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Introduction. There are well-known procedures due to Douglas [6], [7] for

finding an approximation to an analytic or harmonic function in the unit disk

when data are given at a finite number of points inside. The success of the error

analysis depends on estimates which show that an analytic or harmonic function

defined and bounded on the unit disk depends continuously on its restriction to a

concentric disk of smaller radius.

In general, the problem of determining a function in a given class from its

restriction is called the continuation problem. When the function exists, is unique

and depends continuously on its restriction, the continuation problem is said to be

well posed in the sense of Hadamard. For practical purposes continuous dependence

must be taken to mean Holder continuous dependence. When there is Holder

continuous dependence, the continuation problem, in the terminology of F. John,

is said to be well behaved. The estimates used in the error analysis of Douglas's

numerical procedures, due to Hadamard [12] for analytic functions and to Miller

[16] for harmonic functions, are an example of this kind. They show that the

continuation problem is well behaved for bounded analytic functions and for

bounded harmonic functions in the plane.

A more general result is due to F. John, who has shown in [14] that the continua-

tion problem for solutions of linear analytic elliptic equations of arbitrary order in

any number of variables is well behaved if a bound on the solutions is prescribed.

The subject of this paper is the nature of the continuation problem for the solu-

tions of nonanalytic elliptic equations in more than two variables. The main result

is that the continuation problem is well behaved for bounded solutions of (a class

of) elliptic equations with Cx coefficients and of arbitrary order. Continuous

dependence of the solution on its restriction is expressed in terms of the uniform

norm.

This result is derived in §§3 and 4. The derivation follows from the L2 estimates

with a weight function that Hörmander used in [13] to prove, among other results,
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uniqueness for the Cauchy problem. The generality of the estimates also makes it

possible to prove that the continuation problem for uniformly bounded solutions

of (a class of) principally normal equations is well behaved. Continuous depend-

ence, however, is not expressed in terms of the uniform norm.

The main assumption on which the estimates of Hörmander and the derivation

are based is that continuity must be considered only across surfaces that are

strongly pseudo-convex with respect to the operator. This assumption is discussed

in the last section. In particular, it is quite easy to show that any real-valued C2

function with a nonvanishing gradient is strongly pseudo-convex with respect to a

second order elliptic operator with real C1 coefficients.

The study of the continuation problem for the solutions of nonanalytic elliptic

equations