MOUNTAIN CLIMBING

BY
JOHN PHILIP HUNEKE

Let “function” mean ‘“continuous function mapping the closed unit interval
onto itself”’; let fand g be two arbitrary functions. The object of this paper is to
determine conditions for the existence of functions 4 and j such that fj=gh (i.e.
S(j(x))=g(h(x)) for all x in [0, 1]).

The existence of such functions became important [1] in constructing commuting
functions with appropriate properties. Considering the graphs of f and g to be
mountains (as in [2]) 4 and j denote the horizontal progress of climbers, one on each
mountain, who are trying to maintain the same elevation as each other (time
represented by the domain of 4 and j).

The following example shows that functions 4 and j do not always exist (and
hence climbers cannot always climb mountains maintaining a common elevation).
Define functions f and g as follows:

f(x)=%—(@~x)-cos (n/(}—x)) for x in [0, 4];

f(x)=x for x in [, 1];

g(x)=2x for x in [0, }];

g(x)=4 for x in [4, 1]; and

g(x)=x for x in [, 1].

Any functions 2 and j with the property fj=gh must clearly have j-(1)
=h~(1) and j-(0)=/"1(0), so j~*(})=h~1(3). Therefore 2~ 1([}, 1]) must have an
infinite number of components. These components must have a cluster point x,
and x is a cluster point for #-%(1) and for A~!(}). Therefore 7 must not be
continuous.

The aim of this paper is to show that the above example furnishes essentially the
only condition which could keep the desired functions (4 and j) from existing, and
hence there is always a way for the climbers to climb their respective mountains,
maintaining almost the same elevation (i.e. the same elevation except for some
arbitrarily small error), provided they start at the lowest point together and seek
summits which have the same elevation. In the notation for an interval, [a, b] does
not imply a<b; i.e. [a, b]=[b, a].

DEFINITIONS 1 AND 2. When f([a, b])=g([c, d]), the finite chain of quadruples
P={p,/i=0,1,..., n}, where p;={w;, x;, ;, z;> and where P has order induced by
the indices (p; < p;- if and only if i <i’), will be called an f|, 5 —&|i.a) weakly com-
patible chain provided:
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{a, b}<={wfi=0,1,...,n} U {x,/i=0,1,..., n}<[a, b];

{e, d}={p/i=0,1,...,n} U {z/i=0,1,...,n}<[c, d];

[wi, x;] N [w;_1, x;_1] is not empty for i=1,..., n;

[y, z] N [yi-1, zi—1] is not empty for i=1,..., n; and

S(w, xD)=g([ys, z]) for i=0, 1,...,n.

Also, P will be called an f|,,5,— 8|c.a Strongly compatible chain provided: P is an
S ia.00—&lic.ay Weakly compatible chain; x;_, =w; and z;_, =y, foreach i=1, ..., n;
S(wo)=g(yo); and, the four intervals f([w;, x:]), g([ys zi]), [f(Ws),f(x)], and
[g(»s), g(z)] coincide for each i=0, ..., n. Observe that an f|;, 5 —&|ic.a) Strongly
compatible chain also could have been described as a finite chain of pairs

{<WuJ’i>/i = 0, 1’- '~9n+1}

(where w, ,,=x, and y,.,=z, above) such that:
{a, b}<{w/i=0,1,...,n+1}<]a, b];
{c, d}<{y/i=0,1,...,n+1}<][c, d];
S(wo)=g(yo); and,

the four intervals f([wi, wi-1]), &([¥ss i-1D)s [f (Wi, f(wi-1)], and [g()), g(yi-1)]
coincide for each i=1,...,n+1.

Partially order the collection of all f— g weakly (respectively strongly) compatible
chains as follows. If P and Q are two f—g weakly (resp. strongly) compatible
chains, let P< Q provided P={p;/i=0, 1, ..., n} (as denoted above) and

0 ={gi'=0,1,..,n;i=0,1,...n

(ordered: g} <gi" provided i <i” and if i=i" then i’ <i") and for each i=0, 1, .. ., n,
the subchain of Q, {g}/i’=0, 1, ..., n},isan f|p,, xy—8lw,..a Weakly (resp. strongly)
compatible chain.

