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The present paper studies the classification problem for hermitian forms. We

follow the approach used by Springer in [3] in discussing the quadratic form case.

Our methods indicate new avenues of study for unitary groups of type D. The first

parts are devoted to developing relationships between sesquilinear forms, involu-

tions, and quadratic forms (over suitable extensions). This is applied to the last

part where we pursue the equivalence question in terms of cohomological in-

variants. In what follows, all fields will have characteristic unequal to 2.

1.1. Let A be an associative division algebra, finite dimensional over its center

k, " an involution in A/A:, E an w-dimensional right vector space over A, and/a

nondegenerate "sesquilinear form on E. Thus / is a biadditive mapping from

ExE to A which is linear in the second variable and "linear in the first(3). / is

called hermitian or skew-hermitian (" being understood) as

f(y, x) = /(*> y)   or    -f(x, y)   for all x,yeE.

For this section, we will use the word form to represent either a "hermitian or

"skew-hermitian form (always nondegenerate).

It is well known that a form /defines an involution J in 3t = HomA {E, E) which is

characterized by the relation

f(xT, y) = f{x, yV),       x,yeE,TeK.

The converse is also true, for we have

Proposition 1. Let Si = HomA (E, E) where A is a central division algebra over

k, and let " be any involution in A/A. IfJ is any involution in %/k then there is a form

on E relative to which J is the adjoint. Moreover if fand g are forms on E {'bilinear)

which have the same adjoint, then f=\g for some A e k*.

Proof. Let (ex, ■ ■ -,em) be a basis for E and let g be the "hermitian form

g(x, y) = J, äjjSj, x = J,eiai, y = J,elßl. If K is the adjoint mapping determined by g,

then it is easy to see that there is a unit A e 9Í where AK = eA, e= 1, or — 1 so that
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T' = A~1TKA for ail Te21. It is immediate that Jis then the adjoint mapping with

respect to the e-hermitian form f(x, y)=g(x, yA'1).

Now suppose that/and g are forms on E which have the same adjoint, say J. By

nondegeneracy, there is an A e2i with f(x, y)=g(x, y A). Using the fact that J is

the adjoint with respect to both forms we conclude that A is in the center of 21

viz., k. Since A is clearly invertible, we obtain the stated conclusion.    Q.E.D.

An involution J in 21/Â; is said to be of Type C or D depending on whether

[3(21,./) : k] = ?n(n+\) or %n{n-\) where §(21,7) is the Lie algebra of all /-skew

elements of 21 and [21 : k] = n2. Equivalently, if k is an algebraic closure of k, then

the linear extension of J to lH0kk is cogredient to either the adjoint mapping of a

nondegenerate alternate form or a nondegenerate quadratic form depending

on whether the type is C or D. A more explicit criterion in terms of/is given in

Theorem 1. Let fbea form on E\A, 2t = HornA (E, E) and let J be the adjoint in 2Í

determined by f. Then J is of type D /// is hermitian and " is of type D or if f is

skew-hermitian and ~ is of type C. In all other cases the type is C.

Proof. Choose a basis (eu ..., em) for E and let g be the form g(x, j) = 2 "¡A-

By Proposition 1, there is an invertible element A e2C where AK = eA, e = 1 or — 1

with/(x, y)=g(x, y A'1). We let K be the adjoint corresponding to g and observe

that K is of type C if and only if " is of type C, for relative to the above basis, K

is "transpose in Am.

Left multiplication by A induces a linear isomorphism between ê(2i, J) and

â(2t, K) if A is A'-symmetric whereas if A is X-skew, we obtain a linear isomorphism

between §(2t, J) and I)(2i, K), the subspace of all ÀT-symmetric elements of A. Since

/is hermitian if and only if e = l, we can read off the above assertions directly.

Q.E.D.
Now let " and ~ be two involutions in A/k. By the above results, there is an

a g A* with a= ±a and b = a~1ba for all b e A. If/is either a "hermitian or

"skew-hermitian form, then g = af is a "hermitian or "skew-hermitian form. It is

clear that both / and g determine the same involution in 2Í. Thus we may fix a

single involution, say —, in A/A: and develop invariants for "forms. This will

determine arbitrary forms, involutions in A/k varying, to within multiples, and also

the associated involutions to within equivalence.

