ON THE DIMENSION THEORY OF OVERRINGS
OF AN INTEGRAL DOMAIN()

BY
JIMMY T. ARNOLD

Let D be an integral domain with identity which has quotient field L. If there
exists a chain P<P, < ... <P, of n+1 prime ideals of D, where P, < D, but no such
chain of n+2 prime ideals, then we say that D has dimension n and we write
dim D=n [6]. In [6] and [7] Seidenberg has shown that if dim D=n, and if D is a
Noetherian domain or a Priifer domain, then dim D[X, ..., X,]=nr+m, where
Xy, ..., X, are indeterminates over D. In the special case in which dim D=1 he
has proved that the following statements are equivalent.

(1) dim D[X,]=2.

(2) dim D[X,, ..., Xp]=m+1 for any m.
More recently Gilmer has established the equivalence of the following properties
for an n-dimensional domain D [1].

(3) Every domain between D and L has dimension less than or equal to n.

(4) dim D[t,, ..., t,]Snfor {t,, ..., t,}<L.
For n=1 he further showed that (3) and (4) are equivalent to (1).

In this paper we consider domains D having finite dimension » and having the
property that each domain between D and its quotient field has dimension less than
or equal to w for some positive integer w = n. For such a domain we obtain equiva-
lent statements analogous to statements (1)-(4). The main results of this paper are
contained in Theorems 2 and 5.

Throughout this paper D will denote an integral domain with identity having
quotient field L, and X, X, ..., X, will denote indeterminates over D. By an
overring of D we mean an integral domain D’ such that D< D’'< L. By a valuation
overring of D we mean an overring of D which is a valuation ring. Our notation
will be that of Zariski-Samuel [8] with the one exception: < denotes proper
containment and < denotes containment.

I. If dim D=n and w=n, we wish to find necessary and sufficient conditions in
order that each overring of D have dimension less than or equal to w. One such set
of conditions is given by the following theorem.

THEOREM 1. Suppose that dim D=n. Then the following statements are equivalent.
(1) Each overring of D has dimension less than or equal to w.
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(2) Each valuation overring of D has dimension less than or equal to w.
(3) For {tl, ceey tw}gL, dlm D[tl, Y tw]§w.

Proof. Clearly (2) and (3) follow from (1). To show that (2) implies (1) we suppose
that D’ is an overring of D such that dim D’ > w. Then there exists a chain (0) <P,
< ...cP.c D' of prime ideals of D’ such that s> w. By Theorem 11.9 of [5, p. 37]
there exists a valuation overring ¥ of D’ such that ¥ has prime ideals Q,, ..., Q;
which lie over Py, ..., P; respectively. It follows that V is a valuation overring
of D such that dim V> w.

The proof that (3) implies (1) is given by Gilmer in [1] for the case w=n. The
same method of proof is used here.

Suppose that there exists an overring D’ of D such that dim D'Zw+1. Let
©0)=P,,.1<---<=P;<=D’ be a chain of prime ideals of D’ and let ;e P,—P,,,,
1fifw. If Pi=P,NDfty,...,t,], 1SiSw+]1, then P{ is a prime ideal of
D[ty,...,t,] and t;€ P{—P;,,, 1 SiSw. Now let r/s € P, ,, where r, s € D—{0}.
Then r=s(r/s) is an element of P,,, N D so that r € P;,, ;. Further, 1 ¢ P; since
1 ¢ P,. Thus, (0O)<P,,,<---<Pi<D[ty,...,t,] and dim D[t,,..., t,]Zw+1.

Theorem 1 leads us to the consideration of domains D such thatdim D[t,, . . ., t,]
= w for any subset {¢,, . . ., t,} of L. More generally, for a fixed positive integer m,
we wish to find necessary and sufficient conditions in order that dim D[t,, .. ., t,]
Zw, where {1, ..., t,} is any subset of L, and where w=dim D. Sufficient con-
ditions are given by the following theorem.

THEOREM 2. Suppose that dim D[X,,..., Xp]=w+m. Then w=dim D, and
given {ty, ..., t,}<L, we have dim D[t,, .. ., t,] S w.

If P is a prime ideal of an integral domain R, we shall denote by A(P)(d(P)) the
height (depth) of P in R. Before proving Theorem 2, we require Lemma 1.

LemMma 1. Let t,, ..., t, be elements of L and let ¢ be the canonical D-homo-
morphism from D[Xy, ..., X,) onto D[t,, . . ., t,] such that §(X)=t,1Zi<m. If Q
is the kernel of ¢, then Q has height m in D[ X, ..., X,].

Proof. We have Q N D=(0), for if d € D, then ¢(d)=d. Thus, if N=D—{0},
Q extends to a proper prime ideal of

(D[Xl, ceey Xm])N = DN[X13 Y Xm] = L[Xl, ceey Xm].
Further, if /(Q)=sin DX}, . .., X,,], the extension of Q has height s in
LIXy, ..., Xal

However, dim L[X;, ..., X,]=m so that s<m.

