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Introduction. In this paper we are concerned with the metamathematics of the

first order theory of rings F0 and integral domains JD0. The purpose of the paper

is to characterize derivability from F0 and JD0 respectively by algebraic notions

pertaining to the theory of polynomial ideals. The essential tool from logic needed

is an improved version of Gentzen's extended Hauptsatz to be derived in §1. §§II

and III contain some remarks and introduce new notations. In §IV we prove a

syntactical counterpart of Hubert's Nullstellensatz. Although this syntactical

result could easily be proved with the aid of Hubert's Nullstellensatz and the

completeness theorem we think that its metamathematical proof has some interest

in itself (see Lemma 4*). In §V we combine the results of §§I and IV in order to

prove an algebraic version of Gentzen's extended Hauptsatz for F0 and JD0.

Applications of the techniques developed in §§I—IV are presented in §§VI and VII.

Lemma 4*, a constructive version of Lemma 4, has been suggested by G. Kreisel.

There is an interesting application of Lemma 4* to a problem considered by

G. Kreisel. This application lies somewhat outside the scope of this paper, hence

we omit it. It will be presented, together with some related topics, in a separate

note.

Notations. (1) By /and R we denote the set of integers and the set of rationals

respectively. I[xu ..., xn] and F[x1;..., xn] (or briefly /[x], F[x]) are the rings

of polynomials in the variables xx, ■ ■ ■, xn with coefficients in / and R respectively.

Notions such as prime ideal, primary decomposition, basis of an ideal will be used

frequently. For details concerning them we refer to [4].

(2) At many places, vectors whose components are terms (from a certain theory)

will be used. For particular vectors such as (xlt..., xn), (ji,..., ym) we will use

sometimes the abbreviations x„, x and ym, y.

(3) Let gx, ■ ■ -, gn be polynomials in F[x]; by £(gi,..., gn) we denote the ideal

consisting of all polynomials of the form 2™ ''¡^i with /it e F[x]for/'¿«. Ifgi,..., gn

e I[x] then B*igx,..., gn) denotes the ideal consisting of all polynomials 2! htgt

with A, gI[x] for ¡Sn. Several notations will be introduced as they will be needed,

as, e.g. at the end of §111.

(4) Existential and universal quantifiers will be denoted by 3 and V respectively

but in order to save space we delete the V in formulas and write universal quanti-

fication over x more simply as (jc) ; at some places a sequence of universal quantifiers
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will be abbreviated as ixx,..., xn) or even more simply as (x„) or (x). Quantifiers

will also be denoted by such symbols as P, Q, Pk, Q\, etc.

(5) Formulas in prenex normal form will often be denoted by notations as, e.g.

iQxxx,..., Qsxs)Aixx,..., xs); here the (2,'s denote quantifiers while A(xx,..., xs)

is assumed to contain no quantifiers. We call (ôiX^ ..., Qsxs) the prefix of the

formula and Aixx, ...,xs) the quantifier-free part of the formula (the notion

"matrix" will be used otherwise.

(6) Conjunctions or disjunctions over formulas A¡ or A%) (/¿n,y'^w,) will be

written as A?=i ^¡ or m general more briefly At A¡ and similarly Vf=i A¡, V¡ ^¡>

f\ij Au, \ftjAy. The sign -> is the arrow of sequential calculus; implication is

denoted by =>. The greek symbols Y, A, E, II appearing in sequents (such as, e.g.

r -> A or A, Y -+ A) denote sequences of formulas. In connection with sentential

calculus we adopt quite generally the notation used in [3]. The symbol F] is used

in connection with products over many factors: Ylt Au flu ^y-

I. A sharpening of Gentzen's extended Hauptsatz. For use in later sections it is

necessary to have available a sharpening of Gentzen's extended Hauptsatz referred

to in the sequel as GEH. The result in question will be given below but we will

content ourself with a rather condensed form of the proof; the parts omitted do not

involve any difficult point, however they would have increased the size of the paper

considerably.

We start by introducing some notions. A proof of GEH is given in [3, p. 448],

and the notion of pure variable proof is introduced in [3, p. 451]. A prenex formula

is said to have standard form or to be a standard prenex formula if

(1) no variable occurs free and bound in it,

(2) every bound variable occurs exactly once in the prefix,

(3) every bound variable occurs explicitly in the quantifier-free part. We denote

such a formula, e.g. by (ßi*i,..., ôs*s)^(xi,..., xs) where the g,'s are quantifiers,

the xfc's distinct variables and Aixx,..., xs) a quantifier-free formula. Other,

similar notations will be used. A proof in the sentential calculus G\ is called a

standard proof if it satisfies the following requirements :

(1) it is a cut free proof and has the properties of the proofs described by GEH,

(2) its end-sequent contains only closed prenex standard formulas,

(3) every free variable in the proof occurs at least once (and hence exactly once)

as the variable to which one of the rules 3 ->, -> V is applied.

We assume that at least one individual constant is contained in the language

under consideration. Using this it is easy to show that every sequent of closed

prenex standard formulas which is provable at all is provable by means of a stand-

ard proof. A further notion needed is that of the final part of a standard proof: it is

that part of the proof whose first sequent is the midsequent and which ends with the

endsequent. We denote the final part of a standard proof P by Sx,..., Sn, i.e. Sx

is the midsequent of P, Sn the endsequent and Si+X follows from S, by means of
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thinning, contraction, interchange or a quantifier rule. From the subformula

property it follows that a standard proof contains only standard prenex formulas.

Now we come to some definitions.

Definition 1. Let CL be the relation defined for pairs of formulas such that

CLiF, H) iff

(a) Fis ix)Gix) and His Git) for some term t, or

(b) Fis (Ex)G(x) and H is G(y) for some variable y free for x.

The relation CR is defined similarly but with the roles of existential and universal

quantifiers interchanged.

By Ci and C% we denote the closures of CL and CR respectively, that is C£(F, H)

holds iff there is a list FQ,...,Fn with F=F0, H=Fn and CL(FU Fi+1); the relation

Qf is defined similarly. We note: if F is (QxXx,..., Qsxs)A(Xx, ■ ■ -, xs) with A

quantifier-free and containing exactly jci,..., jc, as free variables, if C}(F, H) or

C$(F, H) then H has the form iQj+xxi+i, ■■■, Ôa)^(?i, • • -, t¡, xj+1,..., xs) for

some terms rl5..., tt and some_/^0. All sequents to be considered below will be

assumed to contain only standard prenex formulas.

Definition 2. A function i/j is said to connect the sequent S' with the sequent S

if it maps the formulas of S' into formulas of S such that

(a) ifriA) is in the antecedent of 5 iff A is in the antecedent of 5',

(b) Cf(4>(A), A) or C%(t(i(A), A) according to whether A is in the antecedent or

succèdent of S".

Let Sx, ■ ■., Sn be the final part of a standard proof F. In connection with the

subformula property of cut free proofs one can associate with each pair St, Si+1 in a

natural way a map 0S+1 which connects 5¡ with Si+1. Consider, e.g., the case where

St and Si+1 are Y -+ AxBxB2A2 and r-► A^F^Aa respectively:

(1) if A is in T or in A; then ^t+1(A) is the corresponding^ in Y or A¡ of Si+1,

(2) if A is Bj then <AÍ +1(^) is the corresponding B¡ in Si+1.

How to define </>\ + 1 in case of the other inferences should be obvious. Now maps </<,

connecting 5, with Sn are defined inductively as follows:

(1) 0„-a = «"*,

(2) >¿i = 0i+i ° 0t+i    for í < « -1 (where (/o #)(*) = /(g(x))).

That ¡/i connects £„_; with Sn is easily proved by induction with respect to i.

Let A(xx,..., xs) be a quantifier-free formula whose free variables are precisely

Xx,...,xs and let H be (ßmXy+1,..., Q^,)A(.h, • • -, U, xm.x,) with rf

terms. A term t is said to occupy the kth place of H if k Hj and t = tk. It is easy

to show that two different terms cannot occupy the same place of H. In the follow-

ing definition </> connects S' with S, where S is supposed to contain only prenex

closed standard formulas. A relation F (depending on S, S' and </>) whose domain

are triples (H, y, k) with H a formula in S', y a variable, k an integer > 0, is intro-

duced in
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Definition 3. Let </r(//) be (Öi-Xi,..., Qsxs)Aixx, ..., xs) with A quantifier-free

and containing exactly xx, ...,x5 as free variables. Then R(H, y, k) holds iff y

occupies the kth place in H and if either

(a) H is in the antecedent of 5' and Qk is 3 or

(b) H is in the succèdent of 5" and Qk is V.

If we consider the final part of a standard proof Sx,..., Sn and if </< = </«,, S' = S¡,

S=Sn then the relation R just introduced is denoted by F,. In the Definitions 4 and

5 below the symbols ¡/<, S", 5, H and R have the same meaning as in Definition 3.

