THE RADICAL OF THE ROW-FINITE MATRICES
OVER AN ARBITRARY RING

BY
N. E. SEXAUER AND J. E. WARNOCK

1. Introduction. In 1956 N. Jacobson [1, p. 23] stated the following problem.
If R is aring, J an infinite set and R; the ring of row-finite matrices with rows and
columns indexed by the set J, determine the radical of R;. All rings considered here
are associative and by the radical is meant the Jacobson radical. In 1962 E. M.
Patterson [3] contributed to the solution of this problem when he proved that the
radical of R; coincides with the set of row-finite matrices over the radical of R
if and only if the radical of R is right vanishing. By extending the concept of a
right vanishing set of a ring to that of a right vanishing family of left ideals in a
ring, we obtain the following solution to the problem. If 4 is in R; and ¥, is the
left ideal of R generated by the elements of the Ath column of A4, then A4 is in the
radical of R; if and only if each element of A is in the radical of R and the totality
of the ,, as A ranges over the columns of 4, is a right vanishing family of left
ideals in R.

In order to obtain this theorem it will be necessary to show the validity of
solutions of certain types of equations over an arbitrary ring and to prove three
additional results, This will be done in the next three sections.

2. The equations. Since we must differentiate between the two types of quasi-
regularity of elements in a ring, we recall these definitions and some basic properties.
Let R be a ring and a an element of R. a is quasi-regular if there exists an element
a’ in R such that a+a’' —aa’=0=a+a’ —d'a, a’ is unique and is the quasi-inverse
of a. a is plus quasi-regular if there exists an element a@” in R such that a+a” +aa”
=0=a+a"+a"a, a" is unique and is the plus quasi-inverse of a. We shall con-
sistently use throughout this paper the notation a’ and a” for the quasi-inverse
and plus quasi-inverse of a respectively. It is well known that a is quasi-regular if
and only if R(1-a)=R=(1—a)R, while a is plus quasi-regular if and only if
R(1+a)=R=(1+a)R, where R(1 —a)={x—xa | x € R}. From these characteriza-
tions it is easy to see that every quasi-regular one-sided ideal in R has the property
that each of its elements is plus quasi-regular. Similarly every plus quasi-regular
one-sided ideal has the property that each of its elements is quasi-regular.

PROPOSITION 1. If a is a quasi-regular element in R and b is in R, then there exists
a unique element x in R such that x—xa=b. Moreover x=b—ba'.
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Proof. Existence is given by R(1 —a)=R. If x—xa=b, then since a+a’ —aa’ =0,
0=xa+(x—xa)a’ =xa+ba’'. Therefore x=b+xa=b—ba'.

It can also be seen that the existence of unique solutions of the equations
x—ax=>b, x+xa=>b and x+ax=> is assured if a is quasi-regular in the first case
and a is plus quasi-regular in the last two cases. The solutions are b—a'b, b+ ba"
and b+ a"b respectively.

If R is a ring, let I'(R) denote the radical of R. I'(R) is a quasi-regular ideal which
contains every quasi-regular one-sided ideal [1].

PrOPOSITION 2. If a is in T'(R) and b is in R, then there exists a unique element x
in R such that x—(xa) x=>b. Moreover x=b+ b(ab)".

Proof. Since b+ b((ab)"+ab+ (ab)’ab)=>b, b+ b(ab)" =b—(b+ b(ab)")ab. If x=
b+b(ab)’, then

x—(xa)'x = b—(b+b(ab)")ab— ((b+b(ab)")a)'(b— (b+ b(ab)")ab)
= b—[ba+ b(ab)"a+ (ba+ b(ab)"a)’ — (ba+ b(ab)"a)'(ba+ b(ab)"a)}b
= b.

To show uniqueness, let x be an element of R such that x—(xa)'x=b. If c=(xa)’,
then x—cx=>b and ¢ is quasi-regular. Hence x=b—c'b=b—x(ab) and hence
x+x(ab)=>. It follows that x=>b+b(ab)" since ab is plus quasi-regular.