Let 0i=Q N D[X,,..., Xjlfor1Zi<m.Ift;=a,/b, a,, b, € D, then b; X, —a;€ 0;.
Consequently, Q,#(0) and for 1=Zism—1, Qi[X;,11<Qi.1, since b, 11X,
—a;,1 ¢ Qi[Xi;1]. It now follows that (0)<=Q,[X,,. .., Xnl< - S On-1[Xn
< Q= Q so that A(Q) = m. Thus equality holds and the lemma is proved.
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Proof of Theorem 2. Suppose that {t,,.. ., t,} <L and let Q be the kernel of the
D-homomorphism ¢ of D[Xy,..., X,] onto D[ty,.. ., t,], where ¢ is such that
¢(X)) =t for each i. Further, let (0)=Q,<---<Q,<DIt,,. .., t,] be a chain of
prime ideals of D[t,, ..., t,]. Then there exists a chain

QCPIC"'CP’CC‘D[XI""’X"']

of prime ideals of D[X3, ..., X,] such that ¢(P,)=Q,, 1 Si<k. Since Q has height
m, m+k=dim D[X,, ..., X,]=m+ w. Therefore, k < w as we wished to show.

Theorem 5 shows that the conditions given in Theorem 2 are also necessary in
order that dim D[ty,..., t,]Sw for {t5,..., t,}<L. However, before proving
Theorem 5 we need several other results.

THEOREM 3. Suppose that dim D[t,, ..., t,)Sw for {t,,..., toy<L. If J is an
integral domain containing D such that J is integral over D, and if F is the quotient
field of J, then dim J[sy, . .., sp]Sw for {s, ..., Sp} S F.

In order to prove Theorem 3, we use the following lemma.

LemMMA 2. Let f(X)=f, X"+ - +fiX+f, € D[X], f,#0, and let s be a root of
S(X) in an extension field of L. Then s is integral over D[1/f,] and f,s is integral
over D.

Proof. Since f(X)/f, € D[1/f,][X] and f(s)/f,=0, it follows that s is integral
over D[1/f,]. Also

0 =f271() = (as)" +facalfus)" 714 - +A ST Hfas) Hof ™2

so that f,s is integral over D.

Proof of Theorem 3. F is algebraic over L since J is integral over D. Therefore,
if §1,..., S, are elements of F, there exists fi(X) € D[X]—{0} such that fi(s,)=0,
1 £i<m. It follows from Lemma 2 that if d; is the leading coefficient of f(X), then
s; is integral over D[l/d,, ..., 1/d,] for each i, 1<i<m. Hence, J[s,, ..., Sn] is
integral over D[1/d,, . . ., 1/d,]. Therefore, dim J[sy, . . ., sn)=dim D[1/d,, . . .,1/d,]
by [6, Theorem 5]. But dim D[1/d,, ..., 1/d,]Sw since {1/d,, ..., 1/d,}<L.

COROLLARY 1. Suppose that dim D[ty, ..., t,]Sw for {t\,..., ta}<L. Then if
{81, . . ., Sm} is a set of elements algebraic over D, we have dim Dl[s,, ..., s;] S w.

Proof. Suppose f(X) € D[X]—{0} is such that f(s;)=0, 1 £i<m. From Lemma 2
it follows that if d, is the leading coefficient of fi(X), then J=D[d,s,,. .., dySnl
is integral over D. Moreover, {s;, ..., s,} is a subset of the quotient field of J.
Therefore, since J[sy, ..., Su]=D[sy,..., s,), it follows from Theorem 3 that
dim D[sy, ..., sp] S w.

THEOREM 4. If each overring of D has dimension less than or equal to w, then
dim D[X,,..., Xp]Sw+m.
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Proof. Suppose that dim D[X4, ..., X,]=m+k, k=0. It follows from Theorem
2 of [6] that k=dim D so we have D=L if k=0. Therefore, since the theorem is
true for D=L, we assume that k>0. By Theorem 11.9 of [5, p. 37], there exists a
valuation overring W of D[X;, ..., X,] such that dim Wzm+k. If V=WnNL,
then V is a valuation overring of D.

Suppose now that dim ¥V'=pu. Then by assumption p <w, and by Theorem 4 of
[7), if Z,, Z,, ..., Z, is any set of indeterminates over V, then dim V[Z,, ..., Z,]
=p+r. In particular, if Yy,..., Y,,, are indeterminates over V[Xi,..., Xy,
then dim V[Xy,..., Xul[Y4,..., Y, n]=2u+2m. Therefore, by Theorem 2, if
81, ..., 8,.m are elements of L[ X, ..., X,], the quotient field of V[X7, ..., Xul;
thendim V[Xy,..., Xnl[81, ..., 8,4 m] = p+m. It then follows from Theorem 1 that
every overring of V[X, ..., X,] has dimension less than or equal to p+m. But W
is an overring of V[Xy,..., X,] so we have m+k=<dim W=m+p. Therefore,
k=p=wso that dim D[X,,..., X,]Sw+m as we wished to show.

LEMMA 3. Suppose that dim D[t,, ..., t,]Sw for {ti,..., t,}<L, and let P be a
prime ideal of D such that h(P)=k. If F is the quotient field of D/P, then

dim (D/P)[sy, ..., Sn] S w—k for{s,,...,Sn} S F.

Proof. Fis isomorphic to Dp/PD5p, since Dp/PDp>(D/P)p;» [8, p. 227], and D/P
is isomorphic to {d+PDp|de D}< Dp/PDp. Thus suppose that {s,..., S,}<
Dp/PDp—say s;=t;+PDp, where t; € Dp, and let D'=D[t,, .. ., t,].

