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Let "function" mean "continuous function mapping the closed unit interval

onto itself"; let/and g be two arbitrary functions. The object of this paper is to

determine conditions for the existence of functions h and j such that fj=gh (i.e.

/O(*)) = g(«(x))forallxin[0, 1]).

The existence of such functions became important [1] in constructing commuting

functions with appropriate properties. Considering the graphs of/and g to be

mountains (as in [2]) h andj denote the horizontal progress of climbers, one on each

mountain, who are trying to maintain the same elevation as each other (time

represented by the domain of « and j).

The following example shows that functions « and j do not always exist (and

hence climbers cannot always climb mountains maintaining a common elevation).

Define functions /and g as follows:

f(x) = \ - (\ - x) ■ cos (tt/(\ - x)) for x in [0, \\ ;

f(x) = x for x in [\, 1 ] ;

g(x) = 2x for x in [0,1] ;

|:(x)=|forxin ft, |];and

g(x)=x for x in ft, 1].

Any functions ft and J with the property f]=gh must clearly have /-1(1)

= /7"1(l) and/-1(0) = Ä"1(0), so/-1(i) = Ä-1(i). Therefore /rKft, iD must have an

infinite number of components. These components must have a cluster point x,

and x is a cluster point for h'\^) and for zí_1(^). Therefore h must not be

continuous.

The aim of this paper is to show that the above example furnishes essentially the

only condition which could keep the desired functions (« andj) from existing, and

hence there is always a way for the climbers to climb their respective mountains,

maintaining almost the same elevation (i.e. the same elevation except for some

arbitrarily small error), provided they start at the lowest point together and seek

summits which have the same elevation. In the notation for an interval, [a, b] does

not imply a < b ; i.e. [a, b] = [b, a].

Definitions 1 and 2. When/([a, b])=g([c, d]), the finite chain of quadruples

P={Pi/i=0, 1,..., «}, where^j = <wi, x¡, yu z¡> and where F has order induced by

the indices (pi<pv if and only if i<i'), will be called an/|[a>w—g|[Ci(i] weakly com-

patible chain provided :
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{a, b}<={wi/i=0, 1,...,«} U {xt//=0, 1,. ..,«}<= [a, b];

{c, d}^{yi/i = 0, 1,..., zz} u {z,/z = 0, 1,. ..,n}c[c, d);

[u'¡, x¡] n [w,_l5 Xi_j] is not empty for z'= 1,..., n;

[y¿> z¡] n [y,_x, z,_J is not empty for z'= 1,..., zz; and

f([wt, Xi])=g([yi, z¡]) for z'=0, 1,..., zz.

Also,Fwill be called anf\laM— g|[c,d] strongly compatible chain provided: F is an

f\ia,t>}~g\ic.dj weakly compatible chain; xi~1 = wt andzi_!=yi for each z'= 1,..., n;

f(wo)=g(y0); and, the four intervals f([wt, x,]), g([y¡, z¡]), [/(wO./íx,)], ànd

[£(y¡)> gfo)] coincide for each z'=0, ...,n. Observe that an/|[0jW-g|[c>(¡) strongly

compatible chain also could have been described as a finite chain of pairs

{<w„yt>/i = 0,l,...,n+l}

(where wn + x = xn and yn + i = zn above) such that:

{a,b}^{wi/i=0, l,...,zz+l}<=[a,z3];

{c,d}^{yi/i = 0,l,...,n+l}^[c,d];

/(w'o)=g(yo); and,

the four intervals f([w„ w^x]), g([yu y,_j.]), [fi(w¡), fi(w^x)], and [g(yt), g(yt-x)]

coincide for each z = 1,..., zz +1.

Partially order the collection of all/—g weakly (respectively strongly) compatible

chains as follows. If F and Q are two/— g weakly (resp. strongly) compatible

chains, let PS Q provided P={p¡/i=0, 1,..., zz} (as denoted above) and

ß = {9{,/F = 0,l,...,/ii;i = 0,1,...,«}

(ordered: q\. <qp provided iS ¡" and if i=i" then z" < z"") and for each z'=0, 1,..., n,

the subchain of Q, {q\./i' = 0, 1,..., zzj, is anf\lw¡iXi]-g\[yu2¡] weakly (resp. strongly)

compatible chain.