Definition 4. The relation e (depending on </i, S', S) has as its domain the pairs

(ji, y2) of free variables occurring in S'. Moreover eiyx, y2) is true iff the following

holds : there is a formula H in S', a term t and integers n, m such that

(a) n<m,

(b) the term t occupies the nth place of H and contains yx explicitly,

(c) the relation R applies to (H, y2, m), that is R(H, y2, m) holds.

In case of the final part of a standard proof Sx,..., Sn we denote the relation e

associated with 5,, Sn and 0, by e,. The last definition needed is

Definition 5. Two formulas F, G in S' are called congruent with respect to

k =ï 1 (expressed by F~ G) iff

(a) 4>(F) = i/,(G),
(b) there is a list of terms tx,..., tk-x such that r, occupies the rth place of both F

andG(/^Â;-l).

In case k = 1 the condition (b) is vacuous. Although Definitions 3-5 are somewhat

cumbersome they express simple syntactic situations. Call a sequent S' a preposi-

tional identity if it contains only quantifier-free formulas and if it is provable from

the propositional part of Gl alone.

Theorem 1. Let S be a sequent of closed prenex standard formulas. Then S is

provable from Gl iff there is a propositional identity S' and a function </> which con-

nects S" with S such that the following holds:

(a) for each free variable y occurring in S' there is a formula H in S' and an integer

k > 0 such that R(H, y, k) holds,

(b) // there is a variable y and formulas F, G in S' such that F(F, y, k) and

R{G, y, j) for some k, j then </-(F) = 0(G), k =j and F~ G,

(c) there are no yt (/ ^ n) such that e(yx, yn) and eiy¡ + x, j,) for all i<n.

Proof. We do not give the proof in full detail but restrict ourself to discuss the

main points.

(a) If Gl h- S then there is a standard proof of 5 with final part S, (/^n) where

S=Sn. One shows by induction with respect to / that (a)-(c) above are satisfied with

respect to 0n_¡, Sn-h Sn. Since Sx is a propositional identity the statement follows

by putting i=n— 1. The induction is straightforward and will be omitted.

(b) In order to prove the converse we prove a slightly more general statement in

which S' is allowed to be an arbitrary sequent of prenex standard formulas:
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if 0 connects S' with S such that (a)-(c) are satisfied, then S is provable from 5" by

means of quantifier and structural rules (without cut) alone. The proof is by

induction with respect to the number of free variables occurring in 5'.

Case 1. Let 5" contain no free variables and denote by diS') the number of form-

ulas F in S' for which F^t/i(F). If d(S') is zero there is nothing to prove. Let

diS') >0 and assume, e.g., S' to be F, Y -» A such that Fand 0(F) are

(o/+i*í+i> • • -, Qsxs)A(tx,..., tj, Xj+X,..., xs)

and iQxxx,..., Qsxs)Aixx,..., xs) respectively withy'2:1 and A quantifier-free. We

claim: Qa = V for afij. If Qk = 3 for some k^j then by Definitions 1 and 2 and the

fact that 0 connects S' with 5, a free variable y would occupy the kth place in F,

contradicting the assumption. Thus applying j times the rule V -> we obtain the

sequent S" = 0(F), T-^A which is obviously still connected with S by a suitably

modified 0O and for which <7(5") < rf(5"). Hence an induction with respect to i7(S")

yields the statement.

Case 2. S' contains free variables. For notational purposes we discuss a special

case which however contains all the difficulties of the general case. From (c) it

follows that there is a free variable y maximal with respect to e that is such that for

no other y' we have eiy, y'). A preparatory step is needed in case S" contains

formulas F with the following property P: the y occurs free in F but there is no k

with F(F, y, k). Assume for simplicity that there is just one such F and that S" has

the form F, Y -> A. Let Fand 0(F) be (Q}+1xj+ x,..., Qsxs)A(tx,..., t„ x}■+x,..., xs)

and iQxxx,..., Qsxs)Aixx,..., xs) respectively; let furthermore tk be the first term

from the left in the list tx,..., t¡ which contains y explicitly. We claim ôa = V for

kS<*új- Clearly Qk = V since otherwise R(F,y,k), contradicting the assumption.

If Qe = 3 for a ß with k<ßuj then ts=y' for some / and hence R(F,y', ß); but

according to Definition 4 this would imply e(y, y'), contradicting the maximality

of y. Hence by applying V -> a number of times to S" we arrive at a sequent S" of

the form F', T^A with F'= (Qkxk,..., Qsxs)A(tx,..., tk-x, xk,..., xs) which

does not contain any formula with property P, but which is still connected with

S by means of a function 0O, the latter being easily obtained from S', S and 0. The

case where S' contains several formulas with property F is handled similarly.

Hence we may assume that there is no F in 5" with property P.

According to (a) of the theorem there is a U in S" and a k such that R(U, y, k).

Assume for simplicity that there is just one other formula Kin S" and ay such that

R(V, y,j); from (b) of the theorem we obtain k=j. Since 0((/) = 0(l/) by (b), both

U, V are on the same side of the arrow; hence let, e.g., S' be U, V, Y -> A. Let U, V

and 0(t/) be

(ön+l^n+l, • ■ •> Qsxs)Aitx, . . ., tk-i, y, ffc+i, ■ • •> tn, Xn + X, . . ., Xs),

(Qm+lxm + i, ■ ■ -, QsXs)A(tx, . . ., tk-X,y, ffc+i, • ■ -, tm, Xm+1, . . ., Xs),

and

(giX1;..., 2aM(*i, •••,**)



76 BRUNO SCARPELLINI [April

respectively (this notation takes into account that U~ V as implied by (b)). As

before C}a = 3 is excluded for k+\ ^a^max («, m) since otherwise ta=y' or t'a=y'

for some y' and hence e(y, y') thus contradicting the maximality of y. Therefore by

some applications of V ->, interchange and contraction we arrive at a sequent S"

of the form iQk+íxk+1,..., Qsxs)Aitx,.. -,tk-x,y, **+i, • • -, xs),Y-+A.

In addition there is no r¡ (1 £i<k— 1) containing y since this would contradict

the maximality of y. This means that S" satisfies the restriction of variables with

respect to y and so we are allowed to apply 3 -> to S". The result is a sequent S*

which contains one free variable less than 5' and which is still connected with S

by means of a </<* in such a way as to satisfy (a)-(c) of the theorem ; the function

<fi* is constructed in an obvious way from S', S and i/>.

There is a sharpening of Theorem 1, namely

Theorem 2. Let S be as in Theorem 1. FAe« G\ \- S iff there is a propositional

identity S' and a function ¡¡j which connects S' with S such that (a)-(c) of Theorem 1

and in addition the following condition (d) are satisfied: if U, V, y, y' and k are such

that if>iU) = >/iiV), F(£/, y, k) and R(V, y', k) then y and y' are the same.

We omit the detailed proof in favor of an outline. If (a)-(d) are satisfied then in

particular (a)-(c), henceGl v- 5 by Theorem 1. Assume Gl \- S. Then by Theorem 1

there is a propositional identity S'=FX, ■.., Fn-*-Glf..., G„ and a </< such that

(a)-(c) of Theorem 1 are satisfied by S, S' and >/>. Write y=y' if J#/ and if there are

U, V and a k such that ,/-(£/) = <A(K), R(U, y, k) and R(V, y', k). Assume y=y'. If

we replace every occurrence of y' in S" by y then we obtain a new sequent S*

=F'x,...,F'n^G'x,...,G'm. Define a function </.* on S* by putting </.*(F[) = «/-(Ft).

Obviously i/t* connects S* with S. We want to show that </<*, 5* and S satisfy

(a)-(c) of Theorem 1. The verification of (a) and (b) is rather easy. Let e* be the

relation associated with i/r*, S*, S according to Definition 4. Making use of (b) and

(c) one verifies that there is no listy0, ■.., yp withy0=y, yP=y' such that e(yu yi+1)

for 1 <p. This in turn implies that e* satisfies (c) of Theorem 1. The verification of

these two points presents no difficulties. Proceeding this way we arrive after

finitely many steps at a sequent S0 and a function i/j0 such that

(1) i/>o connects S0 with S,

(2) conditions (a)-(c) of Theorem 1 are satisfied,

(3) there are no y, y' in S0 such that y=y'.

But (3) means that (d) of Theorem 2 is satisfied.

A very special case of Theorem 2 is the following

Corollary 1. Let the closed prenex standard formulas F¡ (ius) and G be

(xx,..., Xn^Aixx,..., x„(o) and ( vl5..., jp)F(jx,.. .,yp) respectively where A and

B are quantifier-free. Then G\ i-Fl9..., Fs—^ G iff there are terms t'ak ik^nii),

a ^ «?(/)) containing no other variables than j1(..., yp such that /\lt„ Aitlax, ■ ■ ■, tinm)

-> F(j!,..., yp) is a propositional identity.