If (0)<P,<--.-<P,=P is a chain of prime ideals of D, then (0)=P,Dp<---
<P.Dp=PDp< Dy is a chain of prime ideals of D, such that P,D, N D=P,,
1Zigk. Now Dc D'< D, so that if P;=P,D, N D', then P,=P; N D. Therefore,
(0)cPic...cP,=P'<D'is a chain of prime ideals of D" and A(P')=k.

It is easily seen that

D'|P' ~{d'+PD,|d € D%}
={f(ty,.. ., ta}+PDp | f(Xy,..., Xp) € D[ Xy, ..., Xpl}
= {(do+ 2 dn;...npt12 - -tmm)+PDp | d; € D}
~ {do+PDp+ 3 (dy,...n, + PDp)(t,+PDp)"r- - -(tn+PDp)"n | d; € D}
~ (D/P)[s4, - - .5 Sm)-

But by assumption dim D'<w, and we have seen that A(P')=k. Therefore,
dim D'/P' S w—k; thatis, dim (D/P)[ss, . . ., Sn] S w—k, and the proof of Lemma 3
is complete.

LEMMA 4. Let P be a prime ideal of D, P+# D, and let Q, < Q,<---<Q; be a
chain of prime ideals of DX, ..., X,] such that Q; N D=P for each i, 1 Si<s.
Then s<m+1 and there exists a chain P[X,, ..., X,l=1<--- <, of prime
ideals of D[X,, ..., X,) such that T'; N D=P for each i and such that {Q,, . .., Qs}
c{ly, ..., Thiih
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Proof. If Pe=P[X,, ..., X,], then Q,/P¢< ... < Q,/P*is a chain of prime ideals
D[Xy,..., X,)/P¢=(D/P)[X;, ..., X,] meeting D/P in (0). Thus, it suffices to
prove Lemma 4 for the case in which P=(0). But if P=(0), then

('D[Xb LK Xm])D—P = L[Xla L Xm]‘
Lemma 4 now follows from the results in [9, p. 194].

LEMMA 5. Let D be a quasi-local domain with maximal ideal M. If dim D=
n=w=<m and if dim D[X;,..., X;]Zw+m+1, then there exists a chain of
prime ideals of D[Xy,..., X,] of the form M[X;,..., X2 0,2 --20,>(0),
where either Q,=P[X,,..., X,] for some prime ideal P of D, or @, N D=(0) but
0. N D[X1]#(0).

For convenience we number the following remark since it will be used repeatedly
in the proof of Lemma 5.

RemARk 1. If dim D[X4, ..., X,]2w+m+]1, then by Theorem 4 some over-
ring of D has dimension greater than or equal to w+ 1. Hence, by Theorem 1, we
have dim D[z, ...,t,]2w+1 for some {t,,...,t,}<L so that, by Theorem 2,
dim DX, ..., X,]22w+]1.

Proof of Lemma 5. If the lemma were true in the special case in which m=w,
there would exist a chain of prime ideals of D[X}, ..., X,,] of the form

M[Xla---’Xco]D Qa):“'D QID(O)’

where either Q,=P[X;, ..., X,] for some prime ideal P of D, or Q; N D=(0)
but 0, N D[X;]#(0).
Since w=m,

M[Xla' c ey Xm] > Qa)[Xw-O-l’- CRE) Xm] D2 Ql[Xa)+la'- ) Xm] > (0)

is a chain of prime ideals of D[X, ..., X,] having the desired form.

Therefore, it suffices to prove Lemma 5 for the special case in which w=m.
The proof will be by induction on n, where n=dim D.

We first consider the special case in which there exists a chain of prime ideals
DXy, ..., X0l Qoms1> - - -2 Q,2(0) such that if Q; n D#(0),then Q; N D=M,
1<i=2m+1. Since this is the case when n=1 we will have the first step of an
induction argument.

By taking P=(0) in Lemma 4, we see that Q,,,, N D#(0) so that, by hypothesis,
Oni1 N D=M. Then Q,,,, 2M[X;, ..., X,], and it follows from Lemma 4 that
M[X,,..., X,] has depth m in D[X,,..., X,] But d(Qn,)2=m, $0 Qn,:
=M[X,,..., Xnl

Since Q1> Qn, our assumption implies that Q, N D=(0). However, by
Lemma 4, 0, N D[X,]#(0)—say Q, N D[X;]=Q}. If D'=D[X,]o;, then D'2L
since Q1 N D=(0), and every valuation overring of D’ has dimension less than or
equal to one [9, p. 50]. Therefore, by Theorem 1, D’ is a one-dimensional domain
such that every overring has dimension less than or equal to one. It then follows
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from Theorem 4 that dim (D)[Xa, . .., Xn]=m. Let (Q1)¢*=(Q1)D’. By Lemma 4,
(0)°[Xs, - - -» Xi] has depth m—1 in (D')[X, ..., X,], so it is minimal. Since
(D)[X,, ..., X;] is a quotient ring of D[X}, ..., X,,] with respect to the multi-
plicative system

D[XI]_Q;.a Q; = (Qlll)[X29 ey Xm] = (Qi)e[Xm ey Xm] N D[XI’ ceey Xm]

is minimal in D[X, ..., X,].

