
MODULES OVER POLYDISC ALGEBRAS

BY

WALTER RUDIN(') AND E. L. STOUT(2)

Introduction. We shall be concerned with certain analytic covers of the polydisc

UN={(zu . •., Zu) : |zj| < 1,..., \zN\ < 1} in complex N-space, CN. We will consider

a collection JfN of objects A: À e JTN if A is an open subset of a Stein manifold

and if there is a neighborhood Q of A and a proper holomorphic map 0 from O

onto a neighborhood of UN which satisfies

(1) A = ®-1(UN),and

(2) O is a local homeomorphism at each point of <t>~\TN).

Here TN = {(zu ..., zN) : \zx\ = ■ ■ ■ = \zN\ = 1}, the distinguished boundary of UN.

It follows from the definition of "proper" (compact sets have compact inverse

images) that A is compact.

Given a AeJf, and an associated 0, the triple (A, 0|A, UN) is an analytic

cover, in the sense of [5]. We will make frequent use of the properties of such

covers, often without explicit reference. One of their important properties is that

O has a well-defined multiplicity: there is an integer A and an analytic variety V

in U" (dim V<N) such that each point of UN\V has exactly A preimages in Q.

We will study two algebras naturally associated with A,

^(A) = {/£ C(5) :/is holomorphic in A}

and

//°°(A) = {f : fis bounded and holomorphic in A}.

These algebras are modules over their subalgebras

<S>*A(UN) ={/o<D :feA(UN)}

and

WH'iU») = {f o <D :feHm(UN)}.

In §1 we show that these modules are actually free, and that their rank equals the

multiplicity of 0 (Theorem 1.4). Certain analytic consequences of this are also

developed in §1. An example shows that the above result can fail for maps O

which violate condition (2).

In the one-dimensional case, results of this kind have been obtained by Ailing.

The elements of ^¡ are simply the Riemann surfaces considered in [1].
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Given A', Agí; and an associated O : A -> UN, we write Y e Ji( A', A) if Y

is a proper holomorphic map of a neighborhood of A' onto a neighborhood of A

which is locally a homeomorphism at each point of Y-1(<I>'~1(7'W)) and which

satisfies A'=XF_1(A). The set Jt(K, A) depends only on A and A' and not on O,

for, as we shall see, the set 3> " \TN) is independent of i>.

If W e Jt(A', A), then A(A') and H "(A') are again modules over Y*A(A) and

Y*H<C(A) respectively. This module structure will be studied in a subsequent

paper.

§11 deals with the case in which both A and A' are polydiscs. The special form of

proper holomorphic maps from Uk to UN is discussed. Combining this with the

results of §1, the following extension theorem is obtained :

Theorem. Let <S> be a biholomorphic map of Uk onto a closed analytic submanifold

V of UN. If<t> is holomorphic and one-to-one in a neighborhood of Uk, then there is a

bounded linear operator E: Hx(Uk)-^ Hm(UN) which maps A(Uk) into A(UN),

and which extends functions on V to functions in UN in the sense that

(£/)o(D=/

for every feHx(Uk).

An example shows that such an extension need not exist if O behaves badly near

the boundary.

In §111, which is independent of the preceding ones, we obtain a rather general

theorem on extending bounded holomorphic functions from an element of Jfx

embedded in a UM to bounded holomorphic functions in UM. On the one hand,

this is a generalization of a previous result [13], and on the other, it is a model of

what we would like to prove about extending functions from a A e JfN which is

embedded in a UM.

Certain notations will be used consistently. If 5DÎ is a complex manifold, and if

z e 9JÍ, then 0(9ft), Öfo, and Gz will denote, respectively, the algebra of all holo-

morphic functions on 9JÍ, the sheaf of germs of such functions, and the stalk of this

sheaf at z. A holomorphic map <1> : 9JÏ -» 3Î, where ÎDt and Sí are complex manifolds

of dimension m and n, is said to be nonsingular at z e SOt if there exist neighborhoods

V of z and W of <P(z) and biholomorphic maps a and ß of V and W onto open

subsets of Cm and C", respectively, such that ß o cp 0 a-1 is nonsingular in the

sense of [5; p. 16]. If O is nonsingular at each point of its domain, we say simply

that <î> is nonsingular.

I. Analytic covers of polydiscs. We begin this section with some general

properties of elements of J?(A', A) and then apply these to the special case that A

is a polydisc.

In the definition of the elements A of dfN we required the existence of a neighbor-

hood O of A and a proper holomorphic map O from £2 to a neighborhood of

UN in C; this í> is to be a local homeomorphism at each point of <P_1(/W). It is
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important to observe that the set <&~1(TN) can be described in terms of the algebra

A(à); thus <I>~1(TN) does not depend on the particular choice of d>:

LI. Lemma ^-\TN) is the Shilov boundary for A(A).

Proof. Let B=<b~1(TN). We claim that every zeB is a peak point for some

element of /4(A). If zeB, there exists/e A(UN) such that/(0(z))= 1 but \f(l)\ < 1

at every other point £ e i/w. Since /4(A) separates points on A, there exists g e /4(A)

such that giz) = 1 but g (w)=Oat every other point w e fl>_1(0(z)). If Fis a neighbor-

hood (in A) of z, if M is a sufficiently large positive integer, and if « = (/° ®)Mg,

then «(z)=l, |«| <9/8 on A, and |«|<l/8 off F. Thus Bishop's characterization

of peak points [2, Theorem 2] shows that z is a peak point for /1(A). Hence B is a

subset of the Shilov boundary.