For any function 4 and any interval [a, b}, A|, ,; denotes the restriction of 4 to
[a, b]; hence h=h|o ;).

PROPOSITION 1. There exist functions h and j such that fj=gh if and only if there
exists a linearly ordered set {P;/i=0, 1, ...} (order defined above and denoted by the
indices) of f— g weakly compatible chains such that

lim sup (|wi —x&|+ |yt —2L]) = 0
o

i— 00

where Pi={{wi., x}, yi, zi>[i'=1, ..., n;} for each i=0,1,...,n.

Proof. Let {P,/i=0,1,...} be the set satisfying the properties listed in the
proposition; the functions 4 and j will be constructed. Define two sequences of
nested sets {U;/i=0, 1,...} and {V}/i=0, 1, ...} inductively. Let

Ty i'—1 i
U= ) [w:'f,x:f]x[ ,—]
i'=1 n

* Ny

and let

O L W
Vo = U Dy, z&] x » —
=1 n

*  Nx



1969] MOUNTAIN CLIMBING 385

where Po={<{w, x¥, y¥, z}>/i'’=1, ..., ny} ordered by the indices. Let k be any
nonnegative integer, denote P, by {wy, xi, ¥, zi0/i’=1, ..., n} (ordered by the
indices), and suppose U, and V, have been defined having the form:

n
U = i,L_Jl [wi; xe)x [ay -4, ay]

and

n
Vi t'Léjl [yes ze]l % [ap -4, ar]
where {a;/i’=0, 1, ..., n} is a strictly increasing sequence of numbers such that
a,=0 and a,=1. Since {P;/i=0, 1,...} is a linearly ordered set of f—g weakly
compatible chains, P, <Py, ,, so P,,, can be written as:

Pk+1 = {<W:” xg'y y:'s Z:'>/il =1,..., ni= 1" ~-an}

(ordered primarily by the superindices and secondarily by the subindices) such that
for each i=1,..., n the subchain of P, {(wi, xi, yi., zl>/i'=1,...,n}, is an
S ltwi.xa—&lwv,.z0 Weakly compatible chain. Define Uy ,; and V., as follows: for
eachi=1,...,nlet{al/i’=0, 1,..., n} be a strictly increasing sequence of numbers
such that ah=a,_, and a!, =a;; define

n ny
Ugir = 1U1 i,L_Jl Wi, xi1x [a} -4, ai']

and
n ny .
Vier = tL—J1 iL_Jl i, k] x [a} -1, a}].

For each i=0,1,..., U; and V; are closed connected subsets of [0, 1]x [0, 1]
which touch each side of the box [0, 1]x[0, 1], and U;>U;,, and V2 V,,,.
Therefore (Ni=o,1,... Ui and (Ni=o.1,... Vi are closed sets which are graphs of
functions. Let j be the function whose graph is (;_o,1,... U; and let h be the
function whose graph is ();-o.1,... ;. Considered as the composition of relations,
fU,=gV, for each i=0, 1, ... ; therefore fj=gh, so the desired functions have been
constructed.

To prove the converse, let & and j be functions such that fj=gh. For each
i=0,1,...,let

seee

Qi = {<W§*, X:', y:', z:’>/i, = 19 ceey 2i}
(ordered by the subindices) be defined:

a1 0 ([P =1 & . =1 i
Wi = 1nfj([17, -21-7]), xi = supj([l—ir-a %]), yho= mfh([lT, %]),

and

z}, = sup h([’-z_Tl', -;—,]) foreachi’ =1,...,24
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Now{Q,/i=0, 1, ...} isalinearly ordered set of f— g weakly compatible chains. Also,
lim; , ,, sup; |wi —x}|=0 and lim,_, ,, sup; |y} —zi:|=0. Therefore the proposition
is satisfied.