Now Q1< Qnand Q7 N D[X]= Q1= 0, N D[X,]. If 0> O, then (Q)2m+]1,
so by Lemma 4 we have Q N D#(0). Hence Q N D[X,]# QO since @} N D=(0).
Since Q7 is minimal there exists, by Lemma 4, prime ideals Q3,..., On-; of
D[Xy,..., X,] such that (0)=Qi<Q3<---<QOn_1<0n Then M[X,,..., X,]
>0,>0h_1>-- 203> 07>(0) is the desired chain.

We now assume that the result is true for n<k and that dim D=k. If

dim D[X,, ..., X,] 2 2m+1
and if D[X3, ..., Xpn]> Qons1> - - - 2 Q,2(0) is a chain of prime ideals of
DXy, ..., Xyl

then, from what we have just shown, we may assume that (0)=Q; " D<M for
some i, 15i<2m+1. Thus we choose «, 1 Sa=2m+1, such that Q, N D#(0)
but Q,_, N D=(0). (We take Q,=(0).) Suppose that Q, " D=P and suppose
that dim Dp=pg. By assumption P< M so that p<k. Let (0O)<P,<--- <P, <P
be a chain, having length p, of prime ideals of D which are contained in P. Let A
be the maximal length of a proper chain of prime ideals of D[Xj, . .., X,,] which is
contained properly between Q, and P[ Xy, ..., Xl (let A=—1if Q,=P[X;, ..., X)),
and let 1=(2m+1)—(a—1)=2m—a+2. Then P,[X;, ..., X,] has depth greater
than or equal to t+A+u—1in D[Xy,..., X,]

If t+A+p22m+1, then dim (D/P)[Xy,..., Xp]l22m=(m—1)+m+1 and
m—12dim D/P, (since m=dim D and P;#(0)). Taking w=m—1, Remark 1
implies that dim (D/P)[Xy, ..., Xn-1]1Z2(m—1)+1. But dim D/P, <dim D=k,
so by the induction hypothesis there is a chain of prime ideals of

(D/Pl)[Xla DR ] Xm—l]
of the form (M/P,)[ X1, ..., Xpu-1]P Qn-12---20712(0). If for 1Zi<m—1, Qjis
the unique prime ideal of D[X,, ..., X,] such that Q;2P,[X,..., X,_,] and
(Q;)/PI[XI’ RS ] Xm—l]; Q:a then
M[Xy, ..., Xpo1]1® Ono1 @2 Q12 PiX,, . ., Xl
Clearly, M[Xy, ..., Xp]2(On-D[Xz]> - - 2(QD[Xn]>Pi[X1, . . ., Xy is a chain:
of the desired form.
We now suppose that 1+ A+p<2m+1. We first show the existence of a chain

M[X,. ., X,]2Q0;>---2Q12P[X;,..., X,] of prime ideals of D[X},..., Xn]
such that B+m+1=¢+A.
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Thus, if 1+ A<m+dim D/P, we take B+ 1=dim D/P. Then there exists a chain
M>Qz> -0, 2P of prime ideals of D and M[X;, ..., Xn]2 QslXy, ..., Xl
>...o20,[X,,..., Xu]2P[X4, ..., Xn]is the desired chain. If, on the other hand,
t+A=dim D/P+m+1, we take B to be such that t+A=B8+m+1. Then f2dim
D/P and by assumption t+A+p<2m+1, so that B+m+1=t+A<2m+1. There-
fore we have B<m; that is, dim D/P<m. But dim (D/P)[X,,..., Xn]2t+A=8
+m+1, so it follows from Remark 1 that dim (D/P)[X;, ..., X5]=2B8+ 1. Since
dim D/P<k, the induction hypothesis is applicable. Hence, using the same
method of proof given above for D/P,, there exist prime ideals Qg,..., Q) of
D[X,, ..., X,] such that M[X;,..., X,]2 Qs> - -2 Q12P[Xy, ..., Xal

We now consider the domain Dp. Since Q;, " D<P for 15i<e, if we set
Qi=0,Dp[ X5, ..., Xp), 12iZe, Pf=PDp, 15isu—1, and P°=PD;, then we
have ()= Qi< <@, (O)=(PIIXy,..., Xul= - <(Pi- DXy, ..., Xu]<=(P?)
Xy, .., XRle Q4 QN Dp=(0) for 1Zisa—1, Q5N Dp=P° and A is the
maximum length of a proper chain of prime ideals of D;[X;, ..., X,,] contained
properly between Qf and (P9)[Xy,..., Xn] (A=—1 if Q¢=P°[X,,..., X,]). By
Lemma 4 there is a chain of prime ideals of Dy[X, ..., X,] of the form

(Pe)[XI!"',Xm]=Hm+1CHmC...CH1

such that H, N D,=P° for each i, and Q%= H, for some s, 1<s<m+1. Then
O)<c@ic...cQ¢_ycH,<---<H, < Dp[Xy,..., X,] is a chain of prime ideals
of Dp[Xy,..., X,] so that dim Dy[Xy,..., Xp]Z«—1+s. But by assumption
p+A+t<2m+1. Hence, p+A<2m+1—t=a—1 and we have u+A+s<a—1+s.
By choice of the integer A and the ideals H,, . . ., H;= Q¢, it follows from Lemma 4
that A+s=m. Consequently, p+m<e—1+s. By Lemma 4, «—1<m (since
ifa—1 implies @; N D=(0)), and s<m+1 by choice. Then «—1+s=<2m+1,
so we may choose y<m such that «—1+s=y+m+1. We now have p+m<a
—14+s=y+m+1=dim Dp[X;, ..., X,], from which it follows that u<y<m
(we recall that p=dim Dp). Remark 1 now implies that dim Dp[X,..., X,]
22y+1.