To prove that B is a boundary for A(A) we must show that |/| attains its

maximum on B iffe /4(A). To do this, suppose 0 < t < 1, let Tf be the distinguished

boundary of the polydisc UtN (z eUtN if and only if t ~ H e UN), and put At = <P - 1(i//r).

If/e/4(A), then /e 0(5(), so [6] implies that there is zte<S>-\T?) such that

\f(zt)\ =sup {|/(z)| : z e AJ. The set {zt : 0< t< 1} has a limit point zx e P, and |/|

attains its maximum at zx. This completes the lemma.

Now suppose A', A e JfN, O e Ji(b!, A), D' is a neighborhood of A' which $

maps properly onto a neighborhood Í1 of A, and Q' = 0 ~ 1(Q). The mapping 0

gives rise to a sheaf /onû (called the c/«rci /mage sheaf of CV), in the following

manner: if F is an open set in O, the sections of Sf over V are the holomorphic

functions on O'^F). The set r(F, Sr*) = C)(<b-\V)) of these sections may be

regarded as an 0(F)-module: If feO(V) and ge F(V, if), define fg to be the

element (/° <D)g of Y(V, if).

Since the fibers $ ~ ̂ (z)) are finite, [11, Theorem 7, p. 81] (which as the referee

has pointed out to us, was proved by Oka [16]) shows that if is a coherent analytic

sheaf. For our purposes, it is necessary to know somewhat more:

1.2. Lemma 2. If <£ has multiplicity A, then if is a locally free sheaf of rank

A over (Pa.

Proof. Explicitly, the assertion is that every z e Q has a neighborhood V such

that if\ V is isomorphic to the direct sum of A copies of 0V. Since if is coherent,

it is enough to prove that every stalk ^(zeO) is isomorphic (as an cf3-module)

to the direct sum of A copies of 0¡¡.

Indeed, let us assume that this last statement has been proved. For a fixed z e Q.,

let (jx)2, ..., (ja)2 e ¿f, be germs that constitute a free basis of Sfz over <9Z. Since Sf

is coherent, z has a neighborhood Vx such that (j^ç, ..., (s\)c generate ^ for every

£ e Fl. Let 8$ be the sheaf of relations of the sections j1;..., jA e T^, if). The

stalk 8tz is the zero module since (j^, ..., isK)z are free generators of if2; since 0t

is itself coherent it follows that 0 generates the stalks ^c for all £ in some neighbor-

hood V of z, F<= Vu So ^=0 in V, which says that ^| V is isomorphic to (C\)\
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We now consider two cases. The first is that in which <t>~1(z) consists of A

distinct points, say wx,..., wA. Then there is a neighborhood Vof z and there are

pairwise disjoint neighborhoods Wt of >v, such that $ maps each Wt biholo-

morphically onto V. Let 0(: V-> W¡ be inverse to 0. Every germ sz e a? is repre-

sented by a A-tuple of functions (/,.. .,/A), where each/ is holomorphic in some

neighborhood of w¡. The map sz-+(Jx,.. . ,/a), where/ is the germ at z of the

function/ o <]¡u ¡s an isomorphism of St. with (6\)\

The case in which <P-1(Z) consists of fewer than A points is not quite so easy.

Fix one w e <J>_1(z) and let ¡x be the branching order of O at w [5, p. 103]. Let

Z/Cß,n..w consist of the germs at w of the functions g ° <i>, where g is holomorphic

near z. Since H is isomorphic to 0a,z, we bave to show that Cn'.w '* o free module

over H, of rank p.

Let H and CV.w be the quotient fields of H and 0n.iW. We claim that

(0 ^£2-,w is the integral closure of H in 6ViW, and

(ii) ^n-,w 's a finite algebraic extension of H.

Since 0n>z and Cn-,w (hence also //) are unique factorization domains [5, p. 72]

they are integrally closed [14, p. 261] and therefore (i) and (ii) will imply that 0n.jW is

a finite //-module [14, p. 265, Corollary 1](3). But since fa>s and ß>n.>w are just the

rings of convergent power series in N complex variables, it then follows from [4,

Korollar 5] that ®a:* ¡s actually free over H. The rank of 0n.iW over H must then

clearly be equal to the branching order of O at w, and this is the desired conclusion.

We turn to the proof of (i) and (ii). The point w has a neighborhood basis {Va}

such that (Va, 0| Va, Q>(Va)) is an analytic cover of multiplicity p.. Hence [5, p. 104]

every fe fn.>w satisfies a monic polynomial equation

(1) fu + hll-yf-1+---+h0 = 0       (hieH).

Thus &a'.w is a subset of the integral closure of Hin ¿>n<,w. On the other hand, every

x e Cn-,w which is integral over H is also (trivially) integral over the larger ring

0£j',w> and since &n.¡vl is integrally closed (as noted above), it follows that x e 0n.>w.

Hence (i) is true.

Since (1) holds for every fe 0n.,w, the usual proof of the fact that the algebraic

numbers form a field shows that every x e da.<7, satisfies an equation

amxm + am.yxm-1+---+a0 = 0       (aieH,am # 0).

