

Theorem 7. Let D be an integrally closed domain with identity and let DK be the

Kronecker function ring of D. Then dim„ D = dim DK.

Corollary 2. If D is an integral domain with identity having integral closure D,

the statement that dim(D)K = o> is equivalent to each of the statements (l)-(6) of

Theorem 6.
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III. Let D be an «-dimensional integral domain with identity having quotient

field L. We have seen that each overring of D has dimension less than or equal to n

if and only if dim D[tx,..., r„] S « for each subset {tx,..., iB}sL. For any positive

integer «, we now show the existence of an integral domain D such that dim D=n,

and such that dim D[tu ...,tm]<n for any positive integer m<n and for each

subset {tu ■ ■ -, tm}^L, but such that dim V=n+ 1 for some valuation overring V

of D(2). We first state the following results which are proved in [2].

Lemma 7. Let {Vu ..., Vk) be a collection of valuation rings having quotient field

L, and suppose that V^ Vjfor i^j. If Mx is the maximal ideal of V¡, then Oj^i M¡

$ Vi for any i.

Lemma 8. Let {Vu ..., Vk} be as in Lemma 7 and suppose that each Vt contains

some fixed field F. If D=F+M, where M=MX n- ■ -n Mk, then D is a quasi-local

domain with maximal ideal M and if P is a nonmaximal prime ideal of D, then

P=Q n D, where Q is a nonmaximal prime ideal of V¡for some i, 1 £ig¡k.

Now let « be an arbitrary positive integer, let K be a field, and let

L=K(XX,..., Xn+1). We may construct valuation rings Vy and V2 on L such that :

(a) V1 has rank one and V1=K(X1,..., Xn) + Mu where Mx is the maximal ideal

of Vu and Xn+1 e Mu

(b) V2 has rank «, V2 = K+M2, where M2 is the maximal ideal of V2, XJXn+1

e M2, and if M¡5=P1=P2:3 ■ ■ ■ Z)Fn^Pn+1 = (0) is the chain of prime ideals of V2,

then Xi ePt— Pi+1 for each i, l^i^n.

We have X1/Xn+1eV2-V1 and 1 /Xx e Vx - Va. Thus, by Lemma 8, if D = K+ M,

where M=MX n M2, then D is a quasi-local domain with maximal ideal M, and D

has quotient field L since M does. Further, XtXn+1 e(Pt n D)-(Pi+1 n D) for

each i, 1 ̂  i £ «, so it follows from Lemma 8 that dim D = n.

Suppose that F is a nontrivial valuation overring of D. Then V^M1 n M2.

so by Lemma 7 either Ks V, or F 2 V, for i= 1 or 2. If F 2 Vu then V= Vx since

dim Vx**\. If Fç V2, then V=>M2, and V^Ksince V=tD. Therefore, V^K+M2

= V2, so that equality holds. Thus, if F is a nontrivial valuation overring of D,

either V^ Vx or F 2 V2.

Let m be a positive integer, tm<«, and let {tu ..., rm}sL. Then D[tu ■ ■ -, tm] is

the homomorphic image of D[Yu - - -, Ym], Ylt..., Ym indeterminates over D,

so it follows from Lemma 4 that if Pj CF2C: ■ ■ ■ CPS is a chain of prime ideals of

D[tu ■■■,tm] such thatP; n D = Mfor each i, then j^tm + 1 ̂ «. Further, let D' be

an overring of D such that dim Z>'^« + 1, and let (O)cP^c ... <zp'n+1^D' be

a chain of prime ideals of/)'. Then there exists a valuation overring Kof/)', and a

chain (0)c|21c...cgnHcK of prime ideals of V such that g(n/)'=p;,

1 ̂ /'=«+1 [5, p. 37]. Since dim V^n+l, V$ V2. Therefore, Fs Vu so it follows

(2) The method for constructing such an example was suggested by William Heinzer.
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that MXÇ Qx. Thus P'xn D = (Qxn D') n D^(Mxn D') n D = M, and con-

sequently, P'i n D = M for each i, I á i g n+1. From what we have shown it

follows that dim D[tx,..., tm]ún for {tx,..., tm}sL. But we may construct a

valuation ring V3 on L such that V3 has rank n+ 1 and F3=/^+M3, where M3 is

the maximal ideal of V3 and M3^MX. Then Ka^^+Mi^Z).
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