1969]        METAMATHEMATICS OF RINGS AND INTEGRAL DOMAINS 77

The proof follows easily from Theorem 2 by specialization, but of course one

could prove the statement directly from GEH without making the detour via the

complex Theorem 2.

II. A convenient notation and some remarks.

1. Let qixx,..., xs) and Aixx,..., xs) be a term and a quantifier-free formula

respectively, whose free variables are among xx,..., xs. Let an ordered j-tuple

v = itx,..., ts) of terms be given; we call such an j-tuple briefly a vector. If we

replace x, by /, (for all i^s) in q and in A respectively we obtain new expressions

qitx,..., ts) and A{tx,.. .,ts) which will also be denoted by q[v] and A [v] respectively.

Let F be the closed prenex standard formula iQxxx,..., Qsxs)Aixx,..., xs) with A

quantifier-free containing precisely xx,...,xs free. A vector v = itx,..., tn) is

called a left-vector of F if n=s and if Cj?iF, A[v]) holds, with Cf introduced in

connection with Definition 1. Similarly v is called a right-vector of F if Cj£(F, A [v])

holds. By a left-matrix of F we understand a finite set (possibly empty) {vx,...,»,} of

left-vectors of F and by a right-matrix of F a finite set of right-vectors of F. Mat-

rices will be denoted by such symbols as M, M', M,, etc. A finite set of vectors, all

having the same number of components, will be briefly called a matrix. We say that

M is a matrix in yx,..., ys if every term which appears as component of some

v e M contains only variables from yx,..., ys.

Consider two sequences Fx,..., Fs and Gx,..., Gt of closed prenex standard

formulas, F, and Gk having Atixx,..., xS() and Fk(x1;..., xtk) as its quantifier-free

parts respectively. Assume that for i ̂  s and Biwe are given a left-matrix M,

={vh,..., via) of F, and a right-matrix M'k={wkX,..., wMk) of G. Now we intro-

duce two sequents S, S' and a map 0 as follows:

(1) SisFx,...,Fs^Gx,...,Gt,

(2) the antecedent of S' contains precisely those formulas F which are of the form

Ai[vu] where M, is not empty,

(3) the succèdent of S' contains precisely those formulas F which are of the form

Bk[wkj] where M'k is not empty,

(4)0(/f,ki]) = Fi,0(FkKJ]) = G,.
It is clear from the definition of left- and right-matrix that 0 connects S' with S.

In the following definition S, S', 0, F, G, M, M' are the same as above.

Definition 6. The two lists of matrices Mx,..., Ms and M'x,..., M't are said to

satisfy condition F with respect to Fx,..., Fs and Gx,..., Gt if 0, S' and S intro-

duced above satisfy (a)-(c) of Theorem 1 and (d) of Theorem 2. They are said to

satisfy condition F* with respect to Fx,..., Fs and Gx,..., Gt if 0, S' and 5

satisfy (b) and (c) of Theorem 1 and (d) of Theorem 2.

Remark. If s = 0 or if all M, are empty then we simply say that M'x,..., M't

satisfy F (or F*) with respect to Gx,..., Gt since it will always be clear from the

context that the formulas denoted here by G, will be on the right side of the arrow.

If we use the fact that /\? U¡=> VI rVk ¡s provable in ordinary predicate calculus
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iff Ux, ■ ■ ■, Us -> Wx,.. .,Wkis provable in Gl then we can rephrase Theorem 2

with the aid of our new terminology as follows

Theorem 2*. Let F1;..., Fs and G1;.. .,Gtbe two lists of closed standard prenex

formulas, Fj and Gk having A{(xx, ■ ■ ■, xs) and Bk(xx, ■. ■, xtk) respectively as quanti-

fier-free part. The formula /\¡ F■=> \/k Gk is provable in ordinary predicate calculus

iff there are two lists of matrices TV/i={i)il,..., via) and M'k={wkl,.,., wkßk}

(ius, k^t) such that

(a) Mi is a left-matrix of F{ and M'k a right-matrix of Gk,

(b) the lists Mx, ■ ■., Ms and M[,..., M'k satisfy E with respect to Flt..., Fs

and Gx, ■ ■ ■, Gt,

(c) the formula /\i,i Aí[ví¡\^>\J kJ Bk[wkj] is a tautology of propositional calculus.

In this form the theorem makes no allusions to sentential calculus. Of course

conditions (a)-(d) involved in F make use of the relations F and e associated with

tfi, S', S introduced above; hence the notion of sequence is used in their definitions.

But it is clear that this use of sequent has nothing to do with sentential calculus

since the arrow appearing in a sequent turns out to be merely a syntactical aid to

distinguish between left and right. Once given Fl5..., Fs, Gl5..., Gt and Mx, ■..,

Ms, M'x,..., Mi we could consider the two lists A^v^] and Bk[wkj] and then

rephrase the Definitions 3 and 4 so as to make no use of 5", 5 and </>.

Lemma 1. (a) Let Fu Gk (i^s, kt¿t) be as in Theorem 2* and let the matrices

M¡, M'k (i^s, k^t) be left- and righ t-mat rices of F¡ and Gk respectively. Let further-

more Mx, ■ ■ ■, Ms andM[,..., M¡satisfy E with respect toFx,..., Fs and Gl5...,Gt.

IfMi and M'k(aíkiús, b^k^t) are such that Tv7¡£M¡ and M'k<=,M'k then Ma, ...,MS

and M'b,.. .,M[satisfy E* with respect to Fa,..., Fs and Gb,..., Gt.

(b) If in particular F1;..., F„ are purely universal (n^s), that is if Ff is (xx, ■ ■ ■, xn)

■Aiixx,..., xn), then Mn+1,..., Ms and M'x,..., M[ still satisfy E with respect to

Fn+i,. ..,FsandGx,-.., Gt.

Lemma 2. Let Ff, Gk (i^s, k^t) be as in Theorem 2* and let Mu M'k (ii=s, k^t)

be left- and right-matrices of F and G respectively. Assume that M¡ and M'k are

matrices in ji,..., v„ for all i?Zs, k^t. If Mx, ■ ■., Ms and M[,..., M[ satisfy E*

with respect to F1;..., Fs and Gl5..., G( then there is a subset yai,..., yam such that

for any constant c the following holds : if we replace in M{ and M'k allyai,..., yam by c

then the resulting lists Mx,..., Ms andM[,..., M[satisfy E with respect to Fx, ■ ■ -,

Fs and Gx,.., Gt.

The proofs of Lemmas 1 and 2 follow directly from Definitions 3, 4 and 6 and

will be omitted.

2. Let {Fi,..., Fs, Gi,..., Gt} and 5 be two sets of closed prenex standard

formulas. It is easy to verify that the proof of Theorem 1 (in particular part (b))

combined with Definition 6 yields the following statement: if TV/¡={t>i¡(} and Mk



1969] METAMATHEMATICS OF RINGS AND INTEGRAL DOMAINS 79

={*vkß} (iès,k^t) are matrices which satisfy (a) and (b) of Theorem 2* with

respect to F, and Gk, if in addition 5 h /\i¡a Ai[via]^> \fk$ Bk[wkß] then 5 i- /\, F,

=> Vk Gk. The converse of this statement is in general not true as counterexamples

(number theory) show. However

Theorem 3. Fer S be a set of closed prenex standard formulas, all having the form

ixx,..., xn)Dixx,. .., xn), D quantifier-free; let F,, Gk (¡Us, k^t) be closed prenex

standard formulas having At(xx,..., xs¡) and Bkixx,..., xtk) as quantifier-free parts

respectively. Then S \- /\, F,=> \Jk Gk iff there are matrices M, = {i>,a}, M'k = {wkß},

(i^s, k^t) such that

(a) M, and M'k are left- and right-matrices of F, and Gk respectively,

(b) Mx,..., Ms and M[,..., M[satisfy the condition E with respect to Fx,..., Fs

and Gx,..., Gt,

(C)  S h- Ai.a Ai[via\=> Vfc.i Bk[wke].

The proof, being an immediate consequence of the definitions, will only be

outlined.

Proof. One half of the statement is settled by the remark preceding Theorem 3.

In order to prove the other half, assume S h- /\¡ F¡=> \/k Gk. Then h- Ai F, A /\jHj

^VkGk for some formulas HX,...,HP belonging to the set S. Let H¡ be(xx,..., xPj)

■Dj(xx,..., xp). By Theorem 2* there are matrices N¡={uja}, M,={%}, Mk={wky}

(j^p, i^s, k^t) with the following properties:

(a) Nj and M, are left-matrices of H¡ and F, respectively while M'k is a right-

matrix of Gk,

(b) the lists Nx,..., Np, Mx,..., Ms and M'x,..., M[ satisfy F with respect to

Hx,..., Hp, Fx,..., Fs and Gx,..., Gt,

(c) the formula /\¡_a Dj[uia\ A Aue At[viß]=> V/c,,FfcKy] is a tautology of

propositional calculus.