Multiplying this by cC'1, we see that amx is integral over H. By (i), amx e 0n.,w»

and hence f=amx satisfies an equation of the form (1). In other words, every

x e <V,W is algebraic over H, of degree f£ p.. Pick xQ e 6 so that its degree over H is

maximal. If there were an Xy e (5n,w, xx $ ßa-,w(x0), then the dimension of the field'

H(x0, Xy) would be larger than that of H(x0) (as vector spaces over H). The

(3) As the referee has pointed out, the fact that 0a-.w is a finite if-module follows also from

a general theorem on analytic algebras, [11, Theorem 1, p. 10].
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theorem of the primitive element [14, p. 84] implies that Z/*(x0, Xj) = //(x2) for

some x2 e #n',w But then x2 has larger degree over H than x0, a contradiction.

Consequently, 0n.w = //(xo). This proves (ii) and completes the lemma.

1.3. Corollary. If O £ J((A., UN) for some A e Xs, if Q. is a neighborhood of

UN such that <P maps Q.' = <b~ 1(Q) properly onto Q., and if <P has multiplicity A, then

the sheaf if is free of rank X on a neighborhood of UN.

Proof. This is simply the fact that a locally free sheaf on a neighborhood of a

closed polydisc is actually free over some neighborhood of the polydisc. This

follows from Cartan's lemma on holomorphic matrices and is to be found in

[10, p. 86] where, however, it is formulated in terms of vector bundles. The relation

between vector bundles and locally free sheaves is discussed in [5].

We can now prove the main result of this section.

1.4. Theorem. IfAeJTN and if<&e M(A., UN) has multiplicity X, then there exist

functions F1;..., FA, holomorphic in a neighborhood of A, such that every f holo-

morphic in A has a unique representation of the form

(2) f=f(g,°mt=i
where gx, ■ ■ -,g\ ore holomorphic in UN.

Moreover, iffe //"(A) then each gt e H'C(UN). Iffe A(A), then each g¡ e A(UN).

Proof. By Corollary 1.3, there is an open polydisc Q=> UN such that, setting

Q' = 0-1(D)) the sheaf if of Lemma 1.2 is isomorphic to (Cn)A. Hence there are

sections Fx,..., Fhe T(D, if) with the following property: if V is open, KcQ,

then every fe Y(V, if) is uniquely expressible as 2g¡F¡, with gt e T(F, 6V) = 0(V).

If We apply this to F= UN, lift the statement to A by means of <I>, and let F¡ be

the element of 0(£2') which corresponds to the section F, e r(Q, if), we obtain (2).

If we apply the same statement to V= Q., we obtain an analogue (2') of (2), with

fe &(Q'), gi e 0(Q). If z e Q is such that O- x(<I>(z)) consists of A distinct points

Wu- - -, wA, then (2') gives

(3') fiwk) = 2 gi(<b(z))F¿wk)       (k=l,...,X).

Proper choice of/£ <P(Q') shows that the ordered A-tuple (/(w^,.. .,/(h>a)) can be

any point of C\ The matrix (Ft(wk)) must therefore have rank A whenever

Wu ■ ■ -, wK are distinct.

This last condition holds for every z in a certain neighborhood of TN, since i> is a

local homeomorphism at every point of <S>~1(TN). Thus there is a neighborhood

F of $~1(FN) in which det iF¡iwk)) is bounded away from zero.

Now suppose/E //"(A). The equations (3') have analogues (3), with g¡ e &iUN).

For z £ A n 7, (3) can be solved for gii$>iz)), by Cramer's rule. The form of the
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solution shows that each g, is bounded in <p(A n Y). This latter set contains all

(íi, ■ ■ -, £w) with r< \Q < 1 for some r and all/ Hence g, e Hn(UN).

If, in addition,/is continuous on A u 0-1(/JV), then the above application of

Cramer's rule shows that each g¡ extends to a function continuous on <P(A n Y) u

F". It follows that g¡ is continuous on UN u F\ Hence g, e ^(C/w).

This completes the proof of the theorem. We note, incidentally, that the last

paragraph of the proof shows that if g is holomorphic in A and continuous on

A u a>-\TN), then g e A(A).

Every O e Ji(A, UN) is, by definition, a local homeomorphism at each point of

<t>~1(TN). We now show by an example that Theorem 1.4 can fail (even for N= 1) if

í> fails to be a local homeomorphism at just one point of ^~\TN).

1.5. Example. For zeC, put <P(z) = (z2-l)-1, and regard <î> as a map of the

Riemann sphere S into itself. The curve y on which |<E>| = 1 is shaped like an

infinity sign, and it meets the imaginary axis in only one point, namely the origin,

which is a double point of the curve. Let A be the component of S\y which contains

the point at infinity. Thus A = <P-1(C/), where (7 is the open unit disc in the plane,

and <P maps A onto U in a two-to-one fashion. The mapping <P is a local homeo-

morphism at every point of the boundary y of A, except zero. We shall show

that A(A) is not a finitely generated module over <&*A(U).    ,

Suppose, on the contrary, that By,...,BMe A(A), and that every Fe A(A) has a

(not necessarily unique) representation of the form

M

(4) F(z) = 2 Bi(z)f((z2 -1)-»)       (z e A,/ e A(U)).
i-i.

Let L: A(U)M -> .4(A) be given by L(fy,.. .,ft^) = ^BJj »d>; our hypothesis is

that L is onto though not necessarily one-to-one.

