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1. Introduction. The classical Sturmian theorem of ordinary differential

equations deals with functions u(x) and v(x) which are, respectively, solutions of

differential equations

(1) Um-^^j+tumO,

(2) Mv=-l{J^+yv = 0.

Under the assumption that "F is larger than M" (in the sense that a(x) ä a(x) > 0

and c(x) £ y(x)) one can infer information about all solutions of (2) from know-

ledge about a particular nontrivial solution of (1)—i.e. if u(xx) = u(x2)=0 then

every solution of (2) has a zero in [xx, x2].

These ideas have been generalized to second order elliptic equations by several

authors ([l]-[4]) considering elliptic operators

and also by Protter [5] and Swanson [6] considering the nonselfadjoint case.

Given a proper relation among the coefficients of F and M and that Lu=0 has a

nontrivial solution with nodal domain Ü, then it can be shown that every solution

of Mv = 0 has a zero in Í2. While all the above proofs of this fact make essential

use of some sort of ordering among elliptic operators, the nature of this ordering

is never defined in operator-theoretic terms.

The results of §2 below suggest that it is an order relationship between certain

resolvents of the differential operators F and M which underlies the separation

properties characteristic of Sturmian theorems. It will be shown that quite general

operator equations in a Banach space 3S satisfy a type of Sturmian theorem if the

operators' resolvents satisfy prescribed positivity requirements with respect to a

cone SP.

In order to apply this theory to differential operators, one must first establish

the corresponding positivity properties for their resolvents. This is done in §3 for

sufficiently regular nonselfadjoint second order elliptic operators, and the general

theory of §2 is then applied in the proof of two Sturmian theorems and the estab-

lishment of criteria for certain Green's functions to be positive.
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2. An abstract Sturmian theorem. Our abstract formulation of a Sturmian

theorem will be valid in a real Banach space 38 equipped with a reproducing cone

0 of " nonnegative " elements.

2.1. Definition. A closed subset 3P of 38 is called a reproducing cone if it

satisfies

(i) ueSP and veSfi => u + t'e^;

(ii) z/e^and a3:0 => az/eá";

(iii) « e 9> and - w e ^ => u=d;

(iv) w e ^ => 3«, z> e ^ a h> = w — v.

lfu—ve£?,we write way. A linear operator B mapping 38 into 38 is called positive

if it maps ^ into 0*. Under additional hypotheses, certain positive operators have

a remarkable property which will be referred to as property (*): the operator B

has exactly one (normalized) eigenvector in 0, and the corresponding eigenvalue

is simple, positive, and larger than the absolute value of any other eigenvalue. The

criterion for property (*) which will be most useful here is based on the concept of

Mo-positivity.

2.2. Definition. We say that a bounded linear operator B is z/0-positive if there

exists a nonzero u0 e3P with the following property: for every nonzero izef there

exists a positive number 8 such that 8~1u0SBuS8u0.

The following two theorems are found in [8], which also has an extensive

discussion of positive operators.

2.3. Theorem. If B is compact and u0-positive, then B has property (*').

Proof. See [8, pp. 76 and 81].

2.4. Theorem. If B is compact and u0-positive and v0 is the normalized positive

eigenvector of B prescribed by (*), then B is v0-positive.

Proof. See [8, p. 76].

Our generalized comparison theorem depends on the following result.

2.5. Lemma. Let B be a compact u0-positive operator and ß and v0 be the maximal

eigenvalue and corresponding normalized positive eigenfunction prescribed by (*).

If there exists a ue 0 (h#0) such that Bu — XueíP then XSß. If X = ß, then u is

a scalar multiple of v0.

Proof. Since ß > 0, it is sufficient to deal with the case A > 0. Recalling that 0

is closed by definition, we define

£0 = sup {e | B(v0 — eu) e 3P}.