Similarly we can show the existence of unique solutions of the equations
x—x(ax)' =b, x+x(ax)"=b and x+(xa)"x=>b if a is in '(R). The solutions are
b+ (ba)"b, b— (ba)'b and b— b(ab)’ respectively.

3. Right vanishing families of left ideals. Let R be a ring, J an infinite index
set and {¥, | AeJ} a family of subsets of R. {2, | AeJ} will be called a right
vanishing family of subsets of R if for every sequence {¥,, | n=1, 2, ...} of subsets
in {%,|AeJ} such that A,#AX, if n#m, and every sequence of elements
{a, | n=1,2,...} where a, €%, for n=1,2,..., there exists a positive integer r,
depending on {a, | n=1, 2, ...} such that the product a,a; - - - a,=0.

PRrOPOSITION 3. Let {S, | A€ J} be a family of subsets of a ring R. For each A in
J, let W¥ be the left ideal in R consisting of the finite sums 3, x;a; where x; is in R and
a; is in Sy, and let A, be the left ideal in R generated by the set S,. Then {U¥ | Ae J}
is a right vanishing family of left ideals if and only if {3, | A € J} is a right vanishing
Sfamily of left ideals.

Proof. Since A¥=<A, for all A in J, if {2, | A€ J} is a right vanishing family of
left ideals, then so is {%¥ | A € J}. Next assume by way of contradiction that there
exists a sequence {¥,, | n=1,2,...} of left ideals in {X, | A € J} such that A, #A,
if n#m and a sequence {a, € ¥, | n=1, 2, ...} such that for every positive integer
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r, a1ay - - - a,#0. Let ¢,=ay, _1a,,, then ¢;¢y - - - ¢,=a,a; - - - a5, #0 for every r and
¢, is an element of A¥, . Using the sequence {A¥, | n=1,2,...} we obtain a con-
tradiction of the assumption that {¥ | AeJ} is a right vanishing family of left

ideals.

4. Two lemmas. In the remainder of this paper R will be a ring, J an infinite
index set and R; the ring of J x J row-finite matrices over R. The following notation
will be used. As above I'(R), I'(R;) will be the radicals of R and R, respectively and
(T'(R)); will denote the set of J x J row-finite matrices over I'(R). If B is an element
of R; and S, and S, are subsets of J, then Bg, .5, will denote the restriction of B
to S; x S,. If S, consists of the single element A, we shall write By, «» for Bs, «s,.
We will let {B};, , 5, denote the set of elements in the matrix Bg, s, and in general
if M is a given matrix, then {M} will represent the set of elements in M. If 4=|a,,|
is in R, then for each A in J let U, denote the left ideal in R generated by {4},
and let A¥ denote the left ideal in R consisting of the finite sums > x;a;, where x;
is in R and ay, is in {4}, ...

In Lemmas 1 and 2 and in the necessity half of the proof of the theorem we will
also use the following notation. Well order J and let this ordering be denoted by
<. We will say that a matrix C=|c,,| in R, is upper triangular if ¢,,=0 for u < A.

LeMMA 1. If C=|c,,| is an upper triangular matrix in R; and if {€, | AeJ} is a
right vanishing family of left ideals of R, then C is quasi-regular.

Proof. Denote the elements of the nth power of C by c},. For each A in J define
recursively a sequence of finite subsets of J as follows. Let S, consist of those ¢
in J for which ¢,;50, and S, ., consist of those ¢ in J for which there exists a
w in S, such that c¢,,#0. We then have for each n=2 and for each p in J that

3 noo
@) Chu = Z Cr01C0102 " " " Cop-1u

where in the sum the range is given by ¢, € S}, ¢ € S,, ..., b1 € S,_1.