If C7e//°°(A), there exists a bounded sequence {Gn} in ,4 (A) which converges

uniformly on compacta in A to G. To see this, let '/>: A-> U be a conformai

(one-to-one) mapping such that

lim <p(it) = 1    and   lim 0(/7) = -1.
Í-0+ í->0 +

Let </>: {/-> A be inverse to >/>. The mapping >/> extends continuously to A\{0}, and

c/> extends continuously to U. Since G ° </> e //"(C/), there is a bounded sequence

{gn} in A(U) which converges uniformly on compacta in U to G ° <f>. Define gn by

gn(z)=gn(z)(\—z2)lln. The sequence {gn} is again a bounded sequence in A(U)

which converges to G ° <j> uniformly on compacta in U. Since the functions gn

vanish at 1 and — 1, Gn=gn o i/¡ is a well-defined element of A(A). Then {Gn} is-a

bounded sequence in A(A) which converges uniformly on compacta in A to G.

Since the operator L is onto, the open mapping theorem, together with a simple

normal families argument, shows that if F e H "(A), then F can be expressed in the

form (4) with suitable/,.. .,fu e H™(U). We will obtain our contradiction by

applying this fact to a particular/e Hco(A).
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The function <£ is negative on the imaginary axis, and lim^o ®(it) = -I- Let

{Tn}n=i be a sequence in ( -1, 0) which decreases to — 1. For each «, let î> " x(t„) =

{a¿, C7~}, ct+ above the real axis, a~ below. If t„ approaches — 1 fast enough, there

will exist an F0 e HX(A) such that F0(o¿)= + 1, F0(o~)=-1. (One way to obtain

such an F0 is to note that if rn tends to — 1 fast enough, the set {ct^K^i u {o~}n=1

will be an interpolation set for HX(A). In this connection, see [7].) By the last

paragraph, the function F0 can be written in the form (4), and we have, for all «,

(5) 1 = FoK) = ¿iCO/iW + • • • + BM(rt)fM(rn)

and

(6) - 1  = Fo(a-) = B1(<t-)/1(tb)+ • • • +BM(a-)fM(rn).

Since the functions / are bounded in U, there exists a subsequence of {t„}, call it

{t'„} with the property that for each/

lim/i(Tn) = <*j
1.

exists. The functions B} are continuous at 0, so if we take limits along the sequence

{T'n} in (5) and (6), we are led to the contradiction that -1 = 2 -Ö/0)«* = 1 • Thus

/4(A) is not finitely generated over <I>*/4(i/).

Let us observe that in this example //°°(A) is a free module of rank two over

í)*//00(i7). Denote by q one of the branches of (z2—1)~1/2 holomorphic in A.

The function q effects a conformai (one-to-one) mapping of A onto U. Each

FeH"(A) is uniquely expressible in the form F=f°q,feH'"iU). If/(£) =

2"=o bklk, then the functions fi and/2 defined by

Ai® = 2 b2k+1tk   and   Mí) = J b2ktk
fc=0 k=0

are both in HX(U), and we have/(£) = £/i(£2)+/2(£2). Consequently, F=qf o 0 +

f2 o «i. Since the fi and/2 in this decomposition are uniquely determined by F, it

follows that {l,c7} is a free basis for //™(A) over (t>*Hx(U). Of course, q is not

continuous on A. Our previous argument shows that H°°(A) cannot be generated

as a module over <£*//"(£/) by finitely many elements of/4(A).

We now turn to some corollaries of Theorem 1.4.

1.6. Corollary, (a) IffeA(A), AeJfN, thenf can be approximated uniformly

on A by functions holomorphic on a neighborhood of A.

(b) If Fe //°°(A), A e JTN, there is a bounded sequence in A(A) which converges

uniformly on compacta in A to F.

Proof. Let $ e Jt(A, UN) and let Glf ■ ■ -, GK e 0(A) constitute a free basis for

HX(A) over ®*HX(UN). IfFeHa'(A), write

F=y2tGrifi°V),   f,eH*iU«).
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For m = 2, 3,..., let/(m)(z)=/((l - \/m)z) for z e UN, and set

Fm = 2Gr(fr^)-

The sequence {Fm} is a bounded sequence of functions holomorphic on A, and it

converges uniformly on compacta in A to F. If Fe .4(A), then the functions/ lie

in A(UN), and the sequence {Fm} converges uniformly on A to F.

It would be of interest to determine whether or not given F e H°°(A), the sequence

{Fm} can be chosen to satisfy ||Fm| ^ |F||. This may be the case, but we have not

proved it.

As noted in [13], theorems like Theorem 1.4 can be used to prove certain extension

theorems for functions in A(A) and Z/°°(A) when A is embedded in a polydisc. We

have the following fact.

1.7. Theorem. Let A e cVN, let O be a neighborhood of A which is carried

biholomorphically onto an analytic submanifold V of a neighborhood O! of UM by the

mapT, andlet n: UM -> UNbe the projection which takes (zx,..., zM) to(zx,.. .,zN).

If A = Y~1(Vn Uu), andifnoYe M(A, UM), then there exists a bounded linear

operator E: HX(A)-^ H°°(UM) which carries A(A) into A(UM) and which is an

extension operator in the sense that (Ef) o <p=//or allfe Ha,(A).

Proof. Let Fx,...,FKe 0(5) be a free basis for HX(A) over (* o T)*//C0((7W).

Since the functions F, are holomorphic on a neighborhood of A, and since V is an

analytic submanifold of O', it follows [5, p. 245] that for some functions Gx,..., GK

holomorphic on a neighborhood of UM, we have F} = G¡ ° T. We construct E as

follows: If/e Hœ(A) and/= 2 F/fj °" ° V) with/ eHx(UN), define Efe HX(UM)

by Ef= 2 Gjf ° 77. The operator E so defined is plainly linear and continuous.