From u e 0 (u+6) and the i>0-positivity of B it follows that 0 < £0 < °o. Writing

B(v0-e0u) = ßv0-e0Bu = ßv0- e0[Xu+(Bu- Xu)]

we get

(3) B[B(v0-E0u) + e0(Bu-Xu)] = ßB\v0-E0-nu\
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By hypothesis the left side of (3) belongs to 3P, implying that B(v0 — e0(X/ß)u) e 0.

From the definition of £0 it follows that XSß-

In case X=ß, (3) yields

(4) ß-'B^Vo-eou) S B(v0-e0u).

If v0 — e0u^Q, the zj0-positivity of B implies the existence of a S>0 such that

/8-18at»o = ß-'-B^Vo-eou) S B(v0-e0u) = ßva-e0Bu.

But by the zvpositivity of B, this contradicts the maximal property of e0, and

therefore v0 = e0u whenever X=ß.

2.6. Comparison Theorem. Let L and M be (not necessarily bounded) linear

operators in 38 and suppose there exists a constant K> 0 such that for y^K

(i) (L + yiy1 and (M+yl)'1 are compact operators defined on all of 3#;

(ii) (M+yI)'1 — (L + y I) "1 is a positive operator ;

(iii) (M + yl)'1 is v0-positive.

If Lu =6 has a nontrivial solution u0e 0 and if Mu0^6, then no nontrivial solution

of Mv = 6 belongs to ¡P.

Proof. Defining A = (L+yI)~1 and B=(M+yI)'1, we have Au0=y~1u0 for

some nonzero u0 e 0. Writing

(Bu0-u0/y) = (B-A)u0 + (Au0-u0/y),

we see by 2.5 that the maximal eigenvalue of B satisfies ß^ 1/y. Since ß=l/y only

if Mu0 = 8, we have ß>l/y. Therefore » is a solution of Mv = 0 iff it satisfies

Bv = y~1v with y_1'<j8. Since B has only one eigenvector in 0 and this eigenvector

corresponds to ß> 1/y, it follows that no nontrivial solution of Mv = 6 belongs to 3P.

3. Application to elliptic equations. In this section we shall derive some prop-

erties of fundamental solutions of elliptic equations which appear to be of some

interest in themselves but are primarily needed to apply the theory of §2 to non-

selfadjoint uniformly elliptic equations. The equations to be considered will be of

the form

V    8   (     du\    V u  Su

whose coefficients are defined in a domain Í2 <=/?". As a specific application of §2

to equations of the form Lu=0, we shall generalize the following two propositions

known to be valid for ordinary differential equations :

(i) If ux(x) and u2(x) are linearly independent solutions of

-(au')'+bu' + cu = 0;       a(x) > 0

then the zeros of ux separate the zeros of u2.



322 KURT KREITH [May

(ii) If u(x) and v(x) are nontrivial solutions of

-(au')'+bu'+ cu = 0;       a(x) > 0
(6*1

-(fl!>')' + Ac' + (c-/0» = 0

where /»(x) > 0, then the zeros of v(x) separate the zeros of u(x).

While comparison theorems for equations of the form (5) have been studied by

Protter [5] and Swanson [6], these authors considered the more general case of

two elliptic equations which are allowed to differ in all their coefficients. By re-

stricting our attention to two equations of the form (5) which differ only in the last

coefficient c(x), we shall be able to derive a comparison theorem based on different

hypotheses. (In the case of the ordinary differential equations (6) which differ only

in the last coefficient, the corresponding simplification results from the fact that

both equations can be put into selfadjoint form by multiplying through by the

same factor : exp ( - J" b/a dx).)