We will first show that for each A in J there exists a positive integer n(A) such
that for all n>n(}), c},=0 for all x in J. To this end, we note that if given a A,
a corresponding S,= @, then n(A)=r has this property. Thus we may assume that
each S,# . Next assume by way of contradiction that there exists a A in J with
the property that for each positive integer n there exists a positive integer m>n
such that ¢, #0 for all  in J. From this it follows that there exists a sequence of
positive integers M={m, | n=1,2,...} and a sequence U={u, | n=1,2,...} of
elements of J such that 1 <m,, m,<m,,, and ¢}, #0 for all n. Since ciz #0 we
see from (i) that for each n=2, 3, ... there exists indices ¢,(n) (j=1, 2,..., m,—1)
such that cxs,mCoymoam * * * Com, - 1w, #0 and that each of these summands have
at least three factors, since 1 <m; <m,< - - - and since the terms in (i) for ¢?, have
n factors. Let T; consist of the ¢,(n) for n=2, 3,.... Since T, £ S, and since S, is
finite we see that there exists a A; in J and an infinite subset P, < M such that for
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all m, in P, we have that ¢,(n)= A, and that for the corresponding ., in U we have
that can,Cro0m * * * Comy, — 1(0g is a nonzero summand occurring in the formula (i)
for ¢z . Moreover since ¢y, #0, A<, since C is upper triangular. Thus, using
induction, we can construct a sequence {A, | n=1, 2, ...} of elements of J with the
properties that A<A,;, A, <A, ., for all n and such that for each positive integer r
there exists m, in M and corresponding p, in U with m,>r+1 and there exists
indices ¢,(n) (j=1, 2, ..., m,—1) such that

Canlarng * t CarmaACAr 41w * * * Comy, - 1(dtn

is a nonzero summand occurring in the formula (i) for cx;,, hence cax,Can, * - * Ca, 1,
#0. For this sequence we see that c),, €C,, and ¢, »,,,€6C,,,, forn=1,2,...,
and that since A, <A, for all n, A, # A, if n#m. It follows, since {€, | AeJ}is a
right vanishing family of left ideals, that there exists a positive integer r such that
CanCagng * * * €, 1a,=0. This contradicts a property of the constructed sequence.

Next define a matrix C=|¢,,| as follows. Given A in J let n(}) be as just found and
define for each p in J é,=cp,+c3,+ - -+ +ciM. Since C, C2%, ..., C™ are all
row-finite, C is in R;. Let C'= — C. We first show that C’ is a left quasi-inverse of
C. Thus take A in J and let e(x) be the (A, w)th element of C—C+ CC. Let S be
the finite subset of J consisting of all ¢ such that ¢,,#0, and let n(A) be the positive
integer as found above. For 1<k <n() let T, be a finite subset of J such that
ck,=0if ¢ ¢ T, and let T be the union of Ty, ..., Typ, It follows that S<T and
that c&, =3 4er i3 ¢y, for all pin J (k=2,...,n(A)+1). Then using cxXP**=0
and Gyp=crp+ - - - + 3”0 we have

)
ep) = —(Rut -+ + Z CroCou = —( Z (Z C;\'da)cdm)-
oes ¢eT -8

n=1

But if ¢ is in T— S, then ¢,,=0, hence >, ¢3,=0, thus e(ux)=0. To show that C’
is a right quasi-inverse of C, take A in J and let f(u) be the (A, p)th element of
C—C+CC. Let V be the finite subset of J consisting of all ¢ such that c,,#0.
Further let () and n(¢), for each ¢ in ¥, be as found in the last paragraph. Let
n, be the maximum of n(A) and the n(¢) for ¢ in V. Then for each pin J, &), =cy,+
<o 438 and Gy =cy,+ - - - + 3 for each ¢ in V. We also have that
ck, = Z CroClnl fork =2,...,n+1.
eV

It follows that f(u)=0.

For the next lemma let 1 denote the first element of J and n the nth element in

the well ordering of J, I the subset of elements of J with only a finite number of
predecessors and I’ the complement of I in J.

