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1. Introduction. In 1956 N. Jacobson [1, p. 23] stated the following problem.

If F is a ring, J an infinite set and Rj the ring of row-finite matrices with rows and

columns indexed by the set J, determine the radical of Rj. All rings considered here

are associative and by the radical is meant the Jacobson radical. In 1962 E. M.

Patterson [3] contributed to the solution of this problem when he proved that the

radical of R; coincides with the set of row-finite matrices over the radical of F

if and only if the radical of F is right vanishing. By extending the concept of a

right vanishing set of a ring to that of a right vanishing family of left ideals in a

ring, we obtain the following solution to the problem. If A is in R} and 9IA is the

left ideal of F generated by the elements of the Ath column of A, then A is in the

radical of R} if and only if each element of A is in the radical of F and the totality

of the 9lA, as A ranges over the columns of A, is a right vanishing family of left

ideals in F.

In order to obtain this theorem it will be necessary to show the validity of

solutions of certain types of equations over an arbitrary ring and to prove three

additional results. This will be done in the next three sections.

2. The equations. Since we must differentiate between the two types of quasi-

regularity of elements in a ring, we recall these definitions and some basic properties.

Let F be a ring and a an element of F. a is quasi-regular if there exists an element

a' in F such that a+a' — aa'=0=a + a' — a'a, a' is unique and is the quasi-inverse

of a. a is plus quasi-regular if there exists an element a" in F such that a + a" + aa"

= 0 = a+a" + a"a, a" is unique and is the plus quasi-inverse of a. We shall con-

sistently use throughout this paper the notation a' and a" for the quasi-inverse

and plus quasi-inverse of a respectively. It is well known that a is quasi-regular if

and only if R(l—a) = R = (l—a)R, while a is plus quasi-regular if and only if

F(l +a) = F = (l+a)F, where F(l — a) = {x — xa | xeF}. From these characteriza-

tions it is easy to see that every quasi-regular one-sided ideal in F has the property

that each of its elements is plus quasi-regular. Similarly every plus quasi-regular

one-sided ideal has the property that each of its elements is quasi-regular.

Proposition 1. If a is a quasi-regular element in R and A is in R, then there exists

a unique element x in R such that x — xa=b. Moreover x=b — ba'.
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Proof. Existence is given by R(l -a) = R. If x-xa = b, then since a+a'-aa' = 0,

0=xa+(x—xa)a' = xa + ba'. Therefore x=b+xa=b — ba'.

It can also be seen that the existence of unique solutions of the equations

x — ax = b, x + xa = b and x + ax = b is assured if a is quasi-regular in the first case

and a is plus quasi-regular in the last two cases. The solutions are b-a'b, b + ba"

and b + a"b respectively.

If R is a ring, let Y(R) denote the radical of R. T(R) is a quasi-regular ideal which

contains every quasi-regular one-sided ideal [1].

Proposition 2. If a is in Y(R) and b is in R, then there exists a unique element x

in R such that x — (xa)'x = b. Moreover x = b + b(ab)".

Proof. Since b + b((ab)"+ ab + (ab)"ab) = b, b + b(ab)" = b-(b + b(ab)")ab. If x =

b + b(ab)", then

x-(xa)'x = b-(b + b(ab)")ab-((b + b(ab)")a)'(b-(b + b(ab)")ab)

= b-[ba + b(ab)"a + (ba + b(ab)"a)' - (ba + b(ab)"a)'(ba + b(ab)"a)]b

= b.

To show uniqueness, let x be an element of R such that x—(xa)'x=b. If c = (xa)',

then x — cx = b and c is quasi-regular. Hence x = b — c'b = b — x(ab) and hence

x+x(ab)=b. It follows that x = b + b(ab)" since ab is plus quasi-regular.

Similarly we can show the existence of unique solutions of the equations

x-x(ax)' = b, x+x(ax)" = b and x + (xa)"x=b if a is in T(R). The solutions are

b + (ba)"b, b - (ba)'b and b - b(ab)' respectively.