In addition to the formal operator F defined in (5) we shall define a class of

operators Fs whose domains consist of sufficiently regular functions satisfying

8u/8v+su=0 on 8Q.. Here 8u/8v is the transverse derivative defined by

8u _ -sr*        du   8v

~8v ~ ¿> a" 8x~t dx,'

where 8v/8x¡ denotes the cosine of the angle between the exterior normal to 8Q.

and the positive xraxis. The function s(x) is to be piecewise smooth with values

satisfying — oo<s(x)^ +oo, where s(x) + oo is used to denote the boundary con-

dition zz(x) = 0. It is assumed throughout that the coefficients of F, the function s(x),

and the boundary of Q. are sufficiently regular to assure the existence of funda-

mental solutions for (Fs + y/)« = 0 for sufficiently large values of y. That is, given

s(x) we assume the existence of a constant K such that for y à K

(1) (Fs + y/)-y=   f  Gs(x,i;y)f(Ç)dt
Jn

defines a compact operator on =S?2(Q). We shall make use of the fact that Gs satisfies

(L + yI)Gs = 0       dGJdv + sG, = 0

in the first variable for each fixed £ e Ü and (F*+y/)Gs=0 in the second variable

for each fixed xe ii.

If s(x)^0 on 8Q. and c(x)+y^0 in Í2, then it follows readily from the maximum

principle that Gs(x, £;y) is positive in QxQ. We shall require a similar result

even if i(x) is allowed to assume negative values.

3.1. Theorem. Given s(x) defined on 8Q., there exists a constant K such that for

y^K the fundamental solution Gs(x, £; y) satisfying (7) is positive in QxQ..
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Proof. Define

for all ç>(x) which are continuous and have piecewise continuous first partial

derivatives in Q. and satisfy J"n <p2 dx= 1. Noting that

we can choose Kx sufficiently large such that for y~àKx the matrix

/axx    ■■■    aXn     bx

\bx      ■ ■■    bn     c + y/

is positive definite. For such a choice of y we clearly have iyy^ J(^[o»]-l-y). An

inequality due to Courant [9] asserts the existence of positive constants C and C,

depending only on the coefficients of F and on s(x), such that

(8) I [   sxfdx
I Jdn

< C(^H)1/2 + C

for all admissible <p. Given C and C we can choose K^KX such that for y ̂  K

(9) ,,M ^ i(^M + y) ä C(^H)1'2 + C.

Suppose now that y^K and that C7s(x, £ ; y) becomes negative in üxü. This

implies the existence of £o e ^ such that C7s(x, |0 ; y) < 0 in a subdomain Q0 of Ü

which is bounded by nodal surfaces of Gs(x, £0; y) and perhaps segments of 8D..

Since lim*..^ Gs(x, |0; y) = +°o, Gs is regular in ß0 and the function

cp(x) = kGs(x, f0;y)   in Q0,

= 0   in £2 — Í20

is made admissible in Courant's inequality by choosing the constant k such that

<p2 dx = k2       G2(x, $0;y)dx = 1.
Jn Jn0

By Green's theorem and the characteristic properties of Gs,

,,[,] - *■ lt [I « g g+Z >, g <=,+<c+r>«] *

= A:2 f    Gs(F + y/)C7sax + zc2 f Gs^ do.
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Since (L+yI)Gs(x, £0; y)=0 and 8Gs/8v= -sGs= -s<p/k on 8Q.0 n 8ÍI,

Vyl<P] =ä S<p2 í/ct
Jdn

and by (8), ijy[<p] < C(3¡[<p])112 + C. But this contradicts (9) and shows that Gs(x, £ ; y)

is nonnegative in £i x ii. That Gs(x, £0 ; y) is actually positive for any £0 e Q

follows from the fact that for sufficiently large values of y the Hopf maximum

principle applies to solutions of (L + yI)u = 0. Therefore if c(x0) + y>0 and

G(x0, £0; y)=0 for some (x0, ¿¡0)e Qx ii, then G(x, f0; y) must change sign at

X = Xq.

From Theorem 3.1 it follows that if J1 is JSf2(£i) and 3P is the cone of nonnegative

functions in 38 then, for sufficiently large values of y, (L+yl)'1 is a positive opera-

tor. The following theorem asserts the stronger result that for sufficiently large y,

(L + yl)'1 is zz0-positive.