LEMMA 2. Let A=|ay| be in R,. If {A¥, | mel} is a sequence of left ideals in
{A¥ | AeJ} such that A, # X, if m#n, and if {c,, | m € I} is a sequence of elements of
R such that c, € U¥, for m in I, then there exists a subsequence {c,, |nel} of
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{cm | m € I} such that m;=2 and m,+2<m,, for n in I, and there exists a matrix
F=|f,,| in the ideal generated by A in R; which has the following properties:

(1) fiu=0foriinJ.

(2) f;t.n+1=cm,.cm,,+1 for nin L

@) Ifnisin 1, jinJ and n+1<j, then f,;=0

@) If pisinI', then f,;=0 for j in J.

Proof. We first define the subsequence and simultaneously construct a matrix

=|b;,| in R, with the property: If D=BA, then (i) the (n, A, )th element of D
is cp, for nin I, (ii) if 1 £k <n, then the (k, A, )th element of D is O for k, n in I,
(iii) if p is in I', then the (u, j)th element of D is O for j in J. To this end, if x is in
I, define b,;=0 for all j in J, hence (iii) holds. We now define inductively the
remaining rows of B and the subsequence. Since c; € A¥,, there exists a finite
subset S; of Jand a set T, ={t,; | i € S} of elements of R such that 35, t1:a:5,=Cz.
Define the first row of B as follows. Let by;=1¢,;if j € S, and b,;=0if j ¢ S,. Define
m; =2. Then (i) and (ii) hold for n=1. Assume that the first p rows of B have been
defined and that ¢, ..., c,, have been defined such that m,+2<m,,, and (i)
and (ii) hold for n=1, 2, ..., p. There exists finite subsets Sy, S, ..., S, in J such
that if 1 <n=<p and j ¢ S,; then b,,=0 for j € J. Let M be the union of S, ..., S,.
If i is in M, then there exists a finite subset S; of J such that if j ¢ S;, a;=0. Let
M’ be the union of the S; as i ranges over the finite set M. Using the assumption
given on {A¥ | m e I}, and the fact that M’ is finite we see that there exists a ¢
in I such that m,,+2<q and A, ¢ M'. Pick such a ¢ and define m,,,=gq. Since
cq € AX,, there exists a finite subset S,,, of Jand a set T, ={t,.1.4 | i€ S,4.} of
elements in R such that 3, ,, fp+1,.am,=¢,. Define the (p+1)th row of B as
follows. Let b, ;=1t,.+,,; if j€ S,+, and b,,, ;=0 if j¢ S,,,. Then (i) and (ii)
hold for n=p+1. That (ii) holds follows from the fact that A, ¢ M’ 1mp11es that
A, ¢S foriin M'.

Next define a matrix E=|e;;| in R, as follows. Let ;=0 for all iin J. If ne I,
iinJand i#A,, lete ,.,=0.Ifnisin Jand i=A, , let €, , 1 =Cp, +1. f pisin I',
let e;,=0 for all i in J.

Let F=DE. Then F is in R; and satisfies the conclusions of the lemma.

5. The theorem.

THEOREM. Let A be an element of R;. Then necessary and sufficient conditions that
A is in T(R;) are that A is in (I'(R)); and that {N, | A € J} is a right vanishing family
of left ideals of R.

Proof. We first show the sufficiency of the two conditions.

Sufficiency. That A is in I'(R;) will follow if we show that the principal left ideal
in R, generated by A is quasi-regular. Assume then that B=|b,,| is an element in
the left ideal generated by 4. We will construct a left quasi-inverse B’ in R, of B.
This will be done by constructing an arbitrary row of B’. To this end let p be an
element of J. We will have need of the following finite sets, defined recursively,
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which are associated with the elements of the pth row of the powers of B. Let S,
consist of p and those j in J for which b,,#0. Let S, ., consist of those j in J for
which j is not in the union of S, ..., S, and for which there exists an i in S, such
that b;; #0. Also let S(n) denote the union of the sets S;, .. ., S,. It is seen that the
intersection of S, and S, is null if nm and that if m+1<k and S, # @, then
Bs,, «s5,=10|. The last result follows if we note that necessarily S,# @ and that if
iis in S, and b;;#0, then j is in the union of Sy, ..., Sy orjisin S,,,.