Since P< M, dim D; <k, so by the induction hypothesis there is a chain of prime
ideals of Dp[Xj,..., X,] of the form P*[X,,..., X,]=>T,>--.-2TI'1>(0), where
either I' =P'[X,, ..., X,] for some prime ideal P’ of Dp, or I'; N Dp=(0) but
Ty N Dp[X,]#(0). If we let I''=T{ N D[X,,..., X,], | Si<y, then

PlXy,....X,]>T,>---2T; 2(0)

is a chain of prime ideals of D[Xj, ..., X,]. Further, if [' =(P’)[Xy, .. ., X,], then
[y=P")[Xy,..., X,)where P"=P’ N D;or, if I'y N Dp=(0) but I'; N D[X,]+#(0),
then I'y N D=(0) but I', N D[X,]#(0). We now show that
M[Xy, ..., Xn] 2 Q3>--2 Q) 2 P[Xy, ..., X,]
- LV[X7+1a L) Xm]D s FI[XH-la ceey Xm] > (0)

is the desired chain of prime ideals.
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Certainly I';[X,, 1, ..., X,] has the desired form, so it suffices to show that
B+y+1zZm. But y+A+s+1=y+m+1=a—1+s5s=2m+1—t+s. Hence, y+A+1
=2m+1—1t so that y+A+t+1=2m+1. By choice of 8, B+m+1=¢+A and it
follows that y+8+m+22y+t+A+1=2m+1. Therefore, B+y+1=m as we
wished to show.

This completes the proof of Lemma 5.

We are now in position to show that the conditions given in Theorem 2 are
necessary in order that dim D[t,,..., t,]Sw for {t,,..., t,}<L. Theorem 5 is the
main result of this paper.

THEOREM 5. If dim D=n and if m, w are nonnegative integers such that
dim D[t,,.. ,ty] S w for{t,.. , ty} S L,

then the following conditions hold.

(1) dim D[X,,..., Xp]Sw+m.

(2) If there exist elements t,, ..., t, in L such that dim D[t,, ..., t,]=w, then
dim D[X,,..., Xy]=w+m.

Proof of (1). The proof of (1) will be by induction on n and m. Thus, we first
show that (1) is true when either n=1 or m=1.

Suppose that n=1. By a theorem of Sedenberg [7, p. 608], P one-dimensional
implies that for any m, dim D[X,..., X,]<2m+1. Clearly then (1) holds if
w2m+1, so we assume that w <m. Since dim D[ty, ..., t,]Swfor{ty,..., t,}<L,
it follows, by taking t,=t,,,="-=ty, that dim D[t;, ..., t,]Sw for {t;, ..., t,}
<L. Theorem 1 now implies that each overring of D has dimension less than or
equal to w so that, by Theorem 4 dim DXy, ..., XplSmtow.

Now suppose that m=1. We have just seen that (1) holds for n=1, so we assume
that (1) is true for n<h, that dim D=4h, and that dim D[t]Sw for te L. Let
(0)=Q;<---<=Q;<D[X] be a chain of prime id%of D[X], where Q, is chosen
to be minimal. If Q, N D=(0), then D[X]/Q,=[X], where X=X+ Q,, and
f(X)=0 for any fe Qy, so X is algebraic over D. It f0flows from Corollary 1 that
dim D[X]<w and this ipplies that Q, has depth less than or equal to w in D[X].
Therefore, s<w+ 1. On the other hand, if 0, N D#(0), then @, N D2 P, where
P is a minimal prime ideal of D. By choice, @, is minimal, and Q, 2P[X]. Thus,
0,=P[X]. From Lemma 3 we have dim (D/P)[oc] £ w—1 for each ¢ in the quotient
field of D/P. Further, dim (D/P)<h, and by assumption (1) holds; that is,

dim (D/P)[X] £ w.

But (D/P)[X]~ D[X]/P[X] so that P[X]= Q, has depth less than or equal to w.
Consequently s < w+1 and it follows by induction that (1) is true for m=1.

From what we have just shown, we may make the following inductive assump-
tions.

(A) Suppose that (1) is true for any n when m<k.
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(B) Suppose that (1) is true for n<h when m==k.

Now let dim D=h and suppose that dim D[X,,..., Xi]Zw+k+1, w=h.
We wish to establish the existence of f,, ..., t, in L such that dim D[t,, ..., ]
Zw+1.

If dim D[X]Z=w+2, then by the case in which m=1 there exists ¢ € L such that
dim D[t]Z2w+1. If we set t=t,=-- - =t,, it follows that dim D[t,,. .., t;]Z2w+1
and we are finished.

Suppose, then, that dim D[X;]Sw+ 1. The assumption that

dim D[X ][ Xy, ..., Xi] = w+k+1

then implies, by (A), that there exist elements &,,..., §, in L(X;) such that
dim D[X,][8, ..., 8;]=w+2. Let Q be the kernel of the canonical D[X;]-homo-
morphism ¢ which maps D[X,][X,, ..., X,] onto D[X;][8,,. .., 8] in such a way
that ¢(X;)=34, for each i. Then Q must have depth greater than or equal to w+2,
and by Lemma 1, Q has height k— 1. Hence, there exists a chain of prime ideals
of D[X,, ..., X,] of the form

0 <c0ic Qs QCQr< S Qriusr © D[Xy,. .., Xi].