3. Right vanishing families of left ideals. Let R be a ring, J an infinite index

set and {21* | A e J} a family of subsets of R. {21A | A e J} will be called a right

vanishing family of subsets of F if for every sequence {2lAri | «= 1, 2,...} of subsets

in {21Ä | A e /} such that An ̂ Am if « ̂  m, and every sequence of elements

{an | « = 1,2,...} where an e 21 An for « = 1, 2,..., there exists a positive integer r,

depending on {an \ n= I, 2,...} such that the product axa2 ■ ■ ■ ar = 0.

Proposition 3. Let {SA | A eJ} be a family of subsets of a ring R. For each A in

J, let 2(jf be the left ideal in R consisting of the finite sums 2 *¡u¡ where x¡ is in R and

a¡ is in SK, and let 2iA be the left ideal in R generated by the set Sx. Then {2t£ | A e /}

is a right vanishing family of left ideals if and only z/{2fA | A eJ} is a right vanishing

family of left ideals.

Proof. Since 2tjf S 2ÍA for all A in J, if {2iA | A e J} is a right vanishing family of

left ideals, then so is {2ljf | A e /}. Next assume by way of contradiction that there

exists a sequence {21 A|i | « = 1, 2,...} of left ideals in {21K | A e /} such that An ̂ Am

if n^m and a sequence {an e 2iAn | «= 1, 2,...} such that for every positive integer
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r, axa2 • ■ ■ ar^0. Let cn = a2n-xa2n, then cxc2 ■ ■ ■ cr=axa2 ■ ■ ■ a2r^0 for every r and

cn is an element of 3íjf2n. Using the sequence {&*2n | «= 1, 2,...} we obtain a con-

tradiction of the assumption that {Wf | A e J} is a right vanishing family of left

ideals.

4. Two lemmas. In the remainder of this paper R will be a ring, J an infinite

index set and Rj the ring of Jx J row-finite matrices over F. The following notation

will be used. As above T(F), T(R}) will be the radicals of F and R} respectively and

(T(R))j will denote the set of JxJ row-finite matrices over T(R). If F is an element

of Rj and Sx and S2 are subsets of J, then BSi * Sa will denote the restriction of B

to SxxS2. If S2 consists of the single element A, we shall write FSlxA for FSlxS2.

We will let {B}Sl x S2 denote the set of elements in the matrix BSí x S2 and in general

if M is a given matrix, then {M} will represent the set of elements in M. If A = |aAl/ \

is in Rj then for each A in J let 9JA denote the left ideal in F generated by {A}, x A

and let 9Jjf denote the left ideal in F consisting of the finite sums 2 xtaih where x(

is in F and a1A is in {A}j „ A.

In Lemmas 1 and 2 and in the necessity half of the proof of the theorem we will

also use the following notation. Well order J and let this ordering be denoted by

<. We will say that a matrix C= |cAM| in R¡ is upper triangular if cA/i = 0 for p£ A.

Lemma 1. If C=\chu\ is an upper triangular matrix in R; and z/{®A | A eJ} is a

right vanishing family of left ideals of R, then C is quasi-regular.

Proof. Denote the elements of the «th power of C by cA(i. For each XinJ define

recursively a sequence of finite subsets of J as follows. Let Sx consist of those </>

in J for which cAé # 0, and Sn + x consist of those </> in J for which there exists a

p. in Sn such that c^ ^ 0. We then have for each « ä 2 and for each p. in J that

where in the sum the range is given by (f>x e Sx, </>2 e S2,..., </>n_x e Sn-X.

We will first show that for each A in / there exists a positive integer «(A) such

that for all « > «(A), c"H = 0 for all p. in J. To this end, we note that if given a A,

a corresponding Sr= 0, then «(A) = r has this property. Thus we may assume that

each Sn ̂  0. Next assume by way of contradiction that there exists a A in / with

the property that for each positive integer « there exists a positive integer m>n

such that cA(J#0 for all p. in J. From this it follows that there exists a sequence of

positive integers M={mn | «= 1, 2,...} and a sequence U={pn | «= 1, 2,...} of

elements of J such that 1 <mu mn<mn + x and cA£n^0 for all n. Since cA;n^0 we

see from (i) that for each « = 2, 3,... there exists indices cp,(n) (j= I, 2,..., mn— 1)