DEFINITION 3. Let 4 be any function and let g, b, x, and y be in [0, 1] with a<b.
Then h|, 5 crosses y at x provided there exists 8 =0 such that x— 8 and x4 are in
[0, 11; A|ta,p1nix -5, %1 30 A|(g bincx, x + 5 are constant; and for every >0, y is in the
interior of A([a, b} N [x—8—e, x+ 8+¢]), either x—8=a or Ay pjrrx—s-c,x IS DOL
constant, and either x+8=>5 Or Al p)nrx, x+5+¢ 1S NOt constant.

The set of all x such that Ay, crosses y at x will be denoted by h|f, »(»).
Observe that for each y in [0, 1], A|f, ,(») is a subset of |k (¥); also Al u(¥)
is empty if and only if y is not in the interior of A([a, b]).

The following constructive Definitions 4 and 5 will be used in Lemma 1 to
inductively construct a linearly ordered set of f—g strongly compatible chains
which will yield functions j and 4 as in Proposition 1.

DEFINITION 4. Let f and g be nowhere locally constant, and let a, a’, b, and b’
be in [0, 1] such that the four intervals f([a, a']), [f(a),f(a")], g([b, b']), and
[g(b), g(b)] coincide, with f(a)=g(b). The f—g refinement of <{a,a’, b, b’ is the
Slta.a1—8lw.o strongly compatible chain

{<a’ a, b’ b1> é <a1’ as, bl’ b2> é <a2’ ala b2, bl>}
defined as follows. Let f([a, (a+a’)/2])=[f(a), c,] define ¢, and pick d, in
la, (a+a)2] N f~(ew);

let f([d., a'])=[cq, f(a')] define c,, and pick d, in [d;, @] N f~(cz); and let f([a, d5])
=[f(a), c5] define cg, and pick ds in [a, d;] N f~(cy).

Case 1. If c;=f(a) or c;=f(a’), then define a, =d;, a,=d,, b, to be the element
in [b, b'] N g~ *(c3) such that [b, b;] N g~ *(c3)={b,}, and b, to be the element in
[6, b1 N g~*(c5) such that [by, by] N g~ *(cg) ={ba}.

Case 2. Assume that c,#f(a) and cz#f(a’). Let r, be the element in [b, b’]
N g°(cg) such that gl ,.i(cs) is an empty set.

Case 2.1. If g|,.»1(c2) is an empty set, then define a, =d;, a;=d,, b, =r,, and b,
to be the element in [b, b,] N g~*(c,) such that [by, ;] N g7 (cy) ={b,}.

Case 2.2. If g|§,,.»1(cz) is not empty, pick r, in gl »i(c2). Let g([b, r1])=[g(b),s.]
define s,, and pick r, in [b, r;] N g~ (so); also let g([re, b'])=[ss, g(b")] define s3,
and pick rg in [r, b'] N g~(s;). Define a, to be the element in [a, a’] N f~1(sz) such
that [a, a;] N f~*(s;)={a,}, a, to be the element in [a, a,] N f~(s3) such that
[as, @] N f~ (ss)={az}, by=r5 and by=r,.

DEFINITION 5. Let f and g be nowhere constant functions and let P={p;/i=0,
1, ..., n}bean f— g strongly compatible chain (ordered by the indices). The f—g re-

finement of P is the f— g strongly compatible chain Q={g}/i'=0, 1, 2;i=0, 1, ..., n}
(ordered primarily by the superindices and secondarily by the subindices) such that
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P=<Q and for each i=0, 1, ..., n, the subchain {g!/i’=0, 1, 2} of Q is the f—g
refinement of p;.

LeEMMA 1. Iffand g are nowhere constant and have fixed points 0 and 1, then there
exist functions h and j such that

Ji=gh;

h and j are nowhere constant;

h and j have fixed points 0 and 1;

if f°(g(x)) is a finite set then h°(x) is a finite set; and

if g°(f(y)) is a finite set then j°(y) is a finite set.