The choice of the functions (7, and/ shows that Ef° Y=f.

If we set A' = T(A), this theorem shows that each bounded holomorphic function

/on A' extends to a bounded holomorphic function F on UM and, moreover, that if

/ has continuous boundary values, the extension F will also have continuous

boundary values. As noted in [13, Example III.6] the norm of the operator will, in

general, exceed one. (Unfortunately, this example is not correct as stated, for the

functions <fi6 are not one-to-one. We obtain a correct example if we redefine t/ià by

means of

iMMm-(feo*)'
Theorem II.9 of the present paper shows that no example with just two Blaschke

products can exist.)

In general, F(l) is not the function identically one on UN, for the functions G3

can very well have common zeros in UN.

In connection with this theorem, we should point out that in [3] Bishop has

shown the existence of linear solutions to certain extension problems. See especially

Theorem 7.IIi and the note added in proof.
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1.8. Corollary. //A'=T(A), the ideal /={/£Ärto(c7M) :/|A'=0} is a direct

summand in //"(L^), and I n AiUM) is a direct Summand in A{UM).

Proof. Given/E HKiUM), define Pf by

Pf = f-E<JoY).

The operator P is a continuous projection in HxiUM) whose range is the ideal /

and which carries AiUM) onto InAiUM). The existence of such projections

implies the corollary.

II. Embedding polydiscs in polydiscs. In this section we will investigate the

properties of mappings which embed polydiscs in higher dimensional polydiscs.

We begin with a pair of lemmas.

ILL Lemma. Suppose Q. is a connected open set in CN, {g,} is a sequence in c^(Q)

each member of which is bounded by one in modulus, and lim^^ g;(z0) = a for some

z0e Q and some a with \a\ = 1. Then lim g;(z) = a uniformly on compacta in Q.

A standard normal families argument guarantees the conclusion for some

subsequence of {g,) ; the lemma shows that it is unnecessary to pass to a subsequence.

Proof. If AT is compact in Q, there exists a compact set //<= U, the unit disc in C,

such that if g £ $(Q) vanishes at z0 and is bounded by one on D, then giK)c:H. Set

<pwiz) = (z - w)/(l - wz),       i/jJz) = (z + w)/(l + wz)

and fiiz)=4>w¡igjiz)) where vt^g/zo). Then f{K) <= H, and since £,=</-„,% we

see that gjiK)<=ifiWjiH). Since w;->a, |«| = 1, the sequence {i/iW)} converges to a

uniformly on compacta in U, and the result follows.

11.2. Lemma. If <P: UN -> UM is a proper holomorphic map, then N^M.

Proof. If M<N, then since O is a closed mapping, a result from dimension

theory [8, p. 91] provides a point zeUM such that ®~x(z) is of positive dimension.

Since $ is proper and holomorphic, <l)~1(z) is a compact subvariety of UN. Since

compact subvarieties of UN are necessarily finite sets, we have a contradiction, and

the lemma is proved.

The proper holomorphic maps of U into U are the finite Blaschke products. Our

next theorem shows that proper holomorphic maps of a Uk into a Un are also of a

rather special form. If feC¡iUk) and zeTk, we shall denote by/*(z) the limit

limr-.!-/(rz) provided this limit exists. If/is bounded,/*(z) exists for almost all

z e Tk. (See, e.g., [15].)

11.3. Theorem. Let i> = (t£,..., <f>n) be a proper holomorphic map of Uk into Un.

Then k^n, and the functions <pu ..., </>n can be so permuted that for 1 Sjfkk,

(1) </>,- depends only on z, and is nonconstant, and

(2) [ci* | = 1 on a set of positive measure in T, the unit circle. Moreover, if one of

the following conditions (a), (b) or (c) is satisfied, then the functions <plt ■ ■ -, <f>k are

finite Blaschke products:
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(a) k=n.

(b) <D is continuous on Dk and <b(Tk)<^Tn.

(c) O is holomorphic on a neighborhood of Uk.

Simple examples show that a proper holomorphic map <P : Uk -> Un need not

satisfy any of the conditions (a), (b) or (c). For instance, let </>x be a conformai,

one-to-one map of U onto the right half of U so that </>x(l) = 1, </>x(i) = i, </>x(—i)= —i

and let <f>2 be a conformai map of U onto the left half of U so that <f>2(-1)= — 1,

<f>2(—i)=—i, and <f>2(i) = i. Then $> = (</>x,<l>2) is a proper map of U to U2 but

neither </>x nor cä2 is a finite Blaschke product.

Proof of the Theorem. We know from Lemma II.2 that k i n.

If z=(zy,..., zk), set z' = (z2,..., zk), and put 0' = (0,..., 0) e Ck~1. For each i

and almost all £ e T, the limit

Ci(Q =  lim ¿(r£, 0')
r-»l-

exists, and since O is proper, |c¡(£)| = 1 for at least one i. Let Et={£ e F : |c¡(£)| = 1}.