From Lemma 1, part (b) it follows that the lists Mx,..., Ms and M'x,..., M[

still satisfy F with respect to Fx,..., Fs and Gx,..., Gt. On the other hand, using

the fact that all H/s are purely universal one can easily derive from the identity (c)

above the relation

Hlt..., H, Y- A At[vu] = V Bk[wky]
i.e k.y

which proves the statement.

III. Theory of rings and integral domains. In the sequel, axioms for ring theory

and the theory of integral domains are given. Some of the axioms are redundant;

this has no influence since only three of the axioms below will turn out to be

important for our further consideration. There are constants 0, 1 and binary

operations +, —, x ; the symbol x stands for multiplication but for easy reading

we write ab or ab instead of a x b.
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The axioms are:

(1) x = y = y = x (9) x + (y-x) = y

(2)x = y/\y = z^>x — z (10) x+z = y => z = j—x

(3) x = x (11) x = y ■=> x(z-y) = y(z-y)

(4) x = y => x + z = v + z (12) xy = yx

(5) x+0 = x (13) x(v + z) = xy + xz

(6) x+y = j+x (14) xiy — z) = xy — xz

(7) x = j => x—z = j—z (15) xl = x

(8) x = y => z-x = z-j (16) x = jvv = zv (x-v)(z-j) ^ 0

The /th axiom is denoted by ^¡(x, y, z). The axioms of F0 are the logical axioms

and (x, y, z)At for /^ 15; JD0 has all the axioms of R0 and in addition (x, y, z)A¡.

The theories Rx and /F»! have the axioms of F0 and JD0 respectively and in ad-

dition «^0 with n for 1 + 1 + ■ ■ • +1 (n times). F0 is the theory of commutative

rings with unity, JD0 the theory of commutative integral domains with unity, while

JDx is the theory of commutative integral domains of characteristic 0. By a poly-

nomial in the variables xl5..., xs we understand an element of the integral domain

I[xx, ■ ■ -, xs]. With every term t containing at most xl5..., xs as variables we can

associate a polynomial |r| in ¡[xlt..., xs] in an obvious way:

(a) j 01 and |1| are zero element and unity of I,

(b) |ri±r2| = |fi|±N,

(c) |fixr2| = kil x ka|-
An alternative possibility would be to associate with every term t the equivalence

class Pit) of terms such that í'eP(í) iff F0 i- t = t' (or equivalently JDx i-t = t')

and call P(t) a "polynomial". It is rather obvious to show that |r'| = |r| iff t' eP(t).

Before proceeding further we reexamine the way in which a quantifier-free formula

is considered as an identity of propositional calculus; the meaning is that two

expressions fi = r2 and t'x = t'2 represent the same propositional variable iff tx is t[

and t2 is t2. In this case we call the formula under consideration an identity in the

syntactical sense. Another possibility is described by

Definition 7. A quantifier-free formula A is an identity with respect to F0,

JDa if and only if the expression obtained from A by means of the following

substitutions is a tautology of propositional calculus:

(a) a formula tx = t2 such that 0 e F(^ -12) is replaced by the truth-value F

("truth"),

(b) two expressions tx = t2, t[ = t'2 such that neither 0 e P(tx -12) nor 0 e P(t[ -12)

are replaced by the same propositional variable iff P(tx —12) =P(t[ —1'2) or P(t2 — tx)

=P(t'x-t2).

The formula A is an identity with respect to F1; JDx if and only if the expression

obtained from A by means of the following substitutions is a tautology of proposi-

tional calculus :
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(a') a formula tx = t2 such that n e P(tx —12) is replaced by F or the truth value F

("false") according to whether «=0 or n^O,

(b') two expressions tx = t2, t'x = t'2 such that neither n e P{tx —12) nor n e Pit'x —1'2)

(n<oo) denote the same propositional variable iff P(tx — t2)=Pit'x —1'2) orF(r2 — tx)

=Pit[-t'2).

Obviously an identity in the syntactical sense is an identity with respect to

F0, JD0 and Rx, JDX but not conversely (in general). The next lemma is obvious.

Lemma 3. Let ibeOorl. If A is an identity with respect to F,,/F, then R¡ \- A and

JD¡ i- A. If A and A^B are identities with respect to R¡, JD¡ then so is B.

For typographical reasons we adopt the following convention: if in a certain

algebraic context we have to do with the polynomials \tx\,..., |rs| associated with

the terms tx,...,ts then we denote this polynomial just by its terms. Thus if, e.g.,

/ gx,...,gs are terms then B(gx, ...,gs)is the polynomial ideal Bi\gx\,..., \gs\)

and feBigx,..., gs) means \f\ e Bi\gx\,..., \gs\). More generally if v, = it[,. ..,t's)

O'Ss) are vectors whose components are terms then B(vx,..., vs) denotes the ideal

(with respect to R) whose basis consists precisely of all the polynomials \tk\. The

same convention is used in case of ideals 5*(|r|,...).

IV. Universal formulas. In what follows we will prove a lemma which enables

us to characterize those universal formulas which can be proved from F¡, /F,

(/=0, 1) respectively. The proof could easily be given by using simple algebraic

facts such as Hubert's Nullstellensatz (abbreviated as HNS in the sequel) in the

case of JDt. The proof given, below is metamathematical; it is somewhat more

involved than the purely algebraic proof. However it may have some interest in

itself to have a metamathematical deduction of this lemma since it is the syntactical

counterpart of HNS.

Lemma 4. Let fix\,..., xSl) O'iss) and gkixx,..., xtk) ik^t) be terms.

(a) F0 r- Vi/¡=0 V \/kgk¥=0 iff at least one / is in B*igx,. ..,gt).

(b) JD0 \- V¡/ = 0 V V/cg/c^O iff there is an integer e^O such that

{Uf^EB*igx,...,gt).

Proof. We start with (a). Obviously the nontrivial part consists in proving the

implication from left to right. Hence we assume F0 i- Vi/i=0v V/cg/c/0.

The nonlogical axioms of R0 are the formulas (x, y, z)/i,(x, y, z) (/^ 15) given in

§111 ; the formula V¡/ = 0 V V/cgk^O is denoted by B{xx,..., xm) wherexx,.. .,xm

are the variables appearing in an / or a gk. Denote (x, y, z)A{ and (xx,..., xm)F

by F, and G respectively. According to Corollary 1 (of Theorem 2) there are

vectors via = itiaX, t'a2, t'a3) (aSm¡) with tak terms whose variables are among

Xi,..., xm such that /\i-a A^v^]^Bixx,..., xm) is a tautology of propositional

calculus, and therefore also an identity with respect to R0. But all formulas Ai[via]
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except for i=2, 11 are already identities with respect to F0, as is easily verified.

Hence by Lemma 3 it follows that

A A2[v2a]  A   A Áxx[Vxia\^BiXx, . ..)
a a

is an identity with respect to F0. Let us put t2x=aa, t22=ba, t23 = ca, tl\=ua,

tlï = i>a, tl\ = wa and m2=p, mXx=q- With this notation, and taking care of the

special form of A2 and A1X, we find that

p «
V fa« = ba A ba = ca A aa t¿ ca) V V ("i = ve V ußwß ± vßwB)

(I) " "
v y/.-o v Vfk^o

is an identity with respect to F0. First we show by induction on p: if fx, ■ ■ -,fs,

gx, ■ ■ ■, gt, aa, ba, Cailla á/?) are terms such that the formula

(II) V iaa = ba A b, = ca A a„ * ca) V V/, - 0 V V** * 0

is an identity with respect to F0 then/ g F*(gi,..., gt) for some i. lfp = 0, that is, if

the aa, ba, ca are absent then either |/| =0 or |/| = \gk\ or |/| = — \gk\ for some

i, k; in either of these cases the statement holds. Assume that the statement has

been proved for pupo and that the expression (II), but with/? replaced by p0 +1, is

an identity with respect to R0. We denote \/%iaa = baAba = caAaajíca) by F

and aPo+x,bPo+1,cPo+1 by a, b and c respectively. Identity (II) can now be re-

written as follows :

Fv(a = T?A¿> = cAa^c)v V/ = 0 V V gk + 0.
i k

From this it easily follows that Pva-b = 0 v Vi/=0 V \fkgk¥=d and Pvb

-c = 0v Vi/i = 0v V/c&c^OandFv Vi/ = °V \/kgk^0v a-c^0 are identities

with respect to F0. If / $ B*ig, ..., g) for all i, then the induction hypoth-

esis applied to the identities just given yields a — beB*(gx,...,gt), b — ce

B*igi,- ■., gt) and fieB*(gx,. . .,gt, a-c) for some i and hence feB*(gx,. ..,gt),

contradicting the assumption. Next we treat the full expression (I), that is we

consider/? as fixed and proceed by induction with respect to q. lfq = 0, that is if the

ua, va, wa are absent, then we are in the case just treated.