3.2. Theorem. Let 38 be the Banach space J?2(Q.) and let 0 denote the cone of

elements in 38 which are nonnegative on £i. Given a fixed function s(x), — oo<s^oo,

there exists a K>0 such that for y^K, (Fs + y/)_1 is u0-positive.

Proof. Our proof involving the fundamental solution Gs(x, £;y) of (7) will be

a generalization of a similar result of Krasnosel'skiï and Sobolevskiï [11] for the

Green's function Gx(x, f ; y) (see also [8, p. 232]). We choose K sufficiently large

so that c(x) + K> 1 in £i and such that Gs exists and is positive in ii x ii for y^K.

It is shown in [8, p. 258] that for y^Kthe w0-positivity of (L+yl)'1 follows from

the following property of Gs(x, f ; y): For every domain ii0 of positive measure

which satisfies Q0cQ there exists a positive e, depending only on ii0, such that

f Gs(x,è;y)d$S  f   Gj(x, f; y) dt
Jn Jn0Jn0

To verify the existence of such an e we define <p0(x) = 1 in ii and a continuous

function

<px(x) = 0   in Q —ii0,

= 1    in some F2X <= Q0

and 0 S <Pi(x) S I elsewhere. The functions

T0(x)=  f Gs(x,!;y)<p0(F)^
Jn

and

both satisfy

xT1(x)=  f  Gs(x,$;y)<px($)di
Jn

(L + y)Yt = 9i,        i = 0, 1,

STi/Öv + sTi = 0   on 8Ü.;       i = 0, 1.
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Furthermore ,F1>0 in Q-{xe 8Ü | s(x)= +00}, and by the Hopf maximum

principle, 8Yi/8v<0 on r^ix e 8Q. \ s(x)= +00}. Since Tx is compact we can find

e0>0 such that T£(x) = T^x) — eY0W has a negative exterior normal derivative

for all x e Tx. At points of Q. at a small positive distance from ri; T^x) will clearly

be positive. Furthermore at points of O which are a positive distance from Tj

G5(x, f) is bounded below by a positive constant, so that Tq and XTX are strictly

positive and bounded on £2—IY Therefore we can choose ex^e0 sufficiently small

so that Ye(x) is positive everywhere in Q whenever e^ex. For such values of e

e f Gs(x, Ç; y) di $  \ Gs(x, $; y)<px(Ç) d£

for ail x e £2. But since Gs is nonnegative,

f  Gs(x, £ ; y)<px(Ç) de i   f    Gs(x, |; y) di,
Ja Jfio

which completes the proof.

3.3. Separation Theorem. Let ux(x) and u2(x) be nontrivial solutions of Lu=0

and let £2 be a nodal domain for ux. Then u2 changes sign in £2 or else u2 is a constant

multiple ofux.

Proof. Suppose u2(x) satisfies 8u2/8v+su2=0 on 8Q, and choose y sufficiently

large so that (L^+yl)'1 and (Fs+y7)-1 are w0-positive and c(x)+y>0. In order

to apply Theorem 2.6 it suffices to show that Gs(x, £; y)^Gx(x, £; y) in £2x £2.

To that end, suppose Gs(x0, £0; y)<G0O(x0, ¿j0; y). Then there exists a subdomain

£20cQ in which Gs(x, i0)<Gx(x, £0) and such that Gs — G^ vanishes on 8Q0. Since

Gs and Gx have the same fundamental singularity, Gm(x, $0; y)-Gs(x, £ol y) is a

regular solution of (F+y/)« = 0 in £20 which vanishes on 8Ù0. By the maximum

principle, this implies that Gœ(x, Ç0; y) — Gs(x, f0; y) = 0 in £20. Therefore Gs^Gœ

in ííxü.

Now according to Theorem 2.6 either w2 changes sign in £2 or else Fco«2=0. In

the latter case w2 = 0 on 8Q. and ux and zz2 are both positive eigenfunctions of

(F^+y/)"1. Since the maximal eigenvalue of (L^+yl)'1 is simple, ux/u2 =

constant.