If f(X,) € D[X,], then ¢(f(X1))=f(X,). Therefore, Q N D[X;]=(0). However,
since A(Q)=k—1, Lemma 4 implies that Q, N D[X;]#(0) for i, 1 £i<k. We now
consider the two cases in which @, N D=(0) and Q, N D#(0).

If 0, N D=(0), then D[X,,..., X,]/Qx>D[X,, ..., X,], where X,=X;+ Qs
and since Q, N D[X;]#(0), X; is algebraic over D for each i. But

dim D[X,, ..., X;] 2 w+1,

so by Corollary 1 there exist elements ?,, ..., #, in L such that dim D[z, ..., ]
2 w+1 and we are finished.

Thus, suppose that Q,, N D #(0)—say Q, N D=P, where P is a prime ideal of D
such that A(P)=p. Then Q, 2P[X;, ..., X,] and there exists a chain (0)<P,<---
<P,_; <P of prime ideals of D. Let A be the maximal length of a proper chain of
prime ideals of D[X;, ..., X,] contained properly between Q, and P[X7, ..., X;]
(let A=—1if Q,=P[Xy,..., X]). We proceed now to show the existence of a
chain of prime ideals of D[X7, ..., X;] which has length greater than or equal to
k+w+1 and which is of the form Qy,, .12 - 20Qr2---2P[Xy,..., Xi]
> Q,> - -2 Q71>(0) where either Q;=P'[X;, ..., X,] for some prime ideal P’ of
D, or Q; n D=(0) but Q; N D[X;]#(0). (Here we understand that a proper
chain of length A is contained between @, and P[X, ..., X,].) We shall say that
such a chain has form (C). Thus, we seek a chain of form (C) for which y+ A+ w+3
Zk+w+1.

If u+A=k—1, then

Orior1 22 O 22 P[Xy,..., Xi] @ Pyoa[Xy, -, Xal
DD P1[X1,--~,Xk]D(O)
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(where a proper chain of length A is included between Q, and P[X,,..., X,]) is
such a chain since (p—1)+A+w+3=p+A+w+22k—1+t+w+2=k+w+1.

Suppose, then, that u+A<k—1 and consider the domain D,. For 1 <i<k, let
Qi=0:Dp[X, ..., X,], and for 1 £i<p, let Pf=P;Dp, where we set Q,._,=Q and
P,=P. Then (0)=Qi{<...-<=Q; is a chain of prime ideals of Dp, Qf N Dp=(0)
for 1Zik—1, Qi2(P9)[Xy, ..., Xi), Qi N Dp=P¢, and A is the maximal length
of a chain of prime ideals of Dp[X7, ..., X;] contained properly between Qf and
Pe[X,, ..., Xi]. By Lemma 4 there is a chain of prime ideals P¢[X),..., X,]=
Iyjchyce... e DXy, ..., X.]such that I, N Dp=P¢ for each i and such
that Q;=T for some s, |<s<k+1. From Lemma 4, and by choice of A, it
follows that A=k—s; that is, s+A=k. We now have the chain (0)<Q,<---
cQr-1clje- .. ey € Dp[Xy, ..., Xi] of prime ideals of Dp[Xy,..., X,], from
which it follows that dim Dp[X;, ..., X,]=2s+k—1>s+A+pu=k+pu. Let y be
chosen so that s+k—1=k+y+1. Then y=u=dim D, and, by choice of s, we
have s<k+1, so that k+y+1=s5+k—1=2k. Consequently, we have u<y<k—1
and dim Dp[Xy, ..., X ]=k+y+ 1. Therefore, by Lemma 5, there exists a chain of
prime ideals of Dp[Xj, ..., X;] of the form P°[X,,..., X;]> Q7> ---207>(0),
where either Q7=P"[X,..., X,] for some prime ideal P” of Dp, or QiND,
=(0) but Q@ N Dp[X;]#(0). Let Q;=Qi N D[X;,..., X;] for each i, 1=
iSy. Then Q12 202 - 2P[Xy,..., X, ]20,>---20>(0) is a
chain of prime ideals of D[Xj,..., Xi] having form (C), for if Q7=P"[X;,
..., X;] for some prime ideal P” of Dp, thenQ:=P'[X,,..., X,], where P'=P"
N D. On the other hand, if Q7 N Dp=(0) but Q7 N Dp[X,]#(0), then Q; N D=
(0) but Qj N D[X;]#(0). Further, s+k—1=k+y+1=A+s+y+1 so that
k—1=A+y+1. It then follows that k+w+1=A+y+w+3.

LEMMA 6. Suppose that dim D=h and dim D[t,, ..., t, )< for {t,, ..., t,}<L.
Then if P is a proper prime ideal of D, P[ X, ..., X;] has depth less than or equal to
w+k—1in D[X,,..., X,], and if Q is a prime ideal of D[Xy,..., X,] such that
0 N D=(0) but Q N D[X,]1+#(0), then Q has depth less than or equal to w+k—1
in D[X,, ..., Xi].