For any function A and any interval [a, b], A|[a>S] denotes the restriction of A to

[a, b}; hence A = A|[0,ii.

Proposition 1. There exist functions A and j such that fj=gh if and only if there

exists a linearly ordered set {Pi/i=0, 1,...} (order defined above and denoted by the

indices) off—g weakly compatible chains such that

limsup(|»4-xM + |y{.-zM) = 0

where Pi = {(w¡>, x]<, yj-, z\-')ji'= 1,..., zz,} for each z'=0, 1,..., zz.

Proof. Let {Fj//=0, 1,...} be the set satisfying the properties listed in the

proposition ; the functions A and j will be constructed. Define two sequences of

nested sets {[/¡/z'=0, 1,...} and {Fj/z'=0, 1,...} inductively. Let

"♦ Iz"-1   z"l
í/o=   U   W,X?]X   i—1-,±-\■'=i L «*    «*J

and let

Vo=- U b^*]x[^-i!,ill
¡=i L "*   «*J
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where F0 = {<h',*, xf, y*, zp}/i'= 1,..., «*} ordered by the indices. Let k be any

nonnegative integer, denote Pk by {(wv, xv, yv, zy}/i' = 1,..., «} (ordered by the

indices), and suppose Uk and Vk have been defined having the form:

n

Uk =  U  lwi;Xi.]x[ai._x,ai.]

and

n

Vk =  U LVi',Zi']x[ßi'-i>ai']
i' = l

where {af./z"=0, 1,..., «} is a strictly increasing sequence of numbers such that

a0 = 0 and an=l. Since {F¡/z' = 0, 1,...} is a linearly ordered set of fi—g weakly

compatible chains, Pk<Pk + x, so Pk+X can be written as:

Fc + i = {<>{-, x\; y[, z¡.)/i' = 1,..., «¡; / = 1,..., «}

(ordered primarily by the superindices and secondarily by the subindices) such that

for each /=!,...,« the subchain of Ffc+1, {<[w\,,xii.,yii;Zil.y/i'=l,...,nt}, is an

f\iv>,,xd—g\ivt,zi\ weakly compatible chain. Define Uk+X and Vk + X as follows: for

each i = l,..., «, let {aj./z" = 0, 1,..., «J be a strictly increasing sequence of numbers

such that a0 = a¡ _ x and a'n¡ = a( ; define

and

Uk + X = (j  (J [wi,,x\.]x[a}._x,a¡,]
i = l i'=l

^ + 1=  LJ   Û  [yÍ;^x[4_x,a¡.].

For each z'=0, 1,..., U¡ and Vi are closed connected subsets of [0, l]x [0, 1]

which touch each side of the box [0, l]x[0, 1], and t/¡^L/j + 1 and Fj=>Ki + 1.

Therefore n> = o,i,... U¡ and fh=o,i,... K are closed sets which are graphs of

functions. Let y be the function whose graph is Hi-iM,.., U and let h be the

function whose graph is n¡ = o.i.... F¡. Considered as the composition of relations,

fUi=gVi for each z'=0, 1,... ; therefore fj=gh, so the desired functions have been

constructed.

To prove the converse, let « and j be functions such that fij=gh. For each

i=0, I.let

Qi = {<w\;x\.,yí;z\:>li'= 1,...,2«}

(ordered by the subindices) be defined:

w\. = mfj[\~-, ¿]),   x\. = supy([4-l, i]),   y\. = inf «([^ l]),

and

zi- = sup «I  ^j-' ~i  I    for each z" = 1,..., 2\
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Now{<2j/z'=0, 1,...} is a linearly ordered set off— g weakly compatible chains. Also,

lim^oo sup¡. \w'v —xj-|=0 and lim,^» sup,. |y{<—z\\ =0. Therefore the proposition

is satisfied.