such that cAá,l(n)cí,l(n)í,2(n) • • • c^mn _ l(n)Wn ^ 0 and that each of these summands have

at least three factors, since 1 < mx < m2 < ■ ■ • and since the terms in (i) for cA(J have

n factors. Let Tx consist of the <f>x(n) for « = 2, 3,.... Since Tx ¿ Sx and since Sx is

finite we see that there exists a Àx in / and an infinite subset PX^M such that for
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all mn in Px we have that </>x(n) = \x and that for the corresponding pn in U we have

that cAAlcAl<Mn) • ■ ■ c,tm !(„>«„ is a nonzero summand occurring in the formula (i)

for cA£n. Moreover since cAAit¿0, \<\x since C is upper triangular. Thus, using

induction, we can construct a sequence {An | «= 1, 2,...} of elements of/with the

properties that X<XX, A„<An + 1 for all « and such that for each positive integer r

there exists mn in M and corresponding pn in U with zzzn>r+l and there exists

indices </>j(ri) (j= 1, 2,..., mn — 1) such that

CaA!CAiA2 ■ ■ • CAr-iA,CA,*r+i(n) ' ' ' C0m„-i(n)«„

is a nonzero summand occurring in the formula (i) for cA£n, hence cAAlcAlA¡¡ • ■ • eAr _ Xhr

t^O. For this sequence we see that cAAl e(£Al and cAnAn + 1 e(£An+1 for «= 1, 2,...,

and that since An< An + 1 for all «, A„^Am if n^m. It follows, since {©A | A eJ} is a

right vanishing family of left ideals, that there exists a positive integer r such that

CaaiCAiA¡2 • • • cAr_lAr = 0. This contradicts a property of the constructed sequence.

Next define a matrix C= |cAu| as follows. Given A in Jlet «(A) be as just found and

define for each p in J cAu = cAu + cf.u+ • ■ • +c&A). Since C, C2,..., Cn(A) are all

row-finite, Cis in R}. Let C'=-C. We first show that C is a left quasi-inverse of

C. Thus take A in J and let e(p) be the (A, p)th element of C-C+CC. Let S be

the finite subset of/consisting of all </> such that cAé^0, and let «(A) be the positive

integer as found above. For 1 S k S n(\) let Tk be a finite subset of J such that

cJU = 0 if </> i Tk, and let F be the union of Tx,..., Fn(A). It follows that S S T and

that c£„ = 2í6r cfo1«:*« for all ¿c in / (zV = 2,..., n(A)+l). Then using cftA>+1=0

and cM = cA4+ ■ ■ ■ + cj$° we have

e(p) = -(<%,+ ■ ■ ■ +cAiA) + 1)+ 2 Wto = - (  2    ( 2 <&Wi

But if ¿ is in T-S, then cAd> = 0, hence 2S(=\ c"« = 0, thus e(^) = 0. To show that C

is a right quasi-inverse of C, take A in / and let f(p) be the (A, /x)th element of

C-C+CC. Let F be the finite subset of J consisting of all ¡f> such that cAi,^0.

Further let «(A) and n(</>), for each </> in V, be as found in the last paragraph. Let

«o be the maximum of «(A) and the n(</>) for <j> in V. Then for each p in /, cAu = cAu +

-h cÂS ar>d c<i>u = íW + • • ■ + cjy for each </> in F. We also have that

cAw = 2 c^c*«1    for Ä; = 2, ...,«0 + l.
peV

It follows that fi(p) = 0.

For the next lemma let 1 denote the first element of / and « the «th element in

the well ordering of /, / the subset of elements of / with only a finite number of

predecessors and /' the complement of / in ■/.

Lemma 2. Let A = \au\ be in R}. If {il*m | m el} is a sequence of left ideals in

{2ljf | A e /} such that \m^\nifm=£ n, and if{cm | m el} is a sequence of elements of

R such that cm e 21^ for m in I, then there exists a subsequence {cmn | « e /} of
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{cm\ me 1} such that mx = 2 and mn + 2<mn + x for n in I, and there exists a matrix

F=\fiJ\ in the ideal generated by A in Rj which has the following properties:

(l)fi = OfariinJ.
(2) fn.n + l = CmnCmn + ifar « /« /.