Now assume the following: for all/?, if qúqo and if/1;.. ,,f„ glt..., gt, aa, ba,

ca, us, Vg, wB («a/?, ß^q) are terms such that expression (I) is an identity with

respect to F0 then/ e B*iglt..., gt) for some /. We denote

V (a« = ba A ba = ca A aa ¿ ca) V V (ue = vß A u„wB ?= vßwe)
a ß

by F and put uqa + 1 = ", vqa+x = v, wqo+1=iv;we assume that

F V (w = v A uw j= vw) V V/i = 0 A Vifc^O
i k
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is an identity with respect to F0. Again one concludes that P\ju-v=0\/\/i f

= 0vV)tt?t/0 and Fv Vi/i = 0v \Zkgk^0\/iuw-vw)^0 are identities with

respect to R0. Iff $ B*igx,..., gt) for all i, then an application of the induction

hypothesis yields u-ve B*igx,..., gt) and/, £ B*igx,..., gt, wiu—v)) for some i.

But then/, e B*(gu .. .,gt), contrary to the assumption.

Now we come to the proof of (b). In addition to the axioms (x, y, z)Ah i=2, 11

we have to take into account (x, y, z)/416(x, y, z). By arguing the same way as at the

beginning of the proof of part (a) one concludes: ifFD0 i- V¡/i—Ov V/cg/c^O then

there are terms aa,ba,ca, uß,v0,wß,sy,ty, ia^p, ß^q, ySr) such that the ex-

pression

P 9

V O*« = ba A ba = ca a aa ,¿ ca) V V ("« = ve A uewe ^ vßw„)
a ß

v V(i,^0a/,/0aj,'í, = 0)ví
y

(with B denoting Ví/í=0 v V* gk^O) is an identity with respect to JD0- We denote

this last expression by (II) in the sequel. We show by induction with respect to r

that this implies the existence of an integer e^O such that iYlif)e 6 B*igx,.. .,gt).

If r = 0 the statement follows from (a) (since (II), being an identity with respect to

JD0, is also an identity with respect to F0). Assume the statement to be proved up

to r0 ; let F be the expression

p «
V (a« = ba A ba = ca A aa ± ca) V V K = »j A uBwß ± vewe)
a e

TO

V       V    (S,     ■£     0     A      ty     +     0     A     Syty     =     0)
y

and denote syo+x, tyo+1 by s and t respectively. We assume that

?V(j/0A^0AJ/ = 0)vVü=0vVg)1/ö
i k

is an identity with respect to JD0. It follows by a short calculation that the following

formulas are identities with respect to JD0 too :

F V \ff = 0 v V gk * 0 V s * 0,   fvV^OvVft/Ov^O,
i k i k

f v vy; = o v st = o v v&#o.
i k

Application of the induction hypothesis yields the existence of an e such that

(n(Uifùe^B*igx,...,gt,S),

(2)iTlifi)e£B*igx,...,gt,t),

(3) (styçn/yeM*(gl,...,ft).
Put iYlifi) = A, and denote B*igx,..., gt) by I. By (1) there is a polynomial /i such

that A+hsel. Consider the expressions se~k~1Ak + 1teiA+hs); by virtue of (1)

they are all in I. By an easy induction on k one shows se~kAk + 1te e I: for k = 0 it
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follows from (3), for k + 1 it follows from se'k-1Ak+2te+hse-kAk + 1te eland from

the induction hypothesis. For k = e one obtains Ae + 1te el. By (2) there is a poly-

nomial A' such that A+h'tel. Consider the expressions te~k'1Ae + k + 1(A+h't):

by virtue of (2) they are all in /. By induction on k one shows te-kAe+k + 1 e T. for

k—0 the statement has just been proved, for k + l it follows from te~k~1Ae+k+a

+ h'te~kAe + k + 1 eI and from the induction hypothesis. For k = e we obtain

A2e+1 e I, which concludes the proof of part (b) of the lemma.

Corollary 2. (a) Rx i- Vi/ = 0v Vkgk¥=0 iff either A eB*iglt..., gt) for

some i or ne B*igx, ■ ■ -, gî) for some « > 0.

(b) JDx 7- Vi/ = 0v X/icgic^O iff there is an e>0 such that

(n/«Vs*Grx,...,&).

Proof. Part (a) follows immediately from Lemma 4 (a), taking into account that

Rx is F0 plus the axioms 1 ̂ 0, 2/0,.... Consider (b). If iUifù6 e Bigx,. .., gt)

then niUifdeeB*igx,...,gt) for some w^O. Then \/tft = 0v\/kgk¥=0 follows

from JDx, as is easy to see. Assume conversely JDx t- \/ ifi = 0\/ \/ k gk^0. Then

JD0, 1 ̂ 0,..., «t¿0 t- Vi/ = 0v Wkgk^O for some «>0. Lemma 4 (b) implies

iYlifdeKe B*igx, ...,gt) for some integer F>0 and hence iUifi)eeBigx,.. .,gt).

Actually the proof of Lemma 4 gives a slightly sharper result. Due to the fact that

the passage from an arbitrary proof in sentential calculus to a cut free proof is

described in a primitive recursive way, one obtains, after a slight reorganization

of the proof of Lemma 4 a more constructive version of this lemma. In order to

state it, let /?0, Px, ■ ■ ■ be the list of primes in increasing order and put <«0,..., «s>

=Pô°+ x • • 'Ps°+1 ', in addition, given any term t, let t° be its Goedel number in any

suitable numbering. Then we have

Lemma 4*. There is a primitive recursive function <p with the property: if p is

it he Goedel number of) a proof of (x)(/\j g¡ = 0='/=0) from JD0 then <f>(p) =

(e,h°x,...,h?y such that fe = lhigi.

V. An algebraic version of GEH. Lemma 4 and Theorem 2* permit a re-

formulation of GEH in terms of polynomials and ideals. To this end let us re-

member the notation introduced at the end of §111: if f¡ = (?{,..., t¡) i¡ús) are

vectors whose components are terms then F(»i, ■ ■ -,vs) denotes the polynomial

ideal with coefficients from R generated by the polynomials \tk\; similarly

B*(vx, ■.., vs) denotes the ideal generated by the polynomials \tk\, but with co-

efficients from /. First we need

Lemma 5. Let f^, gkß (i^s, k^t, a^n, ßüm) be terms. Then

JDx t- V A (VfL = ovV?Uo)
f      k    \ a ß !

iff there is an integer e>0 such that for every function k(x) defined for i^s with
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values kii) ¿ t we have

in/woaj   eJ(gfc(l>» •••»&»)

where gi m í/¡e vector ig\x,..., gkm).

Proof. Denote the formula quoted in the lemma by F. The conjunctive normal

form F' of F is the conjunction of all formulas G of the following type: Vi,a/k<o«

=0v Ví.íífwo/s^O where &(x) is any function defined for /^iwith values kQ)^t.

Obviously JDX \- F iff JDX \~ G for all such G. On the other hand it follows from

the corollary of Lemma 4 that a fixed such G (determined by kix)) is provable from

JDX iff there is a <7 ̂ 0 (depending on /c(x)) such that

a) (n/¿»«V e w». •■■.&«)•
\ I.« /

It follows that if there is an e as stated by the lemma, then JDX i- G for all G of the

above type, that is JDX i- F', hence JDX v- F. If conversely JDX y- F, then for every

/c(x) with the above properties there is a g such that (I) holds. By choosing e larger

than all finitely many ^'s, the statement follows.

Theorem 4. Let </>,fka,gkß (k=ít, «áa, ß^b) be terms and let B be the formula

A/c ( Va/ca = 0 V Vi gkß ¥= 0). We assume that </> and B contain precisely the variables

Vu • ■ ■ > y* and xx,..., xn respectively. For any list Qx,..., Qn of quantifiers we have

JDx,iy)</>¿0>-iQxxx,...,Qnxn)B

iff there is a left-matrix M={ux, ...,«„} and a right-matrix M' = {vx,..., vq} of

(y)0 = 0 and iQxxx,..., Qnxn)B respectively and an integer e ̂  0 such that

(a) M and M' satisfy condition E of Definition 6 with respect to (y)0^O and

iQiXi,..-, Qnxn)B,

(b) (Ely 0[«y])e(ni,a/c(i)a[f,])e e £(g£<i), •.., gk<Q)) far all functions kix) defined for

i-¿p with values kii) ^t; the vectors g'k are abbreviations for (gw¡>i["i], • ■ -, gk(m[»i])-

Proof. Denote (y)0/O and iQxxx,..., Qnx„)B by Fand G respectively. Accord-

ing to Theorem 3, if JDX, F t- G then there are matrices M={ux,..., up} and

M' = {vx,..., vq} such that

(1) M is a left-matrix of Fand M ' is a right-matrix of G,

(2) the formula Ay 0["y] ̂ O3 Vi B[v¡] is provable from JDX,

(3) M and M' satisfy F with respect to F and G.