Definition 3. Let A be any function and let a, b, x, and y be in [0, 1] with a S b.

Then A | ía¡b-¡ crosses y at x provided there exists S 2:0 such that x — 8 and x+8 are in

[0> 1]; A|to.Mnt*-*,*] and h\la-binix,x+ô] are constant; and for every e>0, y is in the

interior of h([a, b] n [x—8 — e, x+8 + e]), either x—8 = a or h\la,nr>ix-d-e,x} is not

constant, and either x + 8 = b or h\la¡nnlx¡x + 0 + el is not constant.

The set of all x such that A|[aiW crosses y at x will be denoted by A|p0i()](y).

Observe that for each y in [0, 1], h\¡aM(y) is a subset of A|¿,w(y); also A|fa>w(y)

is empty if and only if y is not in the interior of h([a, b]).

The following constructive Definitions 4 and 5 will be used in Lemma 1 to

inductively construct a linearly ordered set of/—g strongly compatible chains

which will yield functions j and A as in Proposition 1.

Definition 4. Let/and g be nowhere locally constant, and let a, a', b, and b'

be in [0,1] such that the four intervals f([a, a']), [fi(a),f(a')], g([b,b']), and

[g(b),g(b')] coincide, with/(a)=g(A). The/—g refinement of (a,d',b,b'} is the

fi\ia,a']-g\w,b'i strongly compatible chain

{<a, ax, b, bf) S <ax, a2, bx, A2> S <a2, a', b2, b')}

defined as follows. Let/([a, (a + a')/2])=[f(a), cx] define cx, and pick dx in

[a,(a + a')/2]nf-1(ci);

letf([di, d])=[c2,fi(a')] define c2, and pickd2 in [dlt a'] r./_1(c2); and letf([a,d2])

= [f(a), c3] define c3, and pick d3 in [a, d2] n/_1(c3).

Case 1. If c2 =f(a) or c3 =f(a'), then define ax = d3, a2 = d2, bx to be the element

in [b, b'] n g'1^) such that [b, bx] Pi g~1(c3)={bx}, and A2 to be the element in

[b, bx] n g-\c2) such that [b2, bx] n g~l(c2) = {b2}.

Case 2. Assume that c2^f(a) and c3^f(a'). Let r0 be the element in [b, b'\

n gc(c3) such that g\cibir0i(c3) is an empty set.

Case 2.1. If g|fr0,i>'](c2) is an empty set, then define ax = d3, a2 = d2, bx = rQ, and b2

to be the element in [b, bx] n g"1^) such that [b2, bx] n g_1(c2) = {62}.

Case 2.2. If g|&.0.6>](c2) is not empty, pick rx in g|fro,6.](c2). Letg([A, r1]) = [g(A),s2]

define s2, and pick r2 in [A, rj n g_1(i2); also let g([r2, b']) = [s3, g(b')] define s3,

and pick r3 in [r2, A'] n g_1(s3). Define Oi to be the element in [a, a'] (^fi~1(s2) such

that [a, ax] n/_1(s2)={a1}, a2 to be the element in [a, ax] n/_1(s3) such that

[a2, aj n/-1(s3) = {a2}, Ai = r3 and A2 = r2.

Definition 5. Let /and g be nowhere constant functions and let P={pi/i=0,

1,..., zz} be an/— g strongly compatible chain (ordered by the indices). The/— g re-

finementofP is the/- g strongly compatible chain 0={^t-/F=0, 1, 2; z'=0, 1,..., n}

(ordered primarily by the superindices and secondarily by the subindices) such that
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P¿ Q and for each z'=0, 1,..., «, the subchain {q\ji' = 0, 1, 2} of Q is the f-g

refinement of p¡.

Lemma 1. Iff and g are nowhere constant and have fixed points 0 and 1, then there

exist functions « andj such that

fij=gh;
« andj are nowhere constant;

h andj have fixed points 0 and 1 ;

iffic(g(x)) is a finite set then hc(x) is a finite set; and

ifgc(f(y)) is a finite set then jc(y) is a finite set.