Let I, denote the union of the sets S, for n=1, 2,.... We see that I, is either a
nonempty finite set or is countably infinite. Well order I, in the following manner.
Let the first element be p, then choose the remaining elements of S, in some manner
and let these elements be the second, third, . .. elements of I, in the well ordering.
Then exhaust S, to determine the next finite number of elements in the well
ordering. Continue in this way with S;, Sy, .... We now prove that there exists
a matrix B=|b| in (T'(R)),, such that C=B o B, ., is an upper triangular, relative
to the above well ordering of I, matrix in R;, with the property that ¢;; € ®B; for
all i, j in I,. Here C=|c;,|, B, is the left ideal in R generated by {B},;,; and xoy
=x+y—xy. To see this, for each positive integer n, let B,= Bguyxsm- Since
{B}=I'(R), for {4} <T'(R), and since I'(Rs(y) = (I'(R))s(my, [1, p. 11], the finite matrix
B, has a quasi-inverse B, = |b,,| in (I'(R))s,,- We now use this sequence of matrices
{B, | n=1,2,...} to define an arbitrary row of B. Thus take i in I,, there exists a
unique 7 such that i is in S,. Define b;,=b,; for j in S(n) and b;;=0 for jin I, and
J not in S(n). Since S(n) is finite B is row-finite, moreover B is in (I'(R));,. We show
that C is upper triangular and that ¢;; € B; by computing the elements of an
arbitrary row of C. Take i in I, and let n be the associated positive integer given
in the definition of B. If j is in S(n), then ¢;;=0 since B, o B,=0. Next if j is in S}
for k2n+2, then b;=0=4,; and if ¢ is in S(n) then b,;=0, thus c;;=0. Finally if
Jjisin S, then b,;=0 and therefore c;; is in B;.

We next note that if 7, is infinite then {€; | j € I,,} is a right vanishing family of
left ideals of R. This follows from c;; € B, for all i, j in I, and the fact that since
{%, | AeJ} is a right vanishing family of left ideals then so is {8, | A € J} since
B, =¥, for all A in J. Thus in this case, since C is an upper triangular matrix in
Ry, it follows by Lemma 1 that C is a quasi-regular element in R;,. On the other
hand if I, is finite, C is nilpotent since it is upper triangular, hence is quasi-regular.
Therefore in either case there is a C’ in R;, such that C' o C=0. Let D=C"o B,
then D=|d| is in R;, and D o B, ., =0. We now define the pth row of B'=|b%|.
If jis in I, let b};=d,;, and if j is not in 1,,, let b¥;=0. Since D is row-finite, this row
of B’ has only a finite number of nonzero elements.

There remains to show that B’ is a left quasi-inverse of B. This will follow if we
show that if p is in J, then b,;+ b} — >;.; b¥b,;=0 for all j in J. Thus choose p in
J and consider the sets S, and I, as defined previously.

Case 1. If j is in I, then we must show b,;+ b} — Die;, biibi;=0, since b =0 if
i is not in I,. This last equation is valid since D o B, 1,=0.
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Case 2. If j is not in I, then b};=0=>b,;. Further b},=0 if i is not in 7,. Hence
in this case we must show that —2%,., b}b;=0. This follows if we show that
b;;=0for all i in I,,. But if i is in I,,, then / is in S}, for some k = 1. Moreover j is not
in the union of S, ..., Sy, hence if b;;#0, then j is in S, and therefore in I,.
This proves the sufficiency.

Necessity. That A is in (I'(R)); follows from the relation I'(R;) £ (T'(R)), proved by
Patterson [2]. Assume by way of contradiction that {, | A € J} is not a right vanish-
ing family of left ideals of R. It follows, by Proposition 3, that {2} | Ae J} is not a
right vanishing family of left ideals of R. Hence there exists a sequence {2} | me I}
of {UA¥ | AeJ} such that A, # A, if m#n and a sequence {c,, | m € I} of elements in
R such that ¢, e A¥ for m in I and the product c;c; - - - ¢, #0 for all nin 1.