Then F¡ has positive measure for at least one i since EyU- ■ -v Ek covers almost all

of T. By re-indexing if necessary, we may suppose Ex to have positive measure, so

that

lim Url, 0') = cx(0
r->l-

is of modulus one on a set of £'s of positive measure. By Lemma II. 1, applied to

U"'1, it follows that

(3) lim ^(r£,z') = ci(£)
r->l-

for all z' e Uk~\ £ e Ex. If we define g2-(A) = ^(A, z'), then #2. e //"(C/) for each

z' e Uk'1, and (3) implies that the radial limit of g¿— gw- vanishes on Ey whenever

z', w' e (Ve"1. Since Ey has positive measure, we have g*=gw; i.e., çAj(A, z')

depends only on A. If </>y were constant, it would have to be of modulus one which is

impossible since <E> carries Uk into Un. The variables z2,..., z„ can be dealt with in

a similar way, so we have (1) and (2) of the theorem.

If k = n, it follows, after a permutation of indices, that

0(zx,..., zk) = (</>x(zx),..., </>k(zk))

and in particular that <b(zx, 0,..., 0) = (<&y(zy), <f>2(0),.. .,</>k(0)). Since <P is proper,

</>y must be a proper holomorphic map of U to U, i.e., it must be a finite Blaschke

product.

We now consider the case that <P is holomorphic on a neighborhood of Ük.

The fact that in this case <f>x,..., <f>k must be finite Blaschke products is an immediate

consequence of the following result.

II.4. Lemma. Iff is holomorphic on a neighborhood of Uk and if \f\ = 1 on a set of

positive measure in Tk, then \f\ is identically one on Tk.
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Proof. Define a map g : Rk -> Tk by

Qit1,...,tk) = iei\...,e^).

The function 1 — \f° g|2 = 1 —(/° g)(/° g) is real analytic on Rk and vanishes on

a set of positive measure. Consequently, it vanishes identically, and thus |/| = 1

onPfc.

It remains only to consider the case (b). Under the hypotheses of (b), each j>1 is

continuous on JJk and has modulus one on Tk. For 1 ̂ júk, <j>j depends only on z¡

and it follows that c¿; must, in fact, be a finite Blaschke product. This concludes the

proof of the theorem.

It is interesting to observe that if 0 satisfies condition (b), it automatically

satisfies condition (c) as our next lemma shows.

11.5. Lemma. If fe A{Uk) has modulus one on Tk, then f is holomorphic on a

neighborhood of Uk.

Proof. By Theorems 2.1 and 2.2 of [12], f=P/Q, P and g relatively prime

polynomials, g free of zeros in Uk. Equation 2.1.2 of the same reference implies

that g is free of zeros on Tk. It follows that g is free of zeros in Uk, for other-

wise 1/g would violate the maximum modulus theorem.

Using Theorem II.3 and results from §1, we can establish the following fact.

11.6. Theorem. Let <t> = (<f>u ..., </>N) be a holomorphic map of a neighborhood of

Uk into CN which is proper on Uk, nonsingular and one-to-one on Uk and which

carries Uk into UN. Then there is a continuous linear operator E: Hx(Uk)-^-

H">(UN) which carries A(Uk) into A(UN) and which satisfies Ef° 0=/

Proof. By Theorem II.3, we can reindex the functions <p¡ so that

t¿/z) = Biz,)       i^ji k,

where each B¡ is a nonconstant finite Blaschke product.

Let Y: Uk -> Uk be given by T(z)=(P1(z1),..., Bk(zk)). We assert that the Y

so defined is in Ji(Uk, Uk). It surely is holomorphic on a neighborhood of Uk. It

is nonsingular at each point of Tk, for the Jacobian det (d<pj/dzk) is simply

BKzj) ■ ■ • B'k(zk), and since each of the derivatives B'¡ is zero free on the unit circle,

this Jacobian cannot vanish on Tk. If we let DR = {(zu ..., zk) : |-ßy(zy)| </?}, then

for R larger than but sufficiently near one, Y will be holomorphic on DR and will

map DR properly onto a neighborhood of Ük. Thus Y e J((Uk, Uk).

Since Y e J(iUk, Uk), Theorem 1.4 implies that AiUk) is a free module of rank

A, the multiplicity of Y, over W*A'Uk). Let {Fu ..., FJ be a free basis for AiUk)

over Y*/4(/7'c), each F, holomorphic on a neighborhood of Uk. Then {Fu ■ -, FA}

is also a free basis for H"iUk) over Y*H"iUk).

If we make R small enough, the neighborhood DB of the next-to-last paragraph

will be contained in the domain of definition of each of the functions F, and also in
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that of all the <f>¡. Since Y carries DR properly onto a neighborhood Q. of Uk, it

follows that í> will carry DR properly into Q. x CN~k.

Since <1> is nonsingular at each point of Uk, it is nonsingular on DR if R is small

enough. Finally, if R is small enough, <t> will be one-to-one on DR. If not there is a

sequence {Rn} which decreases to one, and for each n a pair of points zn and z'n in

Z>b„, zn^z'n, such that <P(zñ) = <J>(z„). By passing to subsequences, we may suppose

{zn} and {z'n} to converge to z0 and z'0 respectively. We shall have z0, z'0 e Uk and

<P(z0) = í>(zó). Since 3> is one-to-one on Uk, we must have z0 = z'0. However, since

O is nonsingular at each point of (V, there is a neighborhood W of z0 in Cfc on

which O is one-to-one. Since zn and zj, are eventually in W, we have a contradiction.

Thus 0 must be one-to-one on DR for Ä near one. Consequently if R is near enough

to one, the set <&(DR) in ClxCN~k will in fact be a submanifold, say M, and

O : DR -> M will be a biholomorphic map.