Proof. Assume that/and g are nowhere constant and have fixed points 0 and 1.

The existence of the desired functions h andj will be demonstrated in several steps,

the properties which « and j are to satisfy at each step summarized in parentheses.

Step 1. (« andy have fixed points 0 and 1 such that//'=gh, if ris not in gcg(r) then

hc(r) is a finite set, and if í is not in ficf(s) then jc(s) is a finite set.) Define a linearly

ordered set of/— g strongly compatible chains {F¡/z'=0, 1,...} inductively on the

index i. Let Fo={<0, 1,0, 1». For each positive integer k, let Pk he the f-g

refinement of Pk-X. Now {PJi=0, 1,...} is a linearly ordered set of fi-g strongly

compatible chains which satisfy the conditions of the preceding proposition (since

/ and g are nowhere constant and continuous). Hence functions h and j can be

constructed (as in the proof of the preceding proposition) such that fj=gh. Also,

since the initial element of P¡ has the form <0, x, 0, z> and the terminal element

of P¡ has the form <w, l,y, 1> for each z'=0, 1,... (w, x, y, and z being points

depending on i), « andj have fixed points 0 and 1. Now let r be in [0, 1] but not in

gcg(r). Then r is a local minimum or a local maximum for g, so there is an e > 0 such

that g(r) is an endpoint of the interval g([r—e,r+ e]). There is an integer « such that

for all integers z'ï;« and for all <w, x, y, z> in F¡, \y — z\ <e (since the conditions of

the preceding proposition are satisfied). For all z'ä« and for all (w, x, y, z> in Ft,

if r is in [y, z], then g(r) is an endpoint for g([y, z]), and therefore, there is at most

one element <[w, x, y, z> in the/— g refinement of <w, x, y, z> such that r is in the

interior of [y, z]. It follows that the chain Pn has at least as many elements as the set

h°(r); hence hc(r) is a finite set. Similarly, if s is in [0, 1] but not in fcf(s), then/(i)

must be a finite set. This completes Step 1.

Step 2. (h andj satisfy Step 1, and if h(x) = h(y) and j(x) =j(y) then h\lx,vl and

j\ix,yj are constant.) Let F denote the set of all pairs of functions <«,./> such that

h andj satisfy the properties of Step 1. Partially order the set F such that </z,/>

■»<*'»/> if and only if for every x in [0, 1] either h(x) = h'(x) or «' is locally constant

at x and for every y in [0, 1] either j(y)=j'(y) or/ is locally constant at y. Zorn's

lemma will now be applied to find a maximal element of F. Step 1 shows that F is

not empty. If F={<«„,/,>/« in N} is a nonempty linearly ordered subset of F, then

define an upper bound (h*,j*} for F in E. For each x in [0, 1] define «*(x) = «m(>0

and j*(x)=jm(y) where m is any element of N and where y is the least upper bound
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of points z with the properties z < x and for all « in N, hn is not locally constant at z,

provided there is one such z; otherwise (i.e. if no such z exists) then let y be the

greatest lower bound of points w with the properties w>x and for all « in N, hn is

not locally constant at w. For every <«',/> in F and each x in [0, 1], «' is locally

constant at x if and only if/ is locally constant at x, since /and g are nowhere

constant and fj'=gh'. Also if « and m are in N with <«„, _/„> ̂ <«m, y'm> then «n

locally constant at some point x implies that «m is locally constant at x. Therefore

<«*,/*> is an upper bound for F in F. So by Zorn's Lemma F has a maximal

element; let <«,./> be a maximal element of F. Assume that x and y are in [0, 1]

such that h(x)=h(y) and j(x)=j(y). Define </z",/'> as follows: h"(z) = h(x) and

z'"(z)=y(x) for all z in [x, y]; and h"(z) = h(z) and j"(z)=j(z) for all z in [0, 1] but not

in [x, y]. Now <«",/> is clearly in F and <«,/> ^ <«",/">. But <«,/> was a maximal

element in Fso « = «" and/=/'; that is, n|[x>!/1 and/|[x>!/] are constant. This completes

Step 2.