Proof. If P is a proper prime ideal of D, then by Lemma 3 we have
dim (D/P)[sy, . .., Sx] = w—h(P)

for any set of elements {s, ..., s;} contained in the quotient field of D/P. From
assumption (B) it then follows that dim (D/P)[X,,..., X;]Sw+k—h(P). But
(D/P)[ X1, ..., Xp]l=D[Xy, ..., Xy )/P[Xss ..., Xi), so that P[X,,..., X,] has
depth less than or equal to w+k—h(P).

Suppose that Q is a prime ideal of D[X, ..., X,] such that Q N D=(0) but
0 N D[X;]#(0)—say Q N D[X;]=Q’'. Then Q=2(Q')[X,,..., X,] and

DXy, ..., XJ(@) X, - . .5 Xi] = (D[XL)/ Q) Xz, . .5 Xil.
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But D[X,]/Q’~D[X,], where X,=X,+Q’, and X, is algebraic over D. Since
dim D[t]Zw for ¢ € L, it follows from Corollary 1 that dim D[X,]< . Moreover,
by Lemma 2, there exists a nonzero element d in D such that X, is integral over
D[1/d]. But L is the quotient field of D[1/d] and dim D[1/d][¢,,. .., t;-1]S w for
{t1, ..., t,_1}< L. Therefore, by Theorem 3, we have dim D[X,][s, ..., sx-1]Sw
for any set of elements {s,, . . ., 5, _} of the quotient field of D[X;]. It now follows
from assumption (A) that dim D[X,][X,, ..., X,]Sw+k—1. Consequently,
0’[X,, ..., X;;] must have depth less than or equal to w+k—1 so that Q also has
depth less than or equal to w+k—1 as we wished to show.

We now complete the proof of Theorem 5.

By assumption the ideal Q; in a chain having form (C) has depth greater than
or equal to k+w. However, Q7 has one of the forms described in Lemma 6 so it
follows that dim D[t,, ..., ;]2 w+1 for some set {t,, ..., t,}<L.

Statement (1) of Theorem 5 now follows by induction.

Assume now that dim D[t,, ..., t,]=w for some {t,..., t,}<L. From (1) it
follows that dim D[X}, ..., X,]Sw+m. But if dim D[X,,..., X,]=a+m, where
o« L w, it follows from Theorem 2 that dim D[s, .. ., sy] S« for {ss,. .., S,}<L. In
particular, dim D[ty, ..., t,]=w=«, so that a=w. Statement (2) of Theorem 5
now follows.

This completes the proof of Theorem 5.

In [3] Jaffard defines the valuative dimension, denoted by dim, D, of the domain D
to be the maximal rank of the valuation overrings of D. With this notation and
terminology, we now relate many of the results of this paper in the following
theorem.

THEOREM 6. Let D be a finite-dimensional integral domain with identity having
quotient field L, and let w be a positive integer such that w 2 dim D. Then the following
Statements are equivalent.

(1) dim, D=w.

(2) Each overring of D has dimension less than or equal to w and w is minimal.

(3) For any nonnegative integer m, dim D[t,, . .., tp,]Sw for {t;,..., tn}<L, and
for m=w—1 there exists {t, ..., t,} <L such that dim D[t,, .. ., ty]=w.

(4) For any nonnegative integer m, dim D[X,, ..., X,]Sm+w and for mz w—1
equality holds.

(5) dim D[Xy,..., X,]=2w.

(6) dim D[t,, ..., t,]Sw for any set {t,,...,t,}<L, and there exists a set
{81, ..., So} <L such that dim D[s,, ..., s,]=w.

Proof. It was shown in the proof of Theorem 1 that if D' is an overring of D
such that dim D'=k, then there exists a valuation overring ¥ of D such that
dim V2 k. This fact together with Theorem 1 shows that (1) and (2) are equivalent.

To show that (2) implies (3), it clearly suffices to show that for any positive
integer m=w—1, there exists {t,,..., ;<L such that dim D[z,,.. ., t,]=o.
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However, it follows from the proof of Theorem 1 that if there exists an overring D’
of D such that dim D'=w, then dim D[t,,..., t,_ ]2 w for some {t,,..., tn_1}
cL. Thus, equality holds and for any m=w—1, dim D[t,, ..., t,]=w, where
to1=ly=" " =tln.

That (3) implies (4) is an immediate consequence of Theorem 5 and certainly (4)
implies (5). If (5) holds, then by Theorem 2 we have dim D[t,, ..., t,]<w for
{ts,..., t,}<L. But if dim D[t,, ..., t,]<k for any k=S w, then it follows from
Theorem 5 that dim D[X4, ..., X,]Sk+ w so that k =2 w. Thus k =w, and it follows
that dim Dlsy, ..., s,]=w for some {si, ..., s,} L. Therefore (6) holds.

It is immediate from Theorem 1 that (6) implies (2) and Theorem 6 is proved.

REMARK 2. If we take w=dim D, then for any nonnegative integer m and
{ts, ..., ty}<L, we have dim D[t,, ..., t,]=w. Thus from Theorem 6,

dim D[X,,..., X,] = m+dim D
for all m if and only if dim D=dim, D.

II. Suppose now that D is integrally closed. Let {V,} be the set of all valuation
overrings of D, and let A be an ideal of D. Then A=\, AV, is an ideal of D called
the completion of A. If X is an indeterminate over D and f'e D[X], then we denote
by A, the ideal of D generated by the coefficients of f. We now define the Kronecker
function ring of D as follows:

D* = {flg|f,ge DIX), 4, = 4,}.