Thus for some choice of Gx,..., GA e 0(0. xCN~k) we have F; = C7; ° O. The

operator F defined by F/= 2 (rj>, if/= 2 Z}/ ° Y and/(zj,..., z„) =/(z!,..., zk)

has the desired properties.

Thus, if we embed Uk in UN as a submanifold and if the embedding satisfies

certain regularity conditions at the boundary, bounded holomorphic functions

on the embedded Uk extend to bounded holomorphic functions on U". It is

natural to ask if the boundary regularity is necessary. The following example shows

that some condition is necessary.

II.7. Example. We will construct a proper nonsingular one-to-one map <P

from U to U2 such that for some/e//°°(t/2) there is no Fe//°°(C/) with f=F ° <P.

Let S be the spiral

{re™ : r = 1 -1/8, -n <> 8 < oo}.

Let Q=U\S, and let A be a conformai (1-1) mapping of U onto Q. The map h can

be chosen so that it is continuous on t/\{l}. Let 0<ry<r2< ■ ■ ■ be the points at

which S meets (0, 1). Fix n for the moment, and put a(e)=h~1(rn+E), ß(e) =

h ~ 1(rn — e) where e is small and positive. As e -> 0, a(e) and ß(e) tend to distinct

points of dU. Hence we can choose e„>0 so small that the following properties

hold: If £n = rn+en, r,n = rn-en, h(an) = £n and h(ßn) = r,n, then l-|a„| <«~2,

\-\ßn\<n~2, and

(7) \g(L)-g(r,n)\   Í  (K-j8» \\g\lu

for all g e HX(U). The choice of h shows that «„, ßn ->■ 1 as n -> co.

Let 5 be the Blaschke product whose zero set is {an}"=1 u {ßn}n=x, and define

0(z) = (F(z),A(z)).

Since h is one-to-one, /z' is zero free, so <P is one-to-one and nonsingular. It is also

proper, for as z ->■ 1, \h(z)\ -+ 1 and as z -> ew^ 1, |B(z)| -*■ 1.

Suppose there exists FeH°°(U2) such that F(<P(z)) = z. Let g(w) = F(0, w),

wet/. Since <P(t/) contains the points (0, h(an)) = (0, £„) and (0, h(ßn)) = (0, r¡n) at
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which Fis ce„ and ßn respectively, the inequality (7) implies that ||g||cr = « for all n,

an impossibility since Fis assumed bounded.

In connection with this example, it should be mentioned that the disc <E>(iV) is

not the zero set of any Fe //"(C/2). The choice of the spiral S shows that rn =

l-(2«7r)-x, so 2(1-tv) = co whence I(l-|fn|)=oo. If feHx'U2) vanishes on

<D(t7), then F(0, fn)=0 for all «. Hence, setting g(A)=F(0, A), g(£n) = 0 for all «.

Since g e //"((V) and since 2 (1 — |fn|) = 00> it follows that g vanishes identically,

and so F vanishes on the set {0} x U. Thus 0(t/) is the zero set of no F e H^iU2).

II.8. Remark. There are serious restrictions on the way in which a Uk can be

embedded in a UN if the embedding is required to be holomorphic on a neighbor-

hood of Uk. For instance, suppose O is holomorphic on Uk and carries Uk properly

into U". Then Corollary II.3 shows that i> is of the form

0(z) = iB.iz,),..., Bkizk), </>k+1iz),..., <pNiz))

where the B¡ are finite Blaschke products. Consequently, if none of the P; are

one-to-one, and if N¿2k-1, $ cannot be nonsingular at every point of Uk

Another result of this same nature is contained in the following theorem.

II.9. Theorem. Suppose Bx and B2 are finite Blaschke products of multiplicities

l+k]_ and 1 +k2, kx>0, k2>0. Then either B{ andB2 have a common zero in U or

else the pair (P1; B2) does not separate points on U.

Proof. Let cc1(z),..., akliz) be the points other than z for which B^a^z)) = B^iz).

(If B'u[z)=0, we allow some of the a((z) to be z, the number to depend on the

multiplicity of Bx at z.) Define ßfe) in a similar way : P2(jS;(z)) = 52(z). The function

R defined by

*oo = n n {«•(*)-&(*)}¡=i í=i
is holomorphic in a neighborhood of U. If \z\ = 1, then |a((z)| = ||3/z)| = 1, so

ü.-n<«-ÄHnfi-4)U) u  w    Pi/

= nc8y-«o(n«i)"*a(riA)"fci

= i-iy^RfUa>yk2(nßiyki

Assume for the moment that R has no zero on \z\ = 1. Then

RizXRiz)) -x = ( -1)^1^ ̂ n <2i) (n ^)) (kl = i).

As z traverses the unit circle once in the positive direction, the argument of the

right side increases by 2ir2k1k2, and the argument of the left side increases by
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2AU| = 1 arg R. Consequently A|2, = 1 arg R=2irkxk2 so that R has kyk2 zeros in U.

In any event, R has a zero in U, say i?(zo)=0. Hence there are i and j such that

ai(z0)=ßj(z0); let this common value be w0. If w0=z0, then B'x(z0)=B'2(z0)=0.

Otherwise we have distinct points z0, wQ which are not separated by (Bx, B2).

This theorem can be rephrased by saying that if two finite Blaschke products

generate the Banach algebra A(U) then one of them does by itself.

However, there exist three finite Blaschke products which generate A(U)

although no two of them do. See [13, Theorem IV. 1].