Proof. Assume that fand g are nowhere constant and have fixed points 0 and 1.
The existence of the desired functions 4 and j will be demonstrated in several steps,
the properties which 4 and j are to satisfy at each step summarized in parentheses.

Step 1. (handj have fixed points 0 and 1 such that fj=gh, if r is not in g°g(r) then
h°(r) is a finite set, and if s is not in ff(s) then j°(s) is a finite set.) Define a linearly
ordered set of f—g strongly compatible chains {P,/i=0, 1,...} inductively on the
index i. Let Py={<0, 1,0, 1>}. For each positive integer k, let P, be the f—g
refinement of P,_,. Now {P,/i=0, 1,...} is a linearly ordered set of f—g strongly
compatible chains which satisfy the conditions of the preceding proposition (since
f and g are nowhere constant and continuous). Hence functions 4 and j can be
constructed (as in the proof of the preceding proposition) such that fj=gh. Also,
since the initial element of P; has the form <0, x, 0, z> and the terminal element
of P; has the form (w, 1, y, 1> for each i=0,1,... (w, x, y, and z being points
depending on i), h and j have fixed points 0 and 1. Now let r be in [0, 1] but not in
g°g(r). Then r is a local minimum or a local maximum for g, so there is an & >0 such
that g(r) is an endpoint of the interval g([r — e, r+¢]). There is an integer n such that
for all integers i = n and for all {w, x, y, z) in P,, | y—z| <e (since the conditions of
the preceding proposition are satisfied). For all i2n and for all <w, x, y, z) in P,,
if ris in [y, z], then g(r) is an endpoint for g([y, z]), and therefore, there is at most
interior of [, z]. It follows that the chain P, has at least as many elements as the set
h°(r); hence h*(r) is a finite set. Similarly, if s is in [0, 1] but not in f°f(s), then j°(s)
must be a finite set. This completes Step 1.

Step 2. (h and j satisfy Step 1, and if A(x)=h(y) and j(x)=/(y) then h|,, and
Jlix.u1 are constant.) Let E denote the set of all pairs of functions ¢4, j> such that
h and j satisfy the properties of Step 1. Partially order the set E such that <A, )
<<#’,j" if and only if for every x in [0, 1] either A(x)=A'(x) or &’ is locally constant
at x and for every y in [0, 1] either j(y)=j'(y) or j’ is locally constant at y. Zorn’s
lemma will now be applied to find a maximal element of E. Step 1 shows that E is
not empty. If L={<{h,, j,>/nin N} is a nonempty linearly ordered subset of E, then
define an upper bound <{h*, j*) for L in E. For each x in [0, 1] define A*(x) = h,(»)
and j*(x)=jn(y) where m is any element of N and where y is the least upper bound
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of points z with the properties z < x and for all nin N, A, is not locally constant at z,
provided there is one such z; otherwise (i.e. if no such z exists) then let y be the
greatest lower bound of points w with the properties w>x and for all n in N, A, is
not locally constant at w. For every (/’,j’> in E and each x in [0, 1], 4" is locally
constant at x if and only if j* is locally constant at x, since f and g are nowhere
constant and fj'=gh’. Also if n and m are in N with <{h,, j,> £ {hp, jn> then h,
locally constant at some point x implies that 4, is locally constant at x. Therefore
<h*, j*> is an upper bound for L in E. So by Zorn’s Lemma E has a maximal
element; let (h, j> be a maximal element of E. Assume that x and y are in [0, 1]
such that A(x)=h(y) and j(x)=j(y). Define (h",;"> as follows: h"(z)=h(x) and
i"(z)=j(x) for all z in [x, y]; and A"(z)=h(z) and j"(z) =/(z) for all z in [0, 1] but not
in [x, y]. Now <A”, j"> is clearly in E and <A, j> <<h", j">. But {(h, j) was a maximal
elementin Eso h=h" and j=j"; that s, A|,, ,, and j|., ,; are constant. This completes
Step 2.