Step 3. (h andj satisfy the conditions of the lemma.) Let «* andj* satisfy the

properties of Step 2. Let F denote the equivalence relation between points defined:

xRy if and only if h*\[x,yi is constant (or equivalently y*|[*,y] is constant). Let

[0, 1 ]/R denote the quotient space (defined by identifying points of [0, 1 ] which are

equivalent under F with the order topology where the order is inherited from [0, 1]).

Let p be the projection map from [0, 1] onto [0, 1]/F. There is a function q which

is monotone with fixed points 0 and 1 such that q\lx,yj is constant if and only if

h*\[x>y] is constant (i.e. if and only if xRy). Now a/?-1 (meaning q(p~x(x)) for each x

in [0, 1]/F) is a continuous injection mapping [0, 1]/F onto [0, 1], so qp~1 is a

homeomorphism. Define h = h*p~1(qp~1)~1 and j=j*p~1(qp~1)~1- Since «*/z_1

and j*p ~1 are nowhere constant maps, « andj are functions with fixed points 0 and 1

which are nowhere constant; also fj=fj*p~1(qp~1)~1=gh*p~1(qp~1)~1=gh. Since

h* and j* satisfy the properties of Step 2: if h(x) = h(y) and j(x)=j(y) then x=y;

if x is not in gcg(x) then hc(x) is a finite set; and if y is not in fcfi(y) then/(_y) is a

finite set. If x is in gcg(x) then hc(x)^(gh)c(g(x)) = (fj)c(g(x)) (since g is nowhere

constant), and hence j(hc(x))<=j((fj)c(g(x)))<=fc(g(x)) (since/is nowhere constant).

Therefore if x is in gc(g(x)), then fic(g(x)) has at least as many element as hc(x)

since it was seen that j\h- iw) is a one-to-one map and hence j sends distinct elements

of hc(x) to distinct elements of/c(g(x)). Therefore for every x in [0, 1 ], if/c(g(x)) is a

finite set, then hc(x) is a finite set. Similarly for every y in [0, 1], if gc(f(y)) is a finite

set, then jc(y) is a finite set. This completes Step 3 and the proof of the lemma.

Lemma 2. Let fiand g have fixed points 0 and 1 and suppose g locally constant at x

implies that fc(g(x)) is a finite set, and fi locally constant at y implies that gc(fi(y))

is a finite set. Then there exist functions « andj with fixed points 0 and 1 such that

fj=gh.

Proof. Assume that / and g satisfy the hypothesis of the lemma. Let F be the

equivalence relation between points in [0, 1] defined: xRy if and only if/![*,„] is
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constant. Let/z be the projection of [0, 1] onto the quotient space [0, l]/R, and let 0

be a homeomorphism of [0, 1] onto [0, l]/R such that 9(0)=p(0). Similarly, let 5

be the eqiuvalence relation between points of [0, 1] defined: xSy if and only if

g\[x,y] is constant. Let q be the projection of [0, 1] onto the quotient space [0, l]/S,

and let </> be a homeomorphism of [0, 1] onto [0, l]/5 such that </>(0) = q(0).

Observe that fp~x and gq'1 are well defined (point valued) maps, and that

fp~16 and gq~ 1<j> are nowhere constant functions with fixed points 0 and 1. Let h

and/ be nowhere constant functions (whose existences are assured by the preceding

lemma) with fixed points 0 and 1 such that fip~16j=gq~1</>h; if (fp~16)c(gq~1</>(x))

is a finite set then hc(x) is a finite set; and if (gq~14l)c(fp~l0(y)) is a finite set then

jc(y) is a finite set.

Let A be the set of points, x, such that there exists y with y^x and xRy; let B

be the set of points, x, such that there exists y with y i=x and xSy. For each x in B,

fc(g(x)) is a finite set (by the hypothesis), hence (fip'10)c(g(x)) is a finite set, and so

hc(</>~ 1q(x)) must be a finite set. Similarly, for each x in A,Jc(8~1p(x)) is a finite set.