In [4], Krull shows that D¥ is an integral domain having quotient field L(X) and
that D* N L= D. He further showed that D* is a Bezout domain, where a Bezout
domain is defined to be a domain in which each finitely generated ideal is principal.

Now let V be a valuation overring of D and let v be a valuation associated with V.
If fe LIX]—{0}, f=fo+fiX+ - - - +£,X™, we define v*(f) =min, <; <, {v(f) | i #0}.
Then v* defines a valuation on L(X) having the same value group as v. In particular,
v and v* have the same rank. We call v* the trivial extension of v to L(X), and if V'*
is the valuation ring of L(X) associated with v*, then V* is called the trivial ex-
tension of V to L(X). Krull has shown in [4, p. 560] that if {V/,} is the collection of
valuation overrings of D, then {V}} is the collection of valuation overrings of D*.

An integral domain R with identity is said to be a Priifer domain provided each
finitely generated nonzero ideal of R is invertible. In particular, a Bezout domain
if a Priifer domain, so DX is a Priifer domain. Therefore, dim, DX =dim D¥ [3,
p. 56]. But from the previous remarks we see that dim, D=dim, D¥. We have thus
proved the following result.

THEOREM 7. Let D be an integrally closed domain with identity and let D¥ be the
Kronecker function ring of D. Then dim, D=dim DX.

COROLLARY 2. If D is an integral domain with identity having integral closure D,
the statement that dim (D)X =w is equivalent to each of the statements (1)-(6) of
Theorem 6.
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ITI. Let D be an n-dimensional integral domain with identity having quotient
field L. We have seen that each overring of D has dimension less than or equal to n
if and only if dim D[z, . . ., ¢,] =n for each subset {#,, . . ., ,} S L. For any positive
integer n, we now show the existence of an integral domain D such that dim D=n,
and such that dim DI[t,, ..., t,]<n for any positive integer m<n and for each
subset {t,, ..., t,}<L, but such that dim ¥'=n+1 for some valuation overring V'
of D(?). We first state the following results which are proved in [2].

LeMMA 7. Let {V1, ..., Vi} be a collection of valuation rings having quotient field
L, and suppose that V&V, for i#j. If M, is the maximal ideal of V;, then (\;+1 M;

&V, for any i.

LemMA 8. Let {Vy,..., V,} be as in Lemma 7 and suppose that each V; contains
some fixed field F. If D=F+ M, where M=M, N-- -0 M,, then D is a quasi-local
domain with maximal ideal M and if P is a nonmaximal prime ideal of D, then
P=Q N D, where Q is a nonmaximal prime ideal of V; for some i, 1 Si<k.

Now let n be an arbitrary positive integer, let K be a field, and let
L=K(X;, ..., X,,1). We may construct valuation rings ¥, and ¥, on L such that:

(a) Vyhasrankoneand V,=K(X,,..., X,)+ M,, where M, is the maximal ideal
of V1, and X, ,, € M,.

(b) ¥V, has rank n, V,=K+ M,, where M, is the maximal ideal of V,, X,/X,,,
€ M,, and if M;=P,>P;>--.2P,>P,,,=(0) is the chain of prime ideals of ¥,
then X; e P,—P;,, foreach i, 1ZiZn.

Wehave X;/X,,, € Vo—Viand 1/ X, € V; —V,. Thus, by Lemma 8, if D=K+ M,
where M =M, N M,, then D is a quasi-local domain with maximal ideal M, and D
has quotient field L since M does. Further, X, X,., € (P, " D)—(P;,, N D) for
each i, 1<i=<n, so it follows from Lemma 8 that dim D=n.

Suppose that V is a nontrivial valuation overring of D. Then V2 M, N M,.
so by Lemma 7 either V<V, or V2V, for i=1 or 2. If ¥ 2V, then V=V, since
dim V;=1. If V< V,, then V2 M,, and ¥ 2K since ¥ 2 D. Therefore, V2 K+ M,
=V,, so that equality holds. Thus, if ¥ is a nontrivial valuation overring of D,
either V=V, or V2V,

Let m be a positive integer, m<n, and let {t, ..., t,}<L. Then D[t,, ..., t,] is
the homomorphic image of D[Y,,..., Y,], Y1,..., Y, indeterminates over D,
so it follows from Lemma 4 that if P, <P,<-.. <P, is a chain of prime ideals of
D[ty, ..., t,] such that Py N D= M for each i, then s<m+1 <n. Further, let D’ be
an overring of D such that dim D'2n+1, and let (0)<Pj<..-.-<P,,, <D’ be
a chain of prime ideals of D’. Then there exists a valuation overring ¥ of D’, and a
chain (0)=Q,<.--<Q,,,<V of prime ideals of ¥ such that Q, N D'=P],
I1=isn+1 [5, p. 37). Since dim V'2n+1, V2 V,. Therefore, V< V1, so it follows

(®) The method for constructing such an example was suggested by William Heinzer.
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that M, Q,. Thus PN D=(Q, N D')Nn D2(M; N D')yn D=M, and con-
sequently, P, D=M for each i, 1£i<n+1. From what we have shown it
follows that dim D[t,,..., t,]sn for {t,..., t,}<L. But we may construct a
valuation ring V3 on L such that V; has rank n+1 and V3=K+ M;, where Mj is
the maximal ideal of V3 and M;=2 M,. Then V;2K+ M, 2D.
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