1.2. By way of illustrating some of the results which we will obtain, we will

need some technical information about crossed product division algebras. Any

unquoted result may be found in Albert [1].

Let A be a central division algebra over k of dimension r2. The integer r is called

the degree of A. A subfield P/k is called maximal if [P : k]=r. It is known that A

always has a maximal (separable) subfield. If P/k is any maximal subfield then

AP = A(g)fcP is split. Indeed, if we consider A as a left vector space over P and

equip A/P with a AP-module structure by defining

d'-d ® TT = it d'd
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then we see that the associated representation AP —>- EndP A is an isomorphism.

A is called a crossed product algebra if it has a maximal subfield which is Galois

over A(4). We briefly recall the structure of such algebras: if P/k is maximal and

Galois and G = ga\(Pjk), then there is a subset {Ts | i e G} of A such that A =

2 © TaP (as a linear space) and multiplication is given by

. . ttTs = rs7rs, 77 e P, s e G,

TsTh = Tsh8(s, h),       s, h eG, 8(s, h) e P*.

(s, h) —> 8(s, h) is a 2-cocyle of G in P* whose cohomology class in Jf 2(G, P*) is

the image of the Brauer class of A-1 under the canonical isomorphism 8S(P\k) ->

Jt2(G, P*) (@(P/k) denoting the subgroup of the Brauer group over k split by P).

One usually writes A = (P, G, 8).

Without loss of generality we may assume that 8 is normalized so that Te is the

identity of A (e the identity of G). Assume now that A is involutorial. This is

equivalent to saying that S2 is a coboundary. Thus we have a 1-cocycle y with

(3) 8\s, h) = yishy^sfyih)   (note y(e) = 1).

We use the above splitting to define a map " in A/A by the rule

(4) 2 7>s -» 27>s = 2 *,y{s)lï \

It is easy to verify that " is an involution, in fact, it is an involution of type D. To

see the latter write G as the disjoint union G = {e}u/U W\J W~x where /is the

set of all elements of order 2 different from e. For sel, TSP is " stable and for

s e W, TsP+Ts-iP is "stable, and we let Is and Ws be the subspaces of the above

of all "symmetric elements. Then h(A, — ), the subspace of all "symmetric elements

of A, is the direct sum

£)(A, -) = TeP®2rs®Zws.

It is clear that [ Ws : k] = [P : k] = r. If s e I and Ps is the fixed field of s, then a

simple calculation shows that [/, : k] = [Ps : k]—\r. Thus if |/| = f, and |W|=ti,

then r — l = £+2i?, and' [f)(A, -) : A] = r+Qr + rjr = \r{r+ 1), as claimed. An

involution in A/A of the form given by (4) will be called standard.

Observe that if A is a quaternion division algebra, that the involutions which

arise from the composition algebra structure, and which are referred to in the

literature as "standard", are not standard in the above sense. Indeed, a "standard"

involution is clearly of type C.

Any division algebra of degree 2 is cyclic, so if A is a quaternionic division

algebra, P a maximal subfield (necessarily Galois), {e, i} = gal (P/k), then there is a

Te A where T2 = 8e k*, à=P ®TP and ttT= Tit1 for all ne P. The factor set is

(4) It is not known whether or not every finite dimensional central simple associative division

algebra is a crossed product.
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S(e, e) = 8(e, t) = 8(t, e)=l, S(i, t) = 8. The 1-cocycle e-> 1, r-> S has coboundary

82, so the standard involution determined from these ingredients is a + Tß -> a + TßK

2.1. We restrict ourselves now to involutions of type D. Since every involutorial

division algebra always has an involution of type D, the discussion in §1.1 shows

that we may realize an involution of type D as the adjoint mapping relative to

some "hermitian form, " a fixed involution of type D in A. If A is a crossed

product algebra, then ~ will always represent a standard involution.