(3) If « is in I, j in J and n +1 <y, then fnj = 0.

(4) If p. is in /', then fuj=0 for j in J.

Proof. We first define the subsequence and simultaneously construct a matrix

F=|Ai;| in Rj with the property: If D = BA, then (i) the («, Amn)th element of D

is cmn for « in 7, (ii) if 1 ̂  k < «, then the (zc, Amn)th element of F is 0 for k, n in 7,

(hi) if p. is in /', then the (p.,j)th element of F is 0 for y in J. To this end, if p is in

7', define buj = 0 for all j in /, hence (iii) holds. We now define inductively the

remaining rows of F and the subsequence. Since c2 e 31^, there exists a finite

subset Si of J and a set Tx={txt \ i e Sx} of elements of F such that 2>esi tXiaiÁ2 = c2.

Define the first row of F as follows. Let bxj = tx, if y e Sx and bx,= 0 if y xt Sx. Define

mx = 2. Then (i) and (ii) hold for « = 1. Assume that the first p rows of B have been

defined and that cmi,..., cmp have been defined such that mn + 2<mn + x and (i)

and (ii) hold for « = 1, 2,...,/». There exists finite subsets Sx, S2,..., SpinJ such

that if 1 ̂  « ¿p and y xt Sn, then bnj = 0 for j e J. Let M be the union of Sx,..., Sp.

If i is in M, then there exists a finite subset S[ of .7 such that if y xt S[, ai}=0. Let

M' be the union of the S[ as i ranges over the finite set M. Using the assumption

given on {91^ | me I}, and the fact that M' is finite we see that there exists a a

in 7 such that mp + 2<q and \qxtM'. Pick such a q and define mp + x=q. Since

c, £ 21^, there exists a finite subset Sp + j of J and a set Tp + X = {tp + X<i | z e 5P + 1} of

elements in F such that 2ies,+1 'p+i,ííZía, = c5. Define the (p+l)th row of B as

follows. Let bp + XJ = tp + XJ ifjeSp + x and bp + XJ = 0 if jxtSp + x. Then (i) and (ii)

hold for «=/» + l. That (ii) holds follows from the fact that A, xt M' implies that

A„ xt SI for i in M '.

Next define a matrix F= \etj\ in F, as follows. Let elx=0 for all z in J. If ne I,

i in J and i^K», let eijn + 1=0. If «is in 7 and z'=Amn, let ei>n + 1 = cmn + 1. If p is in 7',

let eiu=0 for all i in /.

Let F= FF. Then F is in R} and satisfiesthe conclusions of the lemma.

5. The theorem.

Theorem. Let A be an element ofRj. Then necessary and sufficient conditions that

A is in T(Rj) are that A is in (Y(R))j and that {3tA | A e J} is a right vanishing family

of left ideals of R.

Proof. We first show the sufficiency of the two conditions.

Sufficiency. That A is in T(R;) will follow if we show that the principal left ideal

in Rj generated by A is quasi-regular. Assume then that B= |AW| is an element in

the left ideal generated by A. We will construct a left quasi-inverse B' in R} of F.

This will be done by constructing an arbitrary row of B'. To this end let p be an

element of J. We will have need of the following finite sets, defined recursively,
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which are associated with the elements of the pth row of the powers of B. Let Sx

consist of p and those j in J for which bpj ̂  0. Let Sn + X consist of those j in J for

which j is not in the union of Su ..., Sn and for which there exists an z in Sn such

that b.:j^0. Also let 5(«) denote the union of the sets Sx,..., Sn. It is seen that the

intersection of Sn and Sm is null if «/ra and that if m +1 <k and Shj= 0, then

Bsm*sk = |0|. The last result follows if we note that necessarily Sm^= 0 and that if

z is in Sm and b^^O, thenj is in the union of Si,..., Sm orj is in Sm + i.

Let Ip denote the union of the sets Sn for « = 1, 2.We see that /„ is either a

nonempty finite set or is countably infinite. Well order Ip in the following manner.