Now since p(A) and q(B) are countable sets, Jc(8~1p(A)) and hc((/>~1q(B)) must also

be countable sets (possibly finite or empty). Let {x.//= 1, 2,...} be an enumeration

of ]c(8~1p(A)) u AC(^-^(F)) such that x.^x.. whenever ///'. Let / be the topo-

logical space defined by splicing an interval into [0, 1] at x, for each z'= 1, 2,... ;

specifically, / is the set [0, 1] with x, replaced by [—1/2/, —1/(2/+1)] for each

/= 1, 2,..., and / is topologized with the « order topology where « is a linear

order on I defined for any x and y in I as x«y provided x and y are both in [0, 1]

or both in [— 1/2/, — 1/(2/+ 1)] for some i= 1,2,..., and x<y; xisin [0, 1], y is in

[-1/2/, - 1/(2/+1)] for some/= 1,2,..., andx<x¡;xis in [-1/2/, -1/(2/+1)] for

some i'=l,2,..., y is in [0, 1], andx,<y; and x is in [—1/2/, -l/(2/+l)] for some

z'=l,2,..., y is in [-1/2/', —1/(2/'-F1 )] for some z" = l,2,..., and x,<xr.

Now observe that for each /= 1, 2,..., such that x.^O, the limit ofp"16j(x)as x

approaches x, from below is a well-defined point. If p~10j(xi) is a singleton, the

limit in question equals this p~18j(xl). If p~10j(xl) is not a singleton, then it is a

closed interval and / restricted to this interval is constant. Hence (by hypothesis)

gc(fP~1Qj(xi)) is a finite set, so (gq'1</>)c(fp~18J(xi)) is a finite set, and soj°(j(xt)) is

a finite set. Therefore there exists a real number oO such thatj(x¡) is an endpoint

of the intervaly([x¡ — e, x¡]), and hence the limit of p'16](x) as x approaches x, from

below will be one endpoint of p~16j(xi). Similarly, for each /= 1, 2,..., the limit

ofp'16j(x) and the limit ofq~1</>h(x) each is a well-defined point as x approaches x¡

from below (unless x¡ = 0) and also as x approaches x, from above (unless x¡= 1).

Define/ mapping / onto [0, 1] by the rule/|/n[0ti]=/z_1ö/|/n[o,i], and for each

(—1,2,.. »,/|[-i/2i,-iz<2i+D] is the unique linear map such that/(-1/2/) is the

limit of p~16j(x) as x approaches x, with 0ax<x, (or if x¡=0, then/(- 1/2/) = 0),

and/(—1/(2/+1)) is the limit of p~16j(x) as x approaches x¡ with x(<x^ 1 (or if

Xj = l, then/(-1/(2/+1))=1). Similarly, define A' mapping / onto [0, 1] by the

rule: h'\,r,lOA:=q-1^h\In[o,x}, and for each z'=l,2,...,   h'\[_xl2U_XK2i + X)1 is the
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unique linear map such that «'(—1/2/) is the limit of q~x<f>h(x) as x approaches x¡

with 0áx<x¡ (or if x, = 0, then «'(- l/2z') = 0), and «'(- l/(2z'+l)) is the limit of

q~1<j>h(x) as x approaches x¡ with x(<x^ 1 (or if x¡= 1, then «'(—l/(2/+l)) = 1).

The cluster points in /of {(— 1/2/)//= 1, 2,...} coincide with the cluster points in

/ of {(—1/(2/+1))//= 1, 2,...}, and h' and / are clearly continuous at all points

which are not one of these cluster points. Let y be one of these cluster points. If y

is approached in / from below by points of the form — 1/2/ (/= 1, 2,...) then y is

also approached in / from below by points of the form — 1/(2/+1) (/= 1, 2,...),

and/(j>) equals the limit of/"(- 1/2/) and also the limit of/(— 1/(2/+ 1)) as —1/2/

approaches y from below (/= 1,2,...). Therefore/ is continuous from below, and

similarly / is continuous from above. Hence / is continuous; similarly, h' is

continuous.