Let/be a "hermitian form on E, J the corresponding adjoint mapping and let

P/k be a maximal subfield of A. We consider E as a vector space over P<=:A by

restriction of scalars and by an argument analogous with that given in §1.2, we

obtain a natural identification between 2iP and EndP E/P (2t = HomA (E, E)). If

we let J also denote the involution J ® 1 in EndP E/P, then Proposition 1 shows

that there is a quadratic form q on E/P having J as its adjoint.

We shall adopt without further mention the following convention: let g be a

fixed "hermitian form on E and choose a nondegenerate symmetric bilinear form

gP on E/P which has K® 1 = K (K the adjoint associated to g) as its adjoint as

indicated above. Let/be an arbitrary "hermitian form on E. As in the proof of

Theorem 1, there is an invertible Ä-symmetric element AeW with f{x, y) =

g{x,yA~x) for all x, y e E. Let fP(x, y)=gP(x, y A'1) (we are identifying 21 with

2Í <g> lsEndf. E/P since this is consistent with their actions on E/A and E/P

respectively). IfJ is the adjoint with respect to/, then we have TJ = A" 1TKA for all

Te 2t. This shows that J (sj <gi 1) is the adjoint with respect tofP. The reason for

this normalization is that we want the mapping /—>/> to preserve equivalence.

Indeed if/ is a "hermitian form on £and Te2i an equivalence between/and fx

(f(.xT,yT)=Mx,y)), then /(*,y)=g(x,yAr1) where A^-TA'1!*. Then

fipix, y)=gp(x, y Aïl) =fP(xT, yT).

If A is the crossed product algebra (P, G, 8), then we can construct "/." as

follows : here " is the standard involution defined by (4). For x, y e E write

f(x,y) = ^Ts{x,y)s.

Each ( , )s is a nondegenerate j-sesquilinear form on E/P. The conditions that/is

"hermitian, linear in the second variable, and "linear in the first are equivalent to

(5) (x, y), = 8(s-1,s)~1 y(s-!)s (y, s)ss-\   forseG,

(6) (x, yTh)s = 8(sh - \ h)(x, yfsh -1 for s, h e G,

(7) (xTh, y)s = 8(h, s) -1 y(hy (x, y)hs for h, s e G,

respectively.

(5) shows that ( , )e is a symmetric nondegenerate bilinear form on E/P, and

f(xT, y) =f(x, yT1) shows that (the linear extension of ) / is the adjoint with respect

to ( , )e. To see that this is consistent with our convention, observe that if we write

g(x, y) = 2 Ts(x, y)'„ and choose gP as ( , );, then/(x, y)=g(x, y A'1) implies that
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(x, y)e = (x, yA~l)'e=fP(x, y). When dealing with crossed product division algebras

we will always make the above choice of fP.

Remark. We have shown elsewhere (Hermitian forms. II, forthcoming) that

f(x>y)=Q =*" fp(xiy)=Q (n0 assumption on P), although the converse is not true.

We call a form/P-rigid if there is an "extension"/, which satisfies the condition,

f(x, y) = 1 => fP(x, y) = \. It then follows that f(x, y) =fP(x, y) whenever it makes

sense. It is easy to see that if there is a P-rigid form, then every form is P-rigid.

Seip-Hornix has recently shown that all forms are P-rigid (no restriction on P).

This is obvious when P is a Galois extension (cf. above formula) and for suitable P,

one can show that all forms are P-rigid by explicitly constructing fP from /(5).

Using the fact that the Jordan algebra h(A, ~) is unramified, we obtain the existence

of a maximal separable subfield P/k which is "symmetric. By a simple argument

using Galois descent, one easily sees that the generic trace (tr()) on A, when

restricted to the subspace i*çA, reduces to the usual field-theoretic trace (?(■))•

For x, y e E, it e P, n ->- tr (f(x, y)n) is a linear functional on P/k and hence there

exists a unique element in P, which we denote by fP(x,y), such that

tr(f(x,y)n) = t(fP(x,y),n)

for all 77 e P. Using the fact that P is "symmetric one sees that/, is a nondegenerate

bilinear form on E/P whose associated adjoint is (the linear extension of) the adjoint

corresponding to/and that/P satisfies the requirement of rigidity. It is also clear

that this choice of/, is consistent with our convention.