Let the first element hep, then choose the remaining elements of Si in some manner

and let these elements be the second, third,... elements of /„ in the well ordering.

Then exhaust S2 to determine the next finite number of elements in the well

ordering. Continue in this way with S3, St,.... We now prove that there exists

a matrix B= \BXj\ in (Y(R)),p such that C=B o BIpX,p is an upper triangular, relative

to the above well ordering of Ip, matrix in RIp with the property that cXj e 23, for

all i, j in Ip. Here C=|ci;|, 23 ; is the left ideal in R generated by {B}Jxj and x ° y

=x+y — xy. To see this, for each positive integer «, let Bn = BS{n)xS(n). Since

{B} S T(R), for {A} S Y(R), and since Y(RS(n)) = (V(R))SM, [1, p. 11], the finite matrix

Bn has a quasi-inverse B'n= |èi;| in (r(F))S(n). We now use this sequence of matrices

{B'n | « = 1, 2,...} to define an arbitrary row of B. Thus take i in Ip, there exists a

unique « such that i is in Sn. Define bXj = bXi for y in S(ri) and bXj = 0 for j in Ip and

j not in S(n). Since S(n) is finite B is row-finite, moreover B is in (T(R))!p. We show

that C is upper triangular and that cXi e 23, by computing the elements of an

arbitrary row of C. Take /' in Ip and let « be the associated positive integer given

in the definition of B. If j is in S(n), then ci; = 0 since B'n ° Bn = 0. Next if j is in Sk

for k =i«+ 2, then bij = 0 = bij and if </S is in S(«) then Zzw = 0, thus ci; = 0. Finally if

j is in Sn +1 then èw = 0 and therefore c¡, is in 93,.

We next note that if Ip is infinite then {(£; | j e Ip} is a right vanishing family of

left ideals of R. This follows from cu e 23, for all /', j in Ip and the fact that since

{2lA | A e /} is a right vanishing family of left ideals then so is {23A | A e /} since

23A S 2ÍA for all A in /. Thus in this case, since C is an upper triangular matrix in

RIp it follows by Lemma 1 that C is a quasi-regular element in R,p. On the other

hand if Ip is finite, C is nilpotent since it is upper triangular, hence is quasi-regular.

Therefore in either case there is a C in R,p such that C ° C=0. Let D = C ° B,

then D= \d{j\ is in RIp and D o BlpX,p = 0. We now define the pth row of B' = \bf¡\.

If/' is in Ip, let b% = dpj, and if j is not in /p, let b% = 0. Since D is row-finite, this row

of B' has only a finite number of nonzero elements.

There remains to show that B' is a left quasi-inverse of B. This will follow if we

show that if p is in J, then bpj+b*}-2iej ¿*Aí = 0 for all; in /. Thus choose p in

/ and consider the sets Sn and Ip as defined previously.

Case 1. If y is in Ip, then we must show bpj + b^j-JiieIp b*tbt, = 0, since è^ = 0 if

z is not in /„. This last equation is valid since D ° BIpXlp = 0.
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Case 2. If y is not in Ip, then APci = 0 = APJ. Further A*¡=0 if i is not in Ip. Hence

in this case we must show that —~2.ieipb%biJ=0. This follows if we show that

A(J=0 for all i in Ip. But if/ is in Ip, then i is in Sk for some zcS: 1. Moreover y is not

in the union of Sx,..., Sk, hence if Al;^0, then j is in Sk + X and therefore in Ip.

This proves the sufficiency.

Necessity. That A is in (T(R))j follows from the relation T(Fy) ̂  (r(F))7 proved by

Patterson [2], Assume by way of contradiction that {9iA | A e J} is not a right vanish-

ing family of left ideals of F. It follows, by Proposition 3, that {ftjf | A eJ} is not a

right vanishing family of left ideals of F. Hence there exists a sequence {31 *m \ me 1}

of {91^ | A e J} such that Am # An if m # « and a sequence {cm | m e 1} of elements in

F such that cm e 91^ for min I and the product c^ • • • cn^0 for all zi in /.