For each x in/n [0, l],fj'(x)=fp~10j(x)=gq~1<ph(x)=gh'(x). Also, since/and g

are continuous, fj'(— l/n)=gh'(— l/n) for «=2, 3,..., so for each /= 1, 2,..., the

linear functions fij'\i-Xi2i,-nm + m and g/z'|[-i,2í,-ik2í + di coincide. Therefore

fj'=gh'.
Let xb be a homeomorphism of [0, 1] onto / such that </i(0)=0 if 0 is in /, or

</>(0)= —1/2/ where x¡ = 0 otherwise. Let h=h'x\> and j=j'xb. The two functions « and

j have fixed points 0 and 1, and fj=gh. The proof of the lemma is complete.

Definition 6. When/([a, b])=g([c, d]), the pair of points <>, j> will be called

f\ia,b]—g\ic.di consistent provided there exists a sequence {<w>¡, j¡>//=0, 1,...} in the

product [a,b]x[c,d] converging to (w,y} such that fi(w0)=g(y0),fi(w0) is an

endpoint of the interval f([a, b]), and for each i =1,2,... the four intervals

/([wi, wt-i]), g([yt,y(-i\), [fi(wt),fi(wi-x)], and [g(yd,g(yt-i)] coincide.

Proposition 2. //<a, c> and <[b, d} are f—g consistent, if g locally constant at x

implies that fic(g(x)) is a finite set, and iff locally constant at y implies that gc(f(y))

is a finite set, then there exist functions « andj such that fij=gh, j(0) = a, j(l) = b,

h(0) = c,andh(l) = d.

Proof. There exist points r, s, u, and v in [0, 1] such that <r, 0>, <i, 1>, <0, m>,

and <1, tz> are f—g consistent. By the preceding lemma, if w, x,y, and z are in

[0, 1] such that fi(w)=g(y) and the four intervals/([w, x]), [f(w),f(x)], g([y, z]),

and [g(y),g(z)\ coincide, and if / and /' are distinct points, then there exist con-

tinuous maps h' and/ with «' mapping [/, /'] onto [y, z] andj' mapping [/, /'] onto

[w, x] such that j'(t) = w, j'(t') = x, h'(t)=y, h'(t') = z, and fj'=gh'. Hence the

desired functions « and /' can be constructed by piecing together appropriate maps

defined on subintervals of [0, 1 ] by the preceding lemma.

Corollary 1. If each of f and g is either a nowhere constant function or has the

property that the inverse of each point in [0, I] is a set with a finite number of com-

ponents, then there exist functions « and j such that fij=gh.
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Corollary 2. For any functions fand g and for any e>0, there exist functions

A andj such that \\fij-gh\\ <e (i.e. for every x in [0, 1], |/'(x)-gA(x)| <e).

Proof. By the preceding corollary, it is sufficient to define nowhere constant

functions/' and g' such that \f —f\ <e/2 and \g'—g\ <e/2.

Corollary 3. There exist functions A andj such that fj=gh if and only if there

exists a linearly ordered set ofif—g weakly compatible chains {P¡/i=0, 1,...} where

for each i=0, 1,...

Pi = {<h|, x\,, yl, zV)/V = l,...,zzf}

and for each /' = 1,..., zz, if \w\. — x\] + \y\. — z\] ä 1// then g|[¡,¡,,s¡.] locally constant

at r implies that f\lw\.iX\,^(g(r)) is a finite set; /|rw¡.tX¡.] locally constant at s implies

that g\[y\,j^(f(s)) is a finite set; and there exists a pair o//|twJ.,4i-f[»|..4] con-

sistent points in

(K, xj-] n [w\., x}.]) x ([y1,., z\.) n {yl, z\.\)

for i" = /'— 1 (unless /'= 1) and for /" = /'+1 (unless /' = «4).
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