2.2. Assume now that Pjk is a maximal separable subfield and let L/k be a

finite dimensional Galois extension containing P. Let/be a "hermitian form on

E and let/, be the linear lift of/, to a nondegenerate form on V=(E¡P)L. 3Í is a

A-algebra form of EndL V and it is clear that the linear lift of J, the adjoint with

respect to/, is the adjoint with respect to/, (we continue to denote this involution

as /). For s s <7 = gal (L/k), the endomorphism r¡(s)=l ® s in EndL K=9t ®kL

is an j-linear automorphism which commutes with /. It is easy to see that r¡(s) has

the form T'-+ t(s)~1Tt(s) where t(s) is an i-linear transformation on V satisfying

t(s)t(h) = t(sh)8(s, h), 8(s, h) eL*. (s, hi) -> 8(s, h) is a 2-cocyle whose cohomology

class is the class corresponding to A (A is split by L). Since r¡(s) commutes with J,

t(s) is an j-linear similitude of/L, of ratio say y(s) (fL(xt(s), yt(s)) = y(s)fL(x, y)s). By

our choice of fP, hence also /,, the ratio y(s) is the same for all "hermitian forms on

E.

Let O be the set of all nondegenerate symmetric bilinear forms on V and define

an action of G on Q by setting

(8) b%x,y) = y(s)b(xt(s)-\yt(s)-iy.

(5) I am indebted to T. A. Springer for suggesting this choice of fP.
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It is easily verified that this action equips O with the structure of a G-set (observe

that 8(s, h)2 = y(sh)~1y(s)hy(h)). Since each t(s) is an i-linear similitude of ratio y(s)

of every/, we have half of

Theorem 2. The correspondence f^fL is a bijection between the set of all

' hermitian forms on E/A and 0G, the set of all G-fixed points in O.

Proof. The correspondence is clearly injective since f^-fP is by definition

injective. To see that it is surjective, let è e DG and let g be the "hermitian forrn on

E which was used to formulate our convention at the beginning of §2.1. We may

write b(x, y)=gL(x, y A"1) where A is a ¿^.-symmetric invertible element of EndL V.

Since b is fixed under G, we see that A commutes with each t(s) and this implies

that A e 2Í. If we define a "hermitian form on E by f(x, y)=g(x, y A'1) (A is now

necessarily g-symmetric), then it is clear from the definitions involved that

b=fL.   Q.E.D.
Remark. If L = P, so that A is the crossed product algebra (P, G, S), then we can

obtain the last part of the above proof by explicitly constructing/from b (previous

notations in effect). Indeed, if we set (x, y)s = b(x, yT¡ J)s (note that Ts = t(s), and

that the y(s) are the same as in (4)), then a straightforward computation shows

that

f{x,y) = 2Ux,y)s

satisfies equations (5), (6), and (7) and thus is a nondegenerate "hermitian form on

E. Clearly b = { , )e.

2.3. It is clear that if/ and/2 are two "hermitian forms on E/A, then there is a

finite dimensional Galois extension L/k^P/k (P/k as in the last section) such that

f1L and f2L are equivalent. Thus we fix a single ~ hermitian form / and for each

finite dimensional Galois extension L/k^P/k we let (L,/) be the set of all "hermitian

forms/ on E with/1L equivalent to/,. By our convention concerning the choice of

the/p's, it follows that (L,f) is a union of equivalence classes of forms.

Let G = gal (L/k) and let t(s), y(s) and 8(s, h) be as described in §2.2. If/ e (L,f)

and Te EndL V is an equivalence between them (V=(E/P)L), then for s e G

fiÁx, y) = fs1L(x, y)

= y{s)Mxí(s)-1T,yt(sríTy

= fl(xT\yr)
= fL(xr,yT°).