Denote /fca[í>¡] and gkß[vt] by/¿a and gkß respectively. Define h'ka as follows : for a ¿ a

we put hka=fL, for a = a+d (1 ^dgp) we put Afca = 0[«d]. By propositional cal-

culus we find that

(ii) V A ( V h'ka = o v V gU* o\
i     k    \ a ß I

is provable from JDX. By Lemma 5 there is a c^O such that for all functions kix)
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defined for i&p with values kii)^t we have

(ni) (naU«)c6*(8U...,gM>

that is

(IV) (il ^[«A])PC(n/«i)«)C e B(slœ, ■■-, g&,>)

and hence

(V) (n <pMJC{U PmS e 5(gï(1),..., &,,)

where gk denotes igkl[Vi],..., gkb[Vi]). By putting pc=e the necessity of (a) and (b)

follows. Assume conversely (a) and (b) of the theorem to be true and let hka,fk\, gkß

be the same as above. If we multiply in (b) the element on the left by (n* <f>[t\]),'e~e

we reobtain the relation (IV) above but with e in place of c. By performing the

above reasoning in the reverse direction we conclude from Lemma 5 that Aa ^[«J

=> Vi B[Vi] is provable from JDx. This, combined with (a) and Theorem 3 implies

JDx, F \-G, which completes the proof.

Remarks. (1) The case JDX i- (ôiX1;..., Qnxn)B can be treated as a special

case of Theorem 4 by taking for </> the constant 1 and by putting m = 0; the effect is

that the factor (FIa 4>[U/J)e m (b) can be omitted.

(2) In the case of F0 a statement similar to Theorem 4 holds whose proof is even

more simple.

In the next corollary we retain the notation used in Theorem 4.

Corollary 3. Let <f>, fka, gkB and B be the same as in Theorem 4. Assume that

JDx, (y^/O i- (QxXx,. ■., Qnxn)B holds and that (ßi-Xi...., ß„xn)F is not prov-

able from JDx. Let M={ux,..., up) and M' ={vx,..., vQ} be a left-matrix and a

right-matrix of(y)</>^0 and (QxXlf. ■ -, Qnxn)B respectively such that (a) and (b) of

Theorem 4 are satisfied. Then there is at least one function k(x) defined for i^p with

values k(i)^ t and at least one isolated component P of B(gka),..., gk(Q)) such that

</>[uÁS e P for some A.

Proof. Assume the contrary and denote (y)^/0 and (QxXlf..., ß„xn)F again by

F and G respectively. Let k(x) be a fixed function defined for i£p with values

k(i) Ja t. From (b) of Theorem 4, and from our assumption, it follows that for every

isolated component F of B(g\m, ■ ■ ■, gw«)) there are numbers i, a such that/j(i)a e F

(using the fact that F is a prime ideal). From this and the ideal-property of F one

deduces the existence of a number c such that

(i) (n/¿««)c^(gU-..,gg

(where c depends on k(x)). By choosing e sufficiently large one concludes that for

every function k(x) defined for i'á/? with values k(i)^t the relation (I), but with e
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in place of c, holds. Since F is purely universal it follows from Lemma 1 that M'

satisfies F with respect to G (see remark following Definition 6). This means that

conditions (a) and (b) of Theorem 4 are satisfied but with (y)0 ± 0 absent. According

to the remark following Theorem 4 this means that JDX \~ G holds, contradicting the

assumption.

At this point a remark concerning Theorem 4 (and Theorem 3) seems to be

appropriate. Theorem 4 can be considered as consisting of two parts, a logical

one and an algebraic one. The logical part consists of (a) (involving E) together

with the requirement that M and M' are a left- and a right-matrix of (y)0^O and

(ôi*i> ••■, Qnxn)B respectively. The logical part imposes certain restrictions of

order on the matrices M and M'. Clause (b) of Theorem 4 represents the algebraic

part and imposes certain algebraic restrictions on M and M'. The possibility of

characterizing derivability from JDX in the way described by Theorem 4 depends

(1) on the fact that the axioms of JDX are purely universal,

(2) the special characterization of derivability for formulas V¡/i = 0v V/tg/c^O

given by Lemma 4.

Concerning Theorem 3 we may say that the reason for rephrasing the results of

§1 in the form given by Theorem 3 is that in the frame of ordinary predicate

calculus the formalism of GEH is easier to handle if the notion of matrix is used.

Another reason is that in many cases we need not know how the restrictions im-

posed by condition F (which is just (a)-(c) of Theorem 1 and (d) of Theorem 2) on

the matrices M and M' really look like; all that is used in these cases is that E has

the properties described by Theorem 3 and Lemmas 1 and 2.

VI. Some applications. In this section we consider some applications of

Theorem 3 combined with Lemma 4. Let us start with a lemma.

Lemma 6. Let fka, gß be terms (1 SiSs, l^k^t, l^a^m, l^ß^n) and denote

Vi (A, V«y2«=o) V V, ft»/0 by F.
(a) F0 ¡- F if and only if there is an i such that for every k there is an a(yc) with

fUk) e B*igx,..., gn).

(b) IfBigx,..., gn) is a prime ideal, then JDX \- F if and only if there is an i such

that for every k there is an a(yc) withfkaik) e Bigx,..., gn).

Proof. We content ourself with proving the "only if" part of (b). The "only if"

part of (a) is proved in quite the same way, making use of Lemma 4 (a). Both for (a)

and (b) the "if" part follows rather easily from the axioms of JDX and F0 re-

spectively and a small amount of predicate calculus. Hence assume JDX t- F; in

order to obtain a contradiction we assume that there is no /' of the kind required by

(b). If we put gkß=gß for all /, k then F acquires the same form as the formula

appearing in Lemma 5. Now we apply this lemma and keep in mind that

B(gk(l)i ■ • •> gfc«))

is nothing else than Bigx,...,gn). Then there is an e such that for every kix)
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defined for i ¿s with values k(i)^t the relation

H) {n.fí^aJeB(gx,...,gn)

holds. From our additional assumption it follows that for every / there is a k(i) such

thatfk(0a i B(gx,.. ■, gn) for all a. But for this special k(x) again relation (I) holds.

Since the ideal on the right side of (I) is a prime ideal there is at least one / and one a

such that fkii)a e B(gx,.. .,gn) is true. But this is in contradiction with our special

choice of k(x).

Corollary 4. Let fk, g0 be terms (i^s,k^t, l^ß^n) and denote

y(A/2 = o)v(y*,*o)

byF.

(a) R0 i- F iff there is an i such that fk e B*(glt..., gn)for all k.

(b) IfBigx, ■ ■., gn) is prime, then JDx \-Fif there is an i such that

ft e B(gx, ...,gn)   for all k.

Proof. The statement follows from Lemma 6 by putting there fka=fk and m= 1.

1. Let F be the closed prenex standard formula

ixx)iEyx) ■ ■ ■ (xs)(Fys)(y A Ah = 0)       (i á s, k £ t).

If JDx i- F then according to Theorem 3 there is a right-matrix TV/={«1, ...,»„} of

F such that JDx t- V? Vi AkAk["i]=0. From the last corollary, (with^ all absent

or equivalently all 0) we find that there are i, j such thatfik[Vj] = 0 for all k. If we

investigate the restrictions imposed on v¡ by F (that is, in particular, by (c) of

Theorem 1 ), we find that v¡ has the following form :

(x1; tx(Xx), x2, t2(Xx, x2),..., xs, rs(x1;..., xs))

where the t[ may contain additional variables yu..., ym, all different from

Xi,..., xs. After replacing the j¡'s by 0 we have the following result : if JDx i- F

then there is an i and terms txixx), t2(Xx, x2),..., ts{xx, ■. ■, x5) such that

fik(xx, tx, ■ ■ ■, xs, ts) = 0   for all k.

It is easy to show that this property is in turn sufficient to ensure F0 \- F and hence

JDx i- F. If we specialize to the very particular case where F is (x)(Fy)/(x, y)=0

we find (using a result from [1]) that there is no method to decide whether a formula

F of the given form is derivable from JDx or not.

2. For the next application we introduce two classes of formulas. Ax is the class

of quantifier-free formulas whose inductive definition is as follows :

(a) /,¿0 is in Ax for any term/

(b) if A, B are in Ax then so are A A B and A V B.

The class A2 consists of all closed prenex standard formulas (ßiX1;..., ßsxs)

•F(x1(..., xs) with B in Ax.
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Theorem 5. Let Fx,..., Fn be formulas from A2. Let gx,..., gm be terms such

that the formula Vfc^/c^O contains precisely xx,..., xs as variables. Assume in

addition that Bigx,..., gm) is prime. If

JDX, Fu.... Fn v- (xj,..., xs)(V gk * 0)

then there is an i0 such that already JDX, F,0 i- (x1;..., xs)i\/kgkj=0).

Proof. Denote V/cg/c/0 by C(x1;..., xs) and (xx,..., xs)dxx, ...,xs) by G.