Step 3. (h and j satisfy the conditions of the lemma.) Let A* and j* satisfy the
properties of Step 2. Let R denote the equivalence relation between points defined:
xRy if and only if h*| ., is constant (or equivalently j*|.. ., is constant). Let
[0, 1]/R denote the quotient space (defined by identifying points of [0, 1] which are
equivalent under R with the order topology where the order is inherited from [0, 1]).
Let p be the projection map from [0, 1] onto [0, 1]/R. There is a function g which
is monotone with fixed points 0 and 1 such that g|;, ,; is constant if and only if
h* |41 18 constant (i.e. if and only if xRy). Now gp~* (meaning g(p ~*(x)) for each x
in [0, 1]/R) is a continuous injection mapping [0, 1]/R onto [0, 1], so gp~' is a
homeomorphism. Define h=h*p~Y(gp~*)~! and j=j*p~*(gp~*)~*. Since h*p~!
and j*p~! are nowhere constant maps, /4 and j are functions with fixed points 0 and 1
which are nowhere constant; also fj=fj*p~(gp~*)"*=gh*p~'(qp ') ' =gh. Since
h* and j* satisfy the properties of Step 2: if A(x)=h(y) and j(x)=j(y) then x=y;
if x is not in gg(x) then A°(x) is a finite set; and if y is not in f°f(y) then j°(y) is a
finite set. If x is in g°g(x) then h°(x)<=(gh)°(g(x))=(fj)°(g(x)) (since g is nowhere
constant), and hence j(h°(x))<j((fj)°(g(x)))=f°(g(x)) (since f is nowhere constant).
Therefore if x is in g°(g(x)), then f°(g(x)) has at least as many element as h°(x)
since it was seen that j|, -1, is a one-to-one map and hence j sends distinct elements
of h°(x) to distinct elements of °(g(x)). Therefore for every xin [0, 1], if /°(g(x)) is a
finite set, then 4°(x) is a finite set. Similarly for every y in [0, 1], if g°(f(»)) is a finite
set, then j°(y) is a finite set. This completes Step 3 and the proof of the lemma.

LEMMA 2. Let f and g have fixed points 0 and 1 and suppose g locally constant at x
implies that f°(g(x)) is a finite set, and f locally constant at y implies that g°(f(»))
is a finite set. Then there exist functions h and j with fixed points 0 and 1 such that

fi=gh.

Proof. Assume that f and g satisfy the hypothesis of the lemma. Let R be the
equivalence relation between points in [0, 1] defined: xRy if and only if f],,,; is
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constant. Let p be the projection of [0, 1] onto the quotient space [0, 1]/R, and let 6
be a homeomorphism of [0, 1] onto [0, 1]/R such that 6(0)=p(0). Similarly, let S
be the eqiuvalence relation between points of [0, 1] defined: xSy if and only if
8lix. is constant. Let g be the projection of [0, 1] onto the quotient space [0, 1]/,
and let ¢ be a homeomorphism of [0, 1] onto [0, 1]/S such that #(0)=¢(0).

Observe that fp~* and gqg~! are well defined (point valued) maps, and that
fp~10 and gq~'¢ are nowhere constant functions with fixed points 0 and 1. Let /&
and j be nowhere constant functions (whose existences are assured by the preceding
lemma) with fixed points 0 and 1 such that fp~0j=gq~'éh; if (fp~10)°(gq~24(x))
is a finite set then A°(x) is a finite set; and if (gg~'$)°(fp ~*0(»)) is a finite set then
J() is a finite set.