Thus T and Ts are both equivalences between fL and f1L and this implies that

TS = TUS where UseO(fL). Tsh = (Tsf implies that Ush=UhU!/ so s^ Us is a

1-cocycle of G in 0(fL). Its 1-cohomology class in 3tf\G, 0{fL))=3e\L,f), will be

denoted by cL(//). We now have

Theorem 3. The correspondence / -> cL(//) is well defined and induces a

bijection between the set of equivalence classes in (L,f) and #f\L,f).



1969] HERMITIAN FORMS. I 205

Proof. It is easy to see that if we choose different equivalences between /, and

f1L, then the 1-cocycles which arise differ by a coboundary and the map is thus well

defined.

Let/ e(L,f), i=l, 2, and let re 91 be an equivalence between them. If 7\ e

EndL Kis an equivalence between/, and/lz, with T'^T^U,, then fL(xTT1,yTT1) =

f1L(xT,yT)=f2L(x,y). Thus we can compute cL(f,f2) from TTX. Since Te% we

have (TT^^TTJJt, and this shows that cL(f,f1) = cL(f,f2). Thus cL(//i) depends

only on the equivalence class represented by f\. It remains to show that the

correspondence is bijective.

Injective. Suppose that cL(f,f1) = cL(f,f2). Then we can find equivalences Tt

between fL and fiL, /=1,2, where Ti = TtUs, /=1, 2. If we set T=T1T21, then

TS = T for all j e G and thus Te 91. T is an equivalence between f2L and/1L and it

follows (from our convention) that T is also an equivalence between f2 and/i.

Surjective. Let s -> Us be a 1-cocycle of G in 0(/L). By a theorem of Springer

[3, appendix], there is a reGL(K) with US = T~1TS. Define a nondegenerate

symmetric bilinear form b on V by ¿(x, y)=fL(xT, yT)=fL(x, yTTJ), J the adjoint

with respect to/t. A simple calculation shows that bs = b for all s e G and this implies

that TT1 e9t (and it is clearly/-symmetric). Let / be the "hermitian form on E

defined by/^x, y)=f(x, yTTJ). It is immediate that b=f1L so/! e (L,f). Since Tis

an equivalence between/, and/1£, and by definition TS = TUS, we see that cL(f,f-¿)

is the cohomology class of s -> Us.   Q.E.D.

2.4. Let N be the generic norm on St. Recall that N is a multiplicative homo-

geneous mapping of degree n = mr and is invariant under automorphisms and

antiautomorphisms. If k is an algebraic closure of k, then for ae'ñ, N(a) =

det (a ® 1).

If/is any "hermitian form on E and (ex,..., em) is a right A basis for £, then

the coset N(f(eh e,))k*2 is independent of the choice of basis. It follows from this

that/determines a unique element of A*/A*2 which we denote by d(f) and which

we call the discriminant of/ In Hermitian forms. II, we show that if m is even,

then d(f)P = d(fP), where d(fP) is the usual discriminant for quadratic forms and

x -> xP is the obvious mapping from k*/k*2 to P*/P*2.

Lemma 1. The following are equivalent, fx e (L,f) and

(a) there is an equivalence Tbetween/, andf1L, where det Te k;

(b) there is an equivalence T between fL andf1L where TS = TUS, Us e 0 + (fL),for

all se G;

(c) d(f)=d(f1).

Proof. It is clear that (a) and (b) are equivalent, since det is a G-map. Write

f(x,y)=g(x,yA~1),f1(x,y)=g(x,yAî1) and let reEndLK be an equivalence

between/, and/1L. We then obtain Aï1 = TA~1TK where K is the adjoint with

respect to gL. Hence (det r)2 = det (AAï1). Since/(x, yAA{1)=f1(x, y),

d(f)N(AA^)k*2 = d(/i).
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Since N(AAï1) = àet (AAï1), we see that det Te k if and only if d(f)=d(f1). Thus

(c) is equivalent to (a).   Q.E.D.

We let (L,/) + denote the subset of (L,f) consisting of all forms having the same

discriminant as / The above lemma shows that the correspondence described in

§2.3 induces a bijection between (L,/)+ and 3^\(L,f)=3f\G, 0+(fL)).