Upon applying Lemma 2 to 4, we conclude that there exists a subsequence
{cm, | neI} of {c, | me I} and a matrix F=|f;| in the ideal generated by 4 in
R; which satisfies the conclusions of the lemma. Before proceeding we introduce
the following notation. Let k;=c;. For n in I let Kk, 1=Cp Cny+1 and k¥,
=Crmy+2Cmy+8° " Cmyyy—1- HeNCE KikokFksk¥ - - kpkiky1=c100- - €y +1#0 for
every nin I.

Since 4 is in I'(R;) and F is in the ideal generated by A4, it follows that F is in
I'(R;). Using this last result and the relation I'(R;)<(I'(R));, we see that the
elements of F are in ['(R). Hence, we may define, using Proposition 2, a sequence
{x, | neI} of elements of R as follows. Let x,=k;. Let x, be the element in R
such that x, — (x5 f35) X, =k%. And in general let x, be the element in R such that

Xn— (xn(.f;m +.f;in - lk;l: - lkn +fnn—2kr>‘: - 2kn - lk:‘ - lkn+ e
+fuokBkak® - - kn_ 1k 1K) x, = k}.

Next define a matrix G=|g;;| in R, as follows. If 7, j are in J and i#j, let g,;=O0.
Let gnn=x, for n in I and g,;=0 for i in I'. Let H=GF, then since Fe I'(R,),
H e I'(R)) and therefore H has a quasi-inverse H'. Hence we have

(i) H+H'-H'H=|0|,

(ii) H+H'—HH'=|0|.

Denote the elements of H by 4;; and those of H’ by h¥. By (3) and (4) of Lemma 2
we see that f;, =0 for all j in J when p is in I'. This result coupled with the fact
that g,,=0 for jin J implies that if u is in I, then h,;=h,, =0 for jin J. Then A,;,=0
and (ii) imply that A};=0, while 4;,=0 and (i) imply that 4% =0 for j in J and u
in I'. Using this last result and noticing that A,,=k,k,#0 implies that the elements
of the first row of H’ are not all zero (look at 4%, given by (i)), we see that nonzero
elements in the first row of H' exist and that they occur among the set {i¥, | n e I}.
Let r be the greatest element in 7 such that 4%, #0. Using (1) of Lemma 2, 4;; =0
for j in J, hence using (i) A% =0 and therefore 2<r. Using (i) we see that the
following relations must hold, h;;+h¥— 5.5 hfh,;=0 for j=2,3,...,r and
hih, » +1 =0 (this last result is obtained by using (3) of Lemma 2). At this point we
consider the special case when r=2. Since hyy=x,f;; and h;,=k,k, we may



294 N. E. SEXAUER AND J. E. WARNOCK [May

write the first of the above relations as h¥,—h¥ox,foo= —k1k,, this implies by
Proposition 1 that A, = —k ko + k,ko(x2f33) . Since 0=hlzhgs = h¥ax.ks, we obtain
0= —kiko(xo— (X2 22) Xo)ks= —k1kokiks, a contradiction.

We may now assume that 3 <r. Using properties of F as given in Lemma 2, we
rewrite the relations

hy+hty— D hfh, =0 forj=2,3,...,r

n=2
and Ak, ,.,=0 as

(iii) kiko+ bty — D HiaXnfua = 0,
n=2

(iv) — ¥ poiXno ikt B — D BExfi =0 forn=3,4,..,r,

i=n
(V) hf,-x,-k,-+1 = 0.
Upon transposition in (iii) we obtain
(vi) hYa—htaxsfos = —kika+ Z htnXnfaa-

n=3

We now show by induction on m, where m=2, 3, ..., r—1, that (vii) holds.