Without restriction we can assume that F, has the form

(ßi*i, • • -, QU»xn(»)(V A fik* 0);

denote \/¡ Akfk^O by A. Assume finally JDX, Fx,..., Fnv- G. According to

Theorem 3 we find left-matrices M, ={»'„, •.., i4«>} of F, (fên) and a right-matrix

M'={wx,..., wq} of G such that

(a) Mx,..., Mn and M' satisfy E with respect toF1;..., Fn and G,

(b) Ai« ̂ ¡fó]^ Va C[mv] is provable from JDX.

An easy inspection of condition F (in particular subcondition (d) of Theorem 2)

shows that M' must necessarily consist of precisely one right-vector w which in

addition has the form (xx,..., xs). Hence we conclude from (b) above that

A At[vi] ̂ \/gk^o
i.a k

is provable from JDX. This in turn implies that

V (A VfikW*] = o) v Vg,*o
i.a \ i     k ! ß

is provable from JDX. From Lemma 6 applied to the present situation it follows

that there are iQ, a0 such that for everyy there is a k(J) with /&;)[t4°0] 6 Bigx,..., gm).

Combining this with the "if" part of Lemma 6 (b) putting s=l there, we find

that

(AV/»°„] = o) vy«(/o

or equivalently ,4¡0[í400]=> \/ßgß^0 are provable from JDX. From Lemma 1 (a) it

follows that {i4°0} and {w} (that is {(xl5..., xs)}) satisfy F* with respect to F,0 and G.

After replacing eventually superfluous variables in j4°0 by 0 we obiain by Lemma 2

a left-matrix v of F,0, a right-matrix {(x1;..., xs)} of G such that F is satisfied with

respect to F and G and such that JDX t- Aio[v]=> C[w] holds. From Theorem 3 we

conclude JDX \- Fio^G that is JDX, F,0 i- G, which proves the statement.

In order to obtain a few corollaries we note the following

Lemma 7. Let <¡>x,...,<j>sbe terms containing only variables from the list xx,..., xt.

Let <7i n ■ ■ r\qn be a primary decomposition of Bi</>x,..., </>s) and pt the prime ideal

associated with ?,. Finally let g\ ..., ga(o be a basis o/'p,. Then

JDX i- (pcu ..., xs)(V 0, / 0) +-♦ A ixx,..., xs)(y gii # 0).
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We do not give the proof, which is easily obtainable by predicate calculus and

elementary algebra.

Corollary 5. For every formula (xl5..., xs)(\/i ^¡^O) there is an integer

e>0 with the property: whenever the formulas F¡ (/<o?) belonging to A2 are such that

JDx, Fx,... t- (x1;..., xs)(\/i 0i#O) holds then there is a subset Fh,..., Fie such

that already JDx, Fh, ...,Ft,y- (x)(\/¡ <M0) holds.

Proof. Let B(<j>x, ■ . ■, </>„) have the primary decomposition qx n ■ • ■ n qe, let p¡

be the prime ideal associated with qt. Assume that gl,..., gj,(i) is a basis of /?,.

Denote (x)(\/i <£i^0) by G and (x)(\//c gi^O) by G¡. According to the last lemma

JDx, Fx, F2,... h- G implies JDx, Fl5 F2,... \- Gk for all k^e. By Theorem 5

there is an i for every k á e such that JDx, Flk \- Gk. By Lemma 7 the desired set is

Fh,...,Fie.

Corollary 6. Let the closed formulas G¡ (i Un) and G be (Ex)(/\k(f>k=0) and

(yXV/cg/c^O) respectively. Then there is an integer e>0 with the property: if F¡

(i < cu) belongs to A2 and if JDx, Gx, ■ ■ ■, G„, F1;... \- G holds, then there is a subset

F(l,..., Fie such that already JDx, G1;..., G„, Fh,..., Fie t- G holds.

Proof. The statement follows immediately from the previous corollary by

considering instead JDX, Flt F2,... i—< GjV • • • V -• GnV G and by transform-

ing ( Vi -> G¡) V G into prenex normal form.

The last corollary cannot be generalized much further; as soon as we allow

formulas F¡ of other types as, e.g. (x)(Ey)p(x, y) = 0, the corollary turns out to be

false. This stems from the fact that if, e.g., (x)(Ey)p(x, y) = 0 is among the F's then

ideals of the form

B(p(t0, xi),Pitiixx), x2),.. .,pit,-iixlt ...,xs-x), xs))

appear in condition (b) of Theorem 3; no upper bound for s and for the number of

prime components can be given. The next example shows that for the theory of

rings the situation is somewhat different.

Theorem 6. Let M be the set of closed prenex standard formulas having the form

iQxXx,..., ßsxs)(AÄi = 0A(A y/,k # o)).

Let G be a closed prenex standard formula having the form

iPiyi,--,Ptyt)(y<i>i = 0v Y^0)-

Then R0, M v- G implies the existence of an i0 such that already

m, R0 r- iPxyx, ■■-, Ptyt)(K = ovy^^o)

is true.
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We will give the proof of Theorem 5 only for a special case, which however will

contain all the essential features of the general case. The proof of the general case

is a somewhat lengthy but straightforward elaboration of the arguments given

below; it would require the introduction of a large number of sub- and superscripts.

The case which we are going to consider is that where all formulas of M are of the

following form :

(ßiXi,..., Qsxs)ia = 0a(M0vc?í 0)).

Proof of Theorem"6. Obviously it is sufficient to consider a finite set M=

{Flt ...,Fn}. Let F, be iQ[xx,..., ß,Bfxn,)(«i = 0 A (A, ̂ 0vc,/0)). Denote the

formulas (a, a(è,^OVc,^O)),(Vi0i = OvV/£!A/c^O) and

(Fij1,...,F(>-i)(Y0i = Ov V-A/c^O)

by Au B and G respectively. Assume F0, M \- G. By Theorem 3 there is a right-

matrix M'={wx,..., wq} of G and a left-matrix Mi={v\,..., »-} of F, for all iSn

such that

(a) Mx,..., Mn and M' satisfy condition F with respect to Fx,..., F„ and G,

(b) the formula Aux ̂ ¡["'J3 V« B[wß] is provable from F0.

After a few propositional transformations we conclude from (b) that

V (¿,[4] = o a cM] = 0) v (V M»ß] = o)
i.a \j,ß I

V (Va,[ri,]#0) V (V^Kl^O)

is provable from RQ. Let zx,..., zN be the set of variables occurring in at least one

of the M,'s or in M'. Denote by/the polynomial ideal with respect to I[zx,..., zN]

generated by all the polynomials fl,[t>a] and 0íc[m'/,]. Then according to Corollary 4

either

(1) there is an i and an a such that ¿>,[i>'a] and c,[t4] are in / or else

(2) there is ay0 and a ß0 such that </>j0[wßo\ is in J.

Assume first (1). Then it follows from the corollary mentioned that

V WA = o a cMJ = o) v (V OH] * o) v (V 0*K] / o)
i,a \i,a I \k,ß I

or equivalently At.a Ai[vla\^\Jkiß </>k[yvß]^0 is provable from F0. Denote the term

yi—yt oyfiyx,..., yt), let G' be the formula

iPxyx,.. .,Ptyt)(W yi- v, * 0 V y >Pk # 0)

and denote the quantifier-free part of G' by B'. Obviously M' is a right-matrix of G',

furthermore Mx,..., Mn and M' satisfy E with respect to Fx,..., Fn and G', as is

easy to see, and finally Ai.a Ai[v'a]^\/ß B'[we] is provable from F0. Hence Theorem

3 implies F0, Fx,.. .,Fn\- G', that is,

F0, M y- iPxyx,..., Ptyt)(4>J0 = 0 V V 0, / 0)
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for any j0 which proves the statement in this case. Now assume case (2). Then we

conclude from Corollary 4 that

V tok] = o a c,K] = 0) v </>,>,„] = o v v «.Kl / o v v Mwy] / o
i.a i,a k,y

is a consequence of F0. Denoting again yt— y¡ by/((j?i,..., yt) we find after a few

propositional transformations that

A AM] = (¿,oK] = 0 V V /,[">,] / o V V lM",J / o)
i,a \ ;' k I

is provable from F0. Denote <^0 = 0 V V;/^0v Vfc ̂ ^0 by F" and

(F^,...,^)^"

by G". Again M' is a right-matrix of G", furthermore TV/1(..., TV/n and TV/' satisfy F

with respect to F1;..., Fn and G" and finally Ai.a ^¡["¡J3 V# ^'[^l is provable

from F0. By Theorem 3 this implies

f0, m h- (f^j, ..., ptyt)(ho = ovy^#o),

which proves the statement also in this case.

A special case of Theorem 5 is

Corollary 6. Let M' be the set of closed formulas of the form

iQxXx,..., ßsxs)/?(xj,..., xs) = 0.