Let A be the set of points, x, such that there exists y with y#x and xRy; let B
be the set of points, x, such that there exists y with y+# x and xSy. For each x in B,
f°(g(x)) is a finite set (by the hypothesis), hence (fp ~160)°(g(x)) is a finite set, and so
h°($~q(x)) must be a finite set. Similarly, for each x in 4, j°(6~1p(x)) is a finite set.
Now since p(4) and ¢(B) are countable sets, j°(6~p(4)) and h°(¢ ~'q(B)) must also
be countable sets (possibly finite or empty). Let {x;/i=1, 2, ...} be an enumeration
of j¢(6-p(A4)) U h*(¢~q(B)) such that x;+# x; whenever i#i’. Let I be the topo-
logical space defined by splicing an interval into [0, 1] at x; for each i=1,2,...;
specifically, 7 is the set [0, 1] with x; replaced by [—1/2i, —1/(2i+1)] for each
i=1,2,..., and I is topologized with the « order topology where « is a linear
order on / defined for any x and y in I as x<y provided x and y are both in [0, 1]
or both in [—1/2i, —1/Q2i+1)]for some i=1,2,...,and x<y; xisin [0, 1], yis in
[—1/2i, —1/Q2i+1)]forsomei=1,2,...,and x <x;; x isin [—1/2i, —1/(2i+1)] for
some i=1,2,...,yisin [0, 1], and x;<y; and x is in [—1/2i, —1/(2i+1)] for some
i=1,2,...,yisin [—1/2i", —1/2i"+1)] for some i'=1,2,..., and x; <Xx;.

Now observe that for each i=1, 2, .. ., such that x;#0, the limit of p~8j(x) as x
approaches x; from below is a well-defined point. If p~16j(x;) is a singleton, the
limit in question equals this p~16j(x;). If p~*6j(x;) is not a singleton, then it is a
closed interval and f restricted to this interval is constant. Hence (by hypothesis)
g°(fp~0j(xy)) is a finite set, so (gg~'¢)°(fp~10j(x;)) is a finite set, and so j°(j(x,)) is
a finite set. Therefore there exists a real number &> 0 such that j(x;) is an endpoint
of the interval j([x; — ¢, x;]), and hence the limit of p ~16j(x) as x approaches x; from
below will be one endpoint of p~16j(x;). Similarly, for each i=1, 2, ..., the limit
of p~16j(x) and the limit of g~ '$h(x) each is a well-defined point as x approaches x;
from below (unless x;=0) and also as x approaches x; from above (unless x;=1).

Define j* mapping / onto [0, 1] by the rule j'|;~i0.11=p "*0]|;~r0,11» and for each
i=1,2,...,j |t-1/2i, - 121 +1y 18 the unique linear map such that j'(—1/2i) is the
limit of p~16j(x) as x approaches x; with 0 < x < x; (or if x;=0, then j'(—1/2i)=0),
and j'(—1/(2i+1)) is the limit of p~16j(x) as x approaches x; with x;<x=<1 (or if
x;=1, then j'(—1/(2i+1))=1). Similarly, define #" mapping I onto [0, 1] by the
rule: A'|;n0,10=9" 0| 1n10,1), and for each i=1,2,..., K| 12 —1j2i+1y is the
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unique linear map such that A’(—1/2i) is the limit of g~ ¢A(x) as x approaches x;
with 0= x <x; (or if x;=0, then A'(—1/2i)=0), and A'(—1/Q2i+1)) is the limit of
q~'$h(x) as x approaches x; with x;<x <1 (or if x;=1, then h'(—1/(2i+1))=1).

The cluster pointsin 7 of {(—1/2i)/i=1, 2, ...} coincide with the cluster points in
Iof {(-1/Q2i+1))/i=1,2,...}, and k' and j' are clearly continuous at all points
which are not one of these cluster points. Let y be one of these cluster points. If y
is approached in 7 from below by points of the form —1/2i (i=1,2,...) then y is
also approached in I from below by points of the form —1/Q2i+1) (i=1,2,...),
and j'(y) equals the limit of j'(— 1/2/) and also the limit of j'(—1/(2i+1)) as —1/2i
approaches y from below (i=1, 2, .. .). Therefore j’ is continuous from below, and
similarly j* is continuous from above. Hence j' is continuous; similarly, A’ is
continuous.