Upon applying Lemma 2 to A, we conclude that there exists a subsequence

{cmn | « e /} of {cm | m e 1} and a matrix F= |/i;| in the ideal generated by A in

Rj which satisfies the conclusions of the lemma. Before proceeding we introduce

the following notation. Let kx = cx. For « in / let kn + x = cmncmii + x and kf + x

= cmn + 2Í"m„+3 ''" cm„ + i-i. Hence kxk2k2k3k3 ■ ■ ■ knknkn + x = cxc2- ■ ■ cmn + x=/=0 for

every « in /.

Since A is in T(F7) and F is in the ideal generated by ^4, it follows that F is in

T(Rj). Using this last result and the relation r(Rj)^(F(R))j, we see that the

elements of F are in T(F). Hence, we may define, using Proposition 2, a sequence

{xn | nel} of elements of F as follows. Let x1 = zc1. Let x2 be the element in F

such that x2 —(x2/22)'x2 = A:|. And in general let xn be the element in F such that

xn ~ \xn\Jnn +7nn - l*n - l*n +Jnn - 2*n - 2^n - l*n - lkn + • • •

+yn2^2^3^3 ' ' ' kn-xkn -Xkn)) Xn = kn.

Next define a matrix G=\gtj\ in F7 as follows. If z',y are in J and i^j, let gti=0.

Let gnn = xn for « in 7 and gtí = 0 for z in /'. Let 77= GF, then since Fe T(Rj),

H e T(Rj) and therefore H has a quasi-inverse //'. Hence we have

(i) H+H'-H'H=\0\,

(ii) H+H'-HH'=\0\.
Denote the elements of H by Ai3 and those of //' by A¡*. By (3) and (4) of Lemma 2

we see that/w = 0 for ally in J when p. is in /'. This result coupled with the fact

that gui = 0 fory in /implies that if p, is in /', then huj = hju = 0forj in F Then huj = 0

and (ii) imply that A* =0, while A;„ = 0 and (i) imply that h% = 0 for y in J and p.

in 7'. Using this last result and noticing that hx2 = kxk2^0 implies that the elements

of the first row of 77' are not all zero (look at Af2 given by (i)), we see that nonzero

elements in the first row of //' exist and that they occur among the set {hfn \ ne I}.

Let r he the greatest element in / such that Ajfr^0. Using (1) of Lemma 2, A;1=0

for y in J, hence using (i) hxx = 0 and therefore 2^r. Using (i) we see that the

following relations must hold, hxj+hfj-^Jn=2hfnhnj = 0 for j=2, 3,..., r and

hXrhr,r + i = 0 (this last result is obtained by using (3) of Lemma 2). At this point we

consider the special case when r = 2. Since h22=x2f22 and hx2 = kxk2 we may
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write the first of the above relations as h*2 — hf2x2f22 = — kxk2, this implies by

Proposition 1 that «*2 = — kxk2 + kxk2(x2fi22)'. Since 0 = h*2h23 = h*2x2k3, we obtain

0= — kxk2(x2 — (x2fi22)'x2)k3= —kxk2k%k3, a contradiction.

We may now assume that 3 S r. Using properties of F as given in Lemma 2, we

rewrite the relations
r

hxi+hXi- 2 «*A; = 0   for y = 2, 3,..., r
n=2

and h*rhr¡r + x=0 as
r

(iii) kxk2+hf2- 2 hfnxnfn2 = 0,
n = 2

r

(iv) -ht,n-ixn-ikn + htn- 2 «Win = 0   for « = 3, 4,..., r,
i=n

(v) hfrxrkr+x = 0.

Upon transposition in (iii) we obtain
r

(Vi) «12-«12*2/22 =   -kxk2 + 2  h**Xnfn2-
n = 3

We now show by induction on m, where m = 2,3,..., r—l, that (vii) holds.

«lm     nXmXm\J mm ~T~Jmm - l*m - l*m 'Jmm - 2*m - 2*m - l*m - l*m +

+./m2*2 *3*3 ' ' ' km - ikm _ ikm)

(vu) = — kxk2k2 ■••«„_ !«„ _ xkm
r

+   ¿   hxtXi(jim +jim -xkm- xkm +ftm - 2km - 2km - ikm - ikm + • ■ •
i = m + l

+7(2*2 *3*3 ' ' ' km - xkm - xkm).