hfm - hfmxm(fmm +fmm - lk: - 1km +fmm - 2k:| - 2km - Ik: - lkm +-
+fm2k;k3k: e km- lk: - lkm)
(vii) = —kikok% -+ kp_1kp_1kn

+ D hEx(fimtfin-rkh - skt fim- ok okm 1Kkt - -

i=m+1
+/ik3kak3 - - - km -1k - 1Km)-

When m=2 in (vii) we have (vi). Assume that (vii) is valid for m=p where 2<p
<r—1. Apply Proposition 1 to the inductive hypothesis to solve for hf,. Sub-
stituting this result for A%, into (iv) when n=p+ 1, we obtain after collecting terms,
simplifying and using the definition of x, the equation (vii) when m=p+1.

If we now apply Proposition 1 to (vii) when m=r—1, we can solve for Af,_;.
Upon substituting this result for A¥ _, into (iv) when n=r, and upon collecting
terms, we obtain

hfr_hierr[frr"'(f;r—l+f;'r-2k;k—-2kr-1+frr-3k;k-3kr—2krt2kr-l+ e

+frok3kskd - - - Ky _1)
'(xr—l_ [xr—l(f;'—lr-l+fr-1r-2k;k-2kr-1+ e
+fr-1,0kTkakd - - ke _)]'x_1)k:]
= "klkzk; e kr-l[xr-l_[xr-l(fr-1r-1+f;'-1r-2k;k—2kr-—1+ e
+fro1,0k3kskE - - ke _ )] X, 1]k,
Using the definition of x,_,, the last equation may be written as
fr—hierr(ﬂr +f;r—1k;f— lkr+f;'r—2kf- 2kr-1k;k— lkr+ Tt +f;2k§k3k;‘ tee kr-lk;k— lkr)
= —kikokZ - - - k,_ 1k ik,.
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Solving this equation for hf, by means of Proposition 1 and substituting the result
into (v) we obtain

0= —k1k2k; e kr—lk:'k— lkr[xr_(xr[f;'r"'f;r—lk;k— lkr+ e
-I-f;.zk’;kskg‘ e kr]),xr]kr+1.

Using the definition of x,, this last equation may be written as 0= —k k.k¥ - - -
k,_.k¥ 1kk¥k, ... This is a contradiction and thus the proof of the theorem is
complete.

6. Remarks. A ring R is said to be right vanishing if, given any sequence
{a, | n=1,2,...} of elements of R, there exists a positive integer r, depending on
the sequence, such that a,a,---a,=0. As stated in the introduction, Patterson
[3] has proved: TI'(R;)=(T'(R)), if and only if T'(R) is right vanishing. This result
is also a consequence of the theorem we have proved.

When I'(R) is a prime ring the theorem gives a simple characterization of I'(R)).
In this case T'(R,) coincides with the set of matrices in (I'(R)), which have the
property that all but a finite number of columns are zero. For if A4 is such a matrix,
then {¥, | AeJ} is a right vanishing family of left ideals of R and therefore, by
the theorem, A is in I'(R;). Conversely, if 4 is in I'(R;) < (I'(R)); and if 4 has an
infinite number of columns which contain nonzero elements, then there are distinct
indices Ay, Ay, . .. such that %, #0. Then, since I'(R) is a prime ring, we can show,
by induction, that for each r there exist a, € %A, (n=1, 2,..., r) such that a,a, - - -
a,#0. For if 0#b-is in %A, ,, then 0#a,---a,['(R)b=a, - - - a¥,,,,, hence there
exists @, in %, ,, such that a, - - - @,a,,,#0. This contradicts the fact, given by
the theorem, that {%, | A € J} is a right vanishing family of left ideals of R.

The authors would like to thank Professor S. A. Amitsur for his helpful sugges-
tions and discussions regarding the sufficiency half of the proof of the theorem.
The characterization when I'(R) is a prime ring was also pointed out by Professor
Amitsur and extended the same result obtained by the authors previously in the
case when I'(R) is a nonzero integral domain.
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