III. Extending functions from embedded Reimann surfaces. In this short con-

cluding section, we generalize Theorem II. 1 of [13]. By a finite open Riemann

surface we mean a Riemann surface R obtained by deleting from a compact

surface R0 a finite collection of disjoint closed discs with analytic bounding curves.

III. 1. Theorem. Let R be a finite open Riemann surface with boundary F =

Fx u • • • u TM, each F¡ an analytic simple closed curve. Let 4> : i? —>- UN be a map

which is holomorphic on some neighborhood VofR, which is proper on R, and which

embeds V as an analytic submanifold of a neighborhood of UN. Given fe A(R)

(ZF°(.R)), there isFeA(UN) (//O0(t/Jv)) such that F o 0=/

Let <¡> = (<f>x,..., </>N). In [13], this theorem was proved under the additional

assumption that one of the </>J satisfies \</>¡\ = 1 on F. Since such a <f>j lies in J((R, U),

this case is also included in the results of our §1.

The proof of the theorem depends on a simple lemma.

III.2. Lemma. If$> = (<f>y,..., <f)N) is as in the statement of the theorem, then for

each j there is a k such that \<j>k\ = \ on F¡.

Proof. The mapping $ is proper, so if £ e F}, there is k(Ç)=k such that |c¿fc(£)| = 1.

Set Ffc={£ e F¿ : \</>k(Q\ = 1}. At least one Ek is uncountable; suppose Ey is. Since

r,- is an analytic simple closed curve, there is a real analytic map i/> from the real

line onto F, which is locally a homeomorphism. Then 1 — |^i ° 0|2 is real analytic

and has uncountably many zeros. Consequently it vanished identically, so \</>x\ = 1

onT,.

Proof of the Theorem. Observe that if <f> e <P(R), \c/>\ = 1 on F,and \</>\ < 1 on R,

then d</> is zero free on T;. (See [13, p. 367].)

Let RQ be the compact surface from which we obtain R, and let w(P, Q) be a

Cauchy kernel for R0 which is holomorphic on a neighborhood of R. (See [9,

Appendix].) Then if fe A(R), we can write

™ ■ ¿ j>w «=% à I/W' ß>-
Let/ denote the/th summand. It lies in A(R) and is, moreover, holomorphic on a

neighborhood of Fk if k^j.
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We will write f = ej+hj where h¡ is holomorphic on a neighborhood of R and

where e¡ is of the form E¡ ° $ for some E¡ e A(UN). Since h¡ is holomorphic on a

neighborhood of R, h¡=H¡ ° <I> for some H¡ e &(UN) so the proof of the decom-

position/: = e, + hj is sufficient to establish the theorem.

Consider fy. Let </<! be one of the <f>k which is identically one in modulus on IY

Thus i/i1 maps Vy in a /¿-to-one manner onto the unit circle, and since d<py has no

zeros on Fu there is an annulus By<^R one of whose bounding curves is Tu and

which is mapped in a /x-to-one fashion by i/iy onto an annulus

B = {z E C : 1 > |z| > e}

for some e>0. By the theory of Ailing [1], there exist functions glt ■ ■ -, gu holo-

morphic on a neighborhood of By which constitute a free basis for A(By) over

^(P). Let/i = 2ü=i sJX» « ̂ ,ÄX> £ ¿(if).
If e is chosen close enough to one, the set ipï^B) will be a union ^uS where

Bxn S= 0. Then for a suitable neighborhood D of 5 x tV*-1, <D(F) n O will be a

submanifold of O which decomposes into an annulus containing and only slightly

larger than $>(By), call this piece Mu and another piece, M2, which contains

<&(S). If Q. is small enough, <$y1(M1) will lie in the domain of definition of all the

g m. Let G j e &(Q) be such that G¡ °®=g, on By and G,, « O=0 on S. (The set S may

be empty; in this case, we may disregard the second condition imposed on G¡.)

Define Pj on Px IT"-1 by

Fy(Zy, ..., zN) = 2 GJzu -.., Z^fmK^).

This function is in A(Bx UN_1), and for fixed Zy eB, it is holomorphic in (z2,.. .,zN)

in a neighborhood of tVw_x. We have the decomposition F1=F1+ —F{~ where

f       FAi, ¡¡a, - - -, ¿x) dyFy+(Zy,...,ZN)   =   —
¿TTl   J|Ç|=1

and

P1-(zi,...,zJV) = J1i        ^ *»-••.*» >*

On By, we have/^F/ o O-Pf <, 0>. Since FV E/4(£/N), it follows that Fy ° <D

continues to an element hx of A(R). We assert that hy is holomorphic on a neighbor-

hood of P. Consider £0 e ^P. Two cases are possible. It may be that |^i(£0)| < 1-

Since for each £ with |£| = 1, FAX, z2,..., zN) is holomorphic on a neighborhood

of UN~1, the formula for Fy shows it to be holomorphic in a neighborhood of

O(£o). Since fy is holomorphic at £0, it follows that hy is necessarily holomorphic

there. If |&(£0)| = 1 and £0e5i, then Ai(£) = Ff (<D(£)) for £ near £0, and this is

evidently holomorphic near £„. If |<Ai(£0)| = l and £0 $ By, then/j is holomorphic

near £0 and we have hy=fy+Fy ° $. We have that Fy ° 3> = 0 near £0, so it is

enough to prove that near £0, Ff o (5 is holomorphic. Again, since for £ with |£| =e,
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F(£, z2,..., aN) is holomorphic on UN~1, this is immediate from the formula for

Ff. This concludes the proof of the theorem.
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