When m = 2 in (vii) we have (vi). Assume that (vii) is valid for m=p where 2Sp

<r—l. Apply Proposition 1 to the inductive hypothesis to solve for hfp. Sub-

stituting this result for hfp into (iv) when n=p+1, we obtain after collecting terms,

simplifying and using the definition of xp the equation (vii) when m =p +1.

If we now apply Proposition 1 to (vii) when m = r— 1, we can solve for Af,_i.

Upon substituting this result for hfr.x into (iv) when n = r, and upon collecting

terms, we obtain

«lr —«lr*rL/rr + (/rr - 1+/rr - 2*r-2*r-1 +/rr - 3*r - 3*r - 2*r - 2*r - 1 + ' ' '

+/r2*2 *3*3 * ' ' *r-'l)

■ (*r - 1 — lxr - l(fr -lr-1 +/r - lr - 2*r- 2*r - 1 + " ' '

+/r-l,2*2*3*3  ' ' ' *r-l)J ^r-l)*rj

=   —kxk2k2  ■ ■ ■ kr_x\Xr-X — [Xr_1(/r_lr_1+/r_lr_2*r-2*r-l+ ' ' '

+/r-1,2*2*3*3  ' ' ' *r-l)J •*r-lJ*V'

Using the definition of xr_lt the last equation may be written as

«lr — hXrXr(Jrr +Jrr - l*r - l*r +/r - 2*r - 2*r - 1*7 - 1*7 +       ' +/r2*2 *3*3  ' ' ' *7 - 1*7 - 1*7)

-   —Ir Jr Jr* . . . lr       lr*     lr— I\,lf\,2l\,2 *»T — 1**T — l*r*
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Solving this equation for A* by means of Proposition 1 and substituting the result

into (v) we obtain

0 = — kxk2k2 ■ ■ ■ kr_xkr-xkr[xr — (xr\Jrr+jrr_xkr-xkr+ ■ ■ ■

~r~jr2k2k3k3 ■ • ■ kr\) xrJzcr + 1.

Using the definition of xr, this last equation may be written as 0= —kxk2k% ■ ■ ■

kr-.xk*_xkrk?kr + x. This is a contradiction and thus the proof of the theorem is

complete.

6. Remarks. A ring F is said to be right vanishing if, given any sequence

{an | n = 1, 2,...} of elements of F, there exists a positive integer r, depending on

the sequence, such that axa2 ■ ■ ■ ar=0. As stated in the introduction, Patterson

[3] has proved: r(Rj) = (r(R))j if and only if T(F) is right vanishing. This result

is also a consequence of the theorem we have proved.

When T(F) is a prime ring the theorem gives a simple characterization of T(R}).

In this case r(Rj) coincides with the set of matrices in (T(R))j which have the

property that all but a finite number of columns are zero. For if A is such a matrix,

then {9lA | A e J} is a right vanishing family of left ideals of F and therefore, by

the theorem, A is in r(F.,). Conversely, if A is in r(R})^(r(R))j and if A has an

infinite number of columns which contain nonzero elements, then there are distinct

indices A1; A2,... such that 9íAn7¿0. Then, since T(F) is a prime ring, we can show,

by induction, that for each r there exist a„ e 91 An (n= 1, 2,..., r) such that axa2 ■ ■ ■

ar^0. For if 0^A is in 91Ar+1 then 0^ax ■ ■ ■ arT(R)b^ax ■ ■ ■ ar9fAr+1, hence there

exists ar+1 in 9lAr+1 such that ax ■ ■ ■ arar + x=±0. This contradicts the fact, given by

the theorem, that {9fA | A e J} is a right vanishing family of left ideals of F.

The authors would like to thank Professor S. A. Amitsur for his helpful sugges-

tions and discussions regarding the sufficiency half of the proof of the theorem.

The characterization when T(F) is a prime ring was also pointed out by Professor

Amitsur and extended the same result obtained by the authors previously in the

case when T(R) is a nonzero integral domain.
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