In order to discuss the 2-cohomological invariants which we shall assign to

hermitian forms we need the notion of the Jacobson even Clifford algebra of the

form (Jacobson [2]). The details follow.

3.1. Let 6(/£) be the Clifford algebra of/,. Recall that g(/t) is the quotient

algebra Ï(K)/S, where Ï(K) is the tensor algebra on Fand 9 is the ideal generated

by {x <S> x—fL(x, x) | je e V}. S is generated by even elements so ©(/,) has an even-

odd gradation and we let S+(/,) be the subalgebra of all even elements. By extend-

ing the base field, we see that ©+(/,) is either the ideal direct sum of two central

simple algebras or is simple with center a quadratic extension of L. The first case

corresponds to </(/,) = 1 and in the second case, the center is obtained by adjoining

a square root of </(/,) (note that [V : L] is even). In terms of Galois descent, this is

the distinction between type D: and type Dn in Jacobson [2]. Finally, the exchange

involution inï(K) x®y®---®z->z®---®y®x leaves S stable and induces

an involution in ©(/,) which we denote by 1.1 leaves © + (/L) stable and in fact leaves

every simple component of (£+(/L) stable. We also use i to denote the restriction of

i to S + (/l) or to any of its components.

If t/is a semisimilitude of/, of ratio y, then U defines a semilinear automorphism

a(U) of ®+(/L). If U is i-linear (s e G) and xu..., x2u are /¿-orthogonal, then

(jCj- • ■x2u)cc(U)=y~u(x1U)- ■ -(x2uU). If s=l, so U is linear, then U is called

proper or improper depending on whether a(U) leaves the center of ß + (/L) point-

wise fixed or not. It is clear that every a(U) commutes with t.

Let t(s) be the i-linear similitude of/, of ratio y(s) which was introduced in §2.2.

t(s)t(h) = t(sh)8(s,h) for s,heG implies that a(t(sh)) = a(t(s))a(t(h)). It follows

from this that we may equip (®+(/L), 0 with the structure of a G-algebra (with

involution) by setting Xs = Xa(t(s)). The complete set of fixed points under G is a

^-algebra form (as algebra with involution) which we denote as ®+(/) and which

we call the even Clifford algebra off. This is the algebra which Jacobson writes as

e+(2I, /) in [2].

If Ue 0 + (/,) (the group of proper /¿-orthogonal transformations of V), then

by examining the possible structures for ©+(/L), we see that <*(£/) is an inner

automorphism. We can realize «([/) as a conjugation in a manner consistent with

the above action of G since we have the following

Lemma 2. If UeO+(fL), then we can choose z(U) e(£ + (fL), where Xa(U) =

z(U)-1Xz(U)for all Xe<$.+(JL) and which satisfies the condition, z(U)s = z(Us).

Proof. The proof is similar to that of Lemma 3.2 of [3], but is somewhat more

complicated. Let c(/L) be the center of K+(/L), and let a'(s) = a(t(s))\c(fL). We will
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first show that W(s)} is linearly independent with respect to right multiplications.

If c(fL) is a field then this follows from Dedekind's independence theorem since

our set consists of distinct automorphisms. Thus suppose that c(/L) is the diagonal

algebra Le1+Le2. Since each a'(s) is a ring automorphism it follows that a'(s)

either fixes each e¡, or exchanges them. Let 5 be the subgroup of G corresponding

to the stabilizer of ex (hence also e2). The S is normal and of index at most 2 in G,

and we let G = S u hS be the (possibly trivial) coset decomposition.

Now suppose that W(s)} is dependent with respect to right multiplications

and let

o=2 a'0iK+ 2 a'fe)cS2, se-, c s, sf2 <= hs, sf.u^^ 0
sie-S?! s2eSe2

be a dependence relation of minimal total length so that cS( = c^s^e, + c2(s¡)e2 ̂ 0.