For each x in I N [0, 1], fj'(x) =/fp ~6j(x) =gq ~‘$h(x) =gh'(x). Also, since fand g
are continuous, fj'(—1/n)=gh'(—1/n) for n=2,3, ..., so for each i=1, 2,. .., the
linear functions fj'|(-1/2i, -1/i+1n and gh'|(-1je, —12+1y coincide. Therefore
Ji'=gh'.

Let 4 be a homeomorphism of [0, 1] onto I such that $(0)=0 if O is in Z, or
#(0)= — 1/2i where x;=0 otherwise. Let h=~h"y) and j=j'¢. The two functions # and
Jj have fixed points 0 and 1, and fj=gh. The proof of the lemma is complete.

DEerINITION 6. When f([a, b])=g([c, d]), the pair of points {w, y)> will be called
S lia.61— &lie,a1 consistent provided there exists a sequence {{w;, y;>/i=0, 1, ...} in the
product [a, b] x [c, d] converging to {w, y> such that f(wy)=g(yo), f(w,) is an
endpoint of the interval f([a, b]), and for each i=1,2,... the four intervals
S(wi, wi_1D), gy yi-1D)s Ufw), f(wi-1)], and [g(31), g(¥:-1)] coincide.

ProOPOSITION 2. If<a, ¢) and {b, d) are f—g consistent, if g locally constant at x
implies that f°(g(x)) is a finite set, and if f locally constant at y implies that g°(f(y))
is a finite set, then there exist functions h and j such that fj=gh, j(0)=a, j(1)=>,
h(0)=c, and h(1)=d.

Proof. There exist points r, s, 4, and v in [0, 1] such that {r, 0>, <{s, 1>, <0, u),
and <1, v) are f—g consistent. By the preceding lemma, if w, x, y, and z are in
[0, 1] such that f(w)=g(») and the four intervals f([w, x]), [f(w), f(x)], g([y, z]),
and [g(»), g(z)] coincide, and if ¢ and ¢’ are distinct points, then there exist con-
tinuous maps 4’ and j' with A" mapping [z, ¢'] onto [y, z] and j* mapping [¢, ¢'] onto
[w, x] such that j'(t)=w, j'(¢')=x, W' (t)=y, K (t')=2z, and fj’'=gh’. Hence the
desired functions / and j can be constructed by piecing together appropriate maps
defined on subintervals of [0, 1] by the preceding lemma.

COROLLARY 1. If each of f and g is either a nowhere constant function or has the
property that the inverse of each point in [0, 1] is a set with a finite number of com-
ponents, then there exist functions h and j such that fj=gh.
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COROLLARY 2. For any functions f and g and for any >0, there exist functions
h and j such that | fj—gh| <e (i.e. for every x in [0, 1], | fj(x) —gh(x)| <e).

Proof. By the preceding corollary, it is sufficient to define nowhere constant
functions f” and g’ such that | f'—f| <e¢/2 and |g'—g| <¢/2.

COROLLARY 3. There exist functions h and j such that fj=gh if and only if there
exists a linearly ordered set of f—g weakly compatible chains {P,[/i=0, 1, ...} where
for each i=0,1,...

Pi = {<w:'a x:’a y:', Zf'>/l~, = l, ) ni}
and for each i'=1,. .., n, if |wi.—xi.|+ |y} —zl| 2 1/i then g|s .1, locally constant
at r implies that f|f,1. 4,(8(r)) is a finite set; f|.. 4, locally constant at s implies

that g|{yt. 41(f(s)) is a finite set; and there exists a pair of f|iu..xi1— 8ty cON-
sistent points in

(e, x£1 0 [whe, xb1) x ([, 2] N [k, 20])
Jori” =i'—1 (unless i’=1) and for i"=i'+1 (unless i’ =n,).
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