If At, Bk (/, k<w), Gx, ■ ■ -, Gn and Flt...,Fm are formulas all in M' such that

F0, Ax,A2,...,-,Bx,^B2,... t- V Gi V V - Fk
i k

then there is an i such that already

Ro, Ax, A2,...,^Bx,-iB2,... i- Gi0 V V - Fk
k

holds.

A consequence of this is

Corollary 7. Let M' be as in Corollary 5 and let M* be the smallest set of

formulas such that

(a) if AeM' then A eM*,

(b) if A, Be M* then AaB, Ay B, - A in M*.

With each formula G eM* one can associate an integer e>0 with the property: if

R0, G i- Vi F¡V V/c ■» Ck (i'á«, k¿¡m) and if B¡, Ck eM' then there are formulas

Bh,. ■., Bie such that already R0, G \- \JS Bis V Vt -■ Q holds.

Proof. Without restriction we may assume that G is /\t V; ¿u where Au is

either a formula of TV/' or the negation of such a formula; we assume i^a,j^bt. By

t we denote the set of sequences « = {a1;..., aa} with «¡^Aj. Because of F0, G
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i- Vi BiV Vfc - Ck and Ai AiapG for a e r it follows that F0, AXav ..., Aacta

t- Vi FjV V/c ~" Gfc holds for any «£t; but this, together with the previous

corollary implies the existence of a Bk(a) such that already R0, Ai Ata¡ t- Bk{a)

V Vfc "* Ck is true. If we now take into account the following identity of propo-

sitional calculus

A (A Aiat = BMa) v V - ck) • => • (A V 4«, = V Bkia) v v - ck)
aez \ i fc / \ i    aez aet k '

the statement of the corollary follows by choosing for e the number of elements in

T.

VII. Another application. In this section we discuss a slightly different kind of

application. We will only prove the first of the theorems to be mentioned below.

The proofs of the other theorems are omitted in view of their length.

Theorem 7. Let F, (igw) be of the form iQ[xx,..., Q^x^fix^ ..., x„.)^0.

Let 0(zí, z2) be a term such that |0(z1; z2)| has no zero i£x, £2) constructible by means

of ruler and compass. IfJDx, Fx,..., Fm, (x)(F_y)(x — y2 = 0) are consistent then so are

JDU Fx, ...,Fm, ix)iEy)ix-y2 = 0), fe, z2)0 = O.

Proof. Call for simplicity an «-tuple (fj,..., £n) of real or complex numbers to

be c.r.c. if its components f, are constructible by means of ruler and compass.

(a) We first consider the case where all quantifiers Qk are universal. Assume the

assumption of the theorem to be true and assume in addition

JDX, Fx,..., Fm, ix)iEy)ix-y2 = 0) i- iEzx, z2)</> = 0;

we show that a contradiction arises. Denote x— y2—0 by g(x, y) and ix)iEy)

ix—y2 = 0) by G. From Theorem 3 it follows that there are left-matrices M,

= {u\,..., up¡} of F¡ ii<m), a left-matrix M={i/!, ...,»„} of G and a right-matrix

^F" = {wi, • ■ -, wj of (Fzl5 z2)0 = O such that (b) and (c) of Theorem 3 are satisfied.

Condition (c) in particular implies that the following formula is provable from JD:

(D V fiWa\ = 0 V   V 0[H>y] = 0  V   v g[Vß] # o.i,œ y ß

If on the other hand we investigate the restrictions imposed by E on the form

of the vectors u'a,vB, wy, we find with a bit of work that there are variables yx,.. .,ys

such that after a suitable renumbering of M the following holds:

(1) vß has the form (rö, yß) where tß is a term containing no other variables than

ji,..., yß-x (in particular tx is a constant term),

(2) all terms which appear as components of an u'a, wy contain no other variables

than yx,..., y,.

Lemma 7 applied to formula (I) yields an integer e>0 such that

(H) (fi /iKl)e(n ¿Kl)" e Bitx-y2x,..., ts-y2)



94 BRUNO SCARPELLINI [April

holds. Denote the ideal on the right-hand side by J; let qx n ■ ■ ■ n qb be a primary

decomposition of / and p¡ the prime ideal associated with q¡. Every zero of /?f is a

zero of J, every zero of J is c.r.c, hence so is every zero of p¡. Therefore <j>[wy] $ pk

for all y, k, that is for every k there are i, a such that/[HJ,] epk. This in turn implies

the existence of an integer d such that

(HI) (TlfMij'eJ

holds. Combining this with Lemma 4 one finds that

(iv) V/K] = ovVfc-^)#o
ia B

is provable from JDy. But Mx, ■ ■ ■, Mm and M clearly satisfy F with respect to

Fx,..., Fm and (Fx)(.y)(x-y^0); in addition TV/¡ is a left-matrix of F( and TV/ a

right-matrix of (Fx)(y)(x-j/0). This, together with (IV) and Theorem 3 implies

Fx, ...,Fm, JDx i- (Fx)(y)(x-y * 0),

giving a contradiction.

(b) If the Q'k are allowed to be arbitrary quantifiers, the reasoning above remains

the same up to the point where the form of the vectors ««, vB, wy is investigated.

Now one finds variables xlt..., xa, yi,...,y, such that after an eventual re-

numbering of TV/ the following holds:

(1) vB is itB, yB) and tB contains no other variables than Xi.x„, yu..., yt-i,

(2) all terms which appear as components of some u'a, wy contain only variables

from the list xl5..., xa, yx,.. .,ys. Again one finds relation (II) in part (a) to

hold for some e. If we succeed to show that no prime ideal pt (with pu qh J as in

part (a)) contains a <f>[wy], then we can proceed as under (a), obtaining thus a con-

tradiction. This is achieved if we can show that each/?¡ has a zero c.r.c. The reason-

ing sketched below produces such a zero. First one notes

(1) /has dimension a,

(2) if A(x1;..., xa) is a nonvanishing polynomial in x1;..., xa then

JA = BiA,tx-y2x,...,ts-y2)

has dimension fía— 1.

Now J has dimension a as noted, its basis contains s polynomials and there are

s + a variables. According to [2, p. 125] each /?¡ has dimension a. In addition the

x1;..., x„ are independent with respect to /?¡ ; otherwise there would be a

A(x1; ...,xa)epi,

hence the set of zeros ofpt is a subset of the set of zeros of JA, and this together with

(2) would contradict the fact that p¡ has dimension a. Hence [2, pp. 101-112] there

is an a-dimensional complex neighborhood Ut such that for every choice (f 1;. .., £a)
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from £/, there are complex numbers £lf..., £, such that (¿¡x, ...,£«, k,-..., £s) is a

zero of/?,. If in particular the £k are rational complex numbers, then, since

íXíi,...,í«Ci,...,í:,-i)-o-o
fory'áí, the £fc's are necessarily c.r.c. which concludes the proof.

The argument above, in particular properties (1) and (2) of F could easily be

made rigorous by using elementary devices from algebraic geometry such as

presented in [2], [4].

This theorem allows a generalization, namely

Theorem 8. Let Fx,..., Fnbe a list of formulas with F, of the form

(Fym)/?,(xn, ym) = 0

(with xn, ym as abbreviations for ixx,..., x„) and iyx,..., ym)) such that

(a) PiiXn, ïm) £ /[x„],

(b) if Pi is 2 A\x... tjxjy'i1 ■ ■ -Jm then 1 is an element of the ideal J¡, whose basis

consists precisely of all the polynomials A^... ,m(xn),

(c) each pt has degree g 4 with respect to each yk.

Let F be constructed from the F¡s by means of A, V , -., F, V and let gi(z), • • •, gs(z)

be terms such that no g,(z) has a zero constructible by means of ruler and compass. If

F, JDX are consistent, then so are Ai (z)gi(z) ^0, F, JDX.

This theorem cart be generalized considerably in two directions: first one can use

concepts from Galois theory which are more general than the notion of a number

constructible by means of ruler and compass, secondly the class of formulas F,

which serve as basis for the construction of F can be chosen much larger. A variant

of Theorem 8 is

Theorem 9. Let Fx,..., F„ be as in Theorem 8. Let gxix),..., gs(x) be terms such

that no giix) has a zero constructible by means of ruler and compass, except possibly

(0,..., 0). Let 0(zl5...; zk) be a term representing an irreducible polynomial of

degree :£4 with respect to each z,; in addition 2^k and0(0,..., 0) = 0 are assumed.

If F, Ai ix)igiix) = 0=> Ai Xj = 0), JDX are consistent then (z)(0(z) = O=> A> ̂  = 0) is

not provable from this set of formulas.

The main idea used in the proofs of Theorems 8 and 9 is already present in

the proof of Theorem 7. The details however are now much more involved since

the ideals which one encounters have a structure which is more complex than that

of the 7, in the proof of Theorem 7. In order to handle the singular points which are

familiar in elimination theory quite a considerable amount of elementary algebraic

geometry is necessary; for this reason we have omitted the proofs of Theorems

8 and 9.
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