Applying this relation to aex, and then to ae2, a e L, we obtain

0 = 2 °rSlCi(JiK+2 ctS2C2(j2>2,
Si S2

0 = 2 osic2(sj)e2 + 2 o^ifoOei-
Si S2

Clearly these relations imply that each of -S?! and Sf2 is a dependent set of auto-

morphisms of L. Again by Dedekind's theorem this is possible if and only if

.5?! u =S?2 = 0. Thus we obtain the stated independence of {«'(s)}.

For the moment fix Ue 0+(fL) and choose Zs in C+(fL) with Aa(i/s)=^s_1^Z5.

We show next that <*(US) is conjugation by Z|. Indeed if xl5..., x2u are/¿-orthog-

onal elements of V, then

XV ■ -X2ua(Us) = Xi.U*- ■ ■X2uUs

= (xJisyWtis))- • ■(x2j(s)-1Ut(s))

= y(sy(Xlt(s)-w)- ■ -(x2j(s)-wy

= y(sy(Z;1-x1t(sy1-- -Xtfto-i-ZJ

= (¿e    )  'Xi- • -X2u-Ze.

Thus Z% = ws¡uZs where m>Si[7 is a unit in c(/L). It is clear that wshiU = w^uwh^.

By the above independence, there is a k e c(/L) where a = 2 «"n^p»-1 is invert-

ible. If c(Z,) is a field then this is clear. Thus suppose that we are dealing with the

diagonal algebra Le1+Le2 as before. If the claim is false, then v = ^¿a'(s)ws-U"-1

must be of rank 1 with either ex or e2 as eigenvector. By symmetry, we only

consider the first case. Write

v = 2 <*'(■*)Ws,E/'~l+  2 "'(•sM.cr*"1.
seS sehS

Then

(ae> =  2 °sWi(s, Us-')ei+  2 ^wa(s, U°-1)e2
ses sehS
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(w=w1e1 + w2e2)- Since (aeï)v<=^Le1 and each w,,^-1 is a unit we conclude that

hS= 0. But now the same reasoning applied to ae2 implies that G is right dependent

—a contradiction. This implies the existence of a k for which the corresponding a is

invertible. If we compute as we obtain (2„ K^w^^h'^w'u, which we write as

asw¡lu- Thus as is invertible and if we set z(Us) = a^Zs, then z(Us)h = z(Ush). We can

thus establish the result for each of the (disjoint) orbits of G in 0+(fL). This is

enough.    Q.E.D.

3.2. For the remainder of the paper we assume that we have made a choice

of z(U) e©+(/z.) which satisfy the requirements of the preceding lemma. For

U, VeO+(fL), a{UV) = a(U)a(V) so z(UV)=tt(U, V)z(U)z(V) where tt{U, V) is a

unit in c(fL). Let/ e(L,f) +. By Lemma 1 the cohomology class c¿(/,/i) is repre-

sented by a 1-cocycle i-> f/s where Use 0+(fL). A straightforward verification

shows that

(9) (s, h) -> TT(Uh, V*) = z{Ush){z{Uh)z(Usf)-^

is a 2-cocycle of G in c*(/¿) where c*(/L) is the group of units in c(/,). This corre-

spondence induces a mapping on cohomology sets <f>: J^+(L,f) -> J^2(G, c*(/,))

and we set aL(f,f1) = cL(f,f1)</>. In Hermitian forms. II, we show that when/is a

form of maximal Witt index in an even number of variables, then the above

cohomology class represents an element of the Brauer group over k. In general it

corresponds to a separable associative algebra over k whose center is two dimen-

sional. By applying i to (9) and remembering that i commutes with every a(U) we

see that aL(f,fi) has order at most two.

Theorem 4. aL(//) = 1 => ©+C/)se+C/i).

Proof. It is enough to show that there is a G-isomorphism between © + (/u,) and

©+(/L). Let s -+ Us be a 1-cocycle whose cohomology class is cL(f,fx). Then

«l(//)=1 implies that there are tsec*(fL) with fCC^CC^MCft^-bttC*1.

We set bs = z(Us)is and note that s^-bs is a 1-cocycle. By a result of Springer,

[3, appendix] there is an invertible element b of (£+(/L) with ¿>s = è_1ès. Thus

Xa(Us) = K1 Xbs = (b - lyb Xb " 1f.