3.4. Comparison Theorem. Let u(x) be a nontrivial solution of Lu=0 and let £2

be a nodal domain for u. Ifp(x) ä0 in £2 (p(x)^0) and v(x) is a nontrivial solution of

Lv—pv = 0, then v(x) changes sign in £2.

Proof. Suppose v(x) satisfies 8v/8v+sv=0 on 8Q. and let Hs(x, £; y) denote the

fundamental solution of (Ls -pl+ yl)v = 0. Let y be chosen sufficiently large so

that Hs(x, £; y) and Gx(x, ¿j; y) are positive inüxíl and such that (Fs-/»7+y/)_1

and (Fra +y/)_1 are zz0-positive.
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In order to apply Theorem 2.6 we need only show that HS^GX in íix D. By

the same technique used in the preceding theorem, it follows that H^H^. It

therefore remains to show that //„ ^ GM- To see this we apply the identity

(vLu-uL*v) dy = \u -s—z; -s- + Y b¡ — uv Ida
Jnr Jdn, i   *        8v    ¿-     8x¡     J

to the functions v(y) = G00(x, y; y) and u(y) = Hx(y, f; y) where iir is the domain

ii with spheres of radius r about y = x and y = £ deleted. As /• -> 0 we obtain (for

y as above)

(10)    f  [G.fo y)LHx(y, f) - H„(y, t)L*Gx(x, y)] dy = Hw(x, £) - G„(x, 0.
Jn

On the other hand, since LHx = (p-y)Hx and L*Gœ = — yGx, the integral on the

left side of (10) reduces to §npGxHx dy and we obtain

//«, = Gœ +     pGxHx dy £ G„o.

Therefore Theorem 2.6 applies. Since /z^O we can not have FMz;=0, and it

follows that v(x) changes sign in ii.

According to Theorem 3.1, for sufficiently large y, Go,(x, £;y) is positive in

ii x ii. As a final remark we shall show that Theorems 3.2 and 3.4 can be used to

characterize the appropriate range of values for y to assure the positivity of the

Green's function.

Choosing y0 sufficiently large so that (Fx+y0/)_1 has property (*), we know

that (F^+yo/)-1 has a maximal eigenvalue a0 and that the eigenvalues of

(LK + (y0 + a0)I)~1 all satisfy Re(A)>0. By the spectral mapping theorem it

follows that /.„o has a minimal real eigenvalue A0=l/a0 — y0 whose eigenfunction

may be taken positive in O and which satisfies A0 < Re (A) for all other eigenvalues

ofFœ.

3.5. Theorem. If y> — A0, then Gx(x, ¿j; y) is positive in Q. x ii.

Proof. Suppose that Goo(x0, Co;y)<0 for some fixed y> — A0. Then there exists

a subdomain íi0cQ such that G^x, |0;y)<0forxin ii0 and for which Go,(x, èo',y)

is a regular solution of

(F^+yFjGoo = 0   in D0,       Gx = 0   on 3ii0.

According to Theorem 3.4, every solution of (Fœ-A0/)z; = 0 must change sign in

ii0- But this contradicts the existence of a positive eigenfunction satisfying L„ v=Az;0

and shows that G«, is nonnegative in ii x ii. The fact that G» is actually positive

follows from the local validity at interior points of ii of the Hopf maximum

principle (as described in [13]).

Added in proof. The author recently learned that the first proof of a comparison

theorem for selfadjoint second order elliptic equations was given by Mauro Picone

in  Un teorema suite soluzioni delle equazioni lineari ellitiche autoaggiunte alle
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derívate parziali del secondo-ordine, Atti Accad. Naz. Lincei 20 (1911), 213-219.

This proof is based on a generalization of the Picone Identity for ordinary differen-

tial equations and is closely related to the transformation used by Clark and

Swanson [3].
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