Let J be an equivalence between fL and f1L with Ts = TUS. We have an iso-

morphism À : C£(/1L) -> (£(/.) such that for x e K, jcA=xT. A necessarily sends

&+(/il) onto e+(/L) and we define 0: ©+(/Íl)=®+(/¡.) by X*=bXxb~\

If xl5..., x2r are/¿-orthogonal, then

(*i- • -*2r)es = yrs{bs(XlTt(s))- ■ (x^TtisW-1)*

= Y¿Mxit(s)TU¿- ■ ■(x2rt(s)TUd(b-ly

= yïs)rb(xt(s)T)- ■ -(x^tisWb-1

— \X\ • • ■ x2ry ■

Thus 0 is a G-isomorphism.    Q.E.D.
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As our final result we establish a relationship between several fl£,(//i)'s.

Theorem 6. Suppose that aL(f,f) and aL(ff2) are defined. Then aL(fr,f2) is

defined and we have an isomorphism a: Jf2(G, c*(/1L))^^f2(G, c*(/L)) such that

aL(fiJ2y = aL(f,fùaL(fif2).

Proof. Let fL(xTh yT) =/L(x, y), i= 1, 2 with T{ = 7\Us, 7% = T2VS-

fu(xT2T{ \ yT2T~x *) =f2L(x, y)

so we can compute tL(fi,f2) by means of T2T{X. (T2T{1)s = T2Tî1Ws,

WS = T1VSU~1T{1. Since determinant is a class function and C/Sand Fsare proper,

it follows that Ws is proper so aL(f,f2) is defined. Tx defines an isomorphism

0:K+(/ii)=e+(/L) which is induced by the map xe V^&(f1L)-> xTj. e(£(/.). If

Xi,..., x2r are/1L-orthogonal, then (xx- • ■ x2r)á(W^)9 = (x1WsT1)■ ■ ■(x2,WsTi). But

(xr ■ ■x*)«V»-(*(»i)-1*i- • ■x2Tz(Ws))B = ^{WsT)-\xiTx)- ■ ■(x.rT^Wr. For

yi, ■ ■., j2rA-orthogonal, this gives

(KW^y^v ■ y*z(W,)« = (y.T-^WJ,)- ■ (y2rn1WsT1)

= (yivsus-i)---(y2rvsus~1)

= z(Us)z(Vsyyi- ■ -y^VMUs)-1.

This relation shows that there exists es e c*(/,) with

(io) z(wsy = esz(vs)z(UsYl.

Also

(xr • -x2r)9s = YwfaTAs))- ■ ■(x2rT1t(s))

= y(7>r(*i'(i)7\t/s)- • -(x^s^Us)

= z(usy1(x1-x2ry*z(us).

Our last equation shows that XBs = z(Us)~1Xsez(Us) for all X in <£ + (/L).

This implies that the restriction of 0 to c*(/1L) is a G-isomorphism onto c*(/L)

and thus induces an isomorphism a: jf2(Gc*(f1L))^Jf2(G, c*(fL)). ah(fx, f2)a is

the cohomology class of (s,h)^{z(Wsh)(z(Wh)z(W^)y1}B while aL(ff) and

aL(f,f2) are the cohomology classes of (s, h) -> z({/sft)(z(£/il)z(£/s'1))"1 and (s, h) ->

A V*h)(z( Vh)z(V*)) -l respectively.

From (10) we immediately obtain

(z-( Wsh)(z( Wh)z( W*)) - T = ehe^(z(Ush)(z(Uh)z(U?) " *)) " W.fc)(z( W K*)) " *).

Thus aL(f1,f2y=aL(fi,fy1aL(ff2)=aL(f,f1)aL(f,f2) since our cohomology classes

are of order at most 2.    Q.E.D.

Corollary 1. aL(f,fi) if defined depends only on the cohomology class offandfx.

Corollary 2. If aL(fif)=aL(f,f2), then e + (A)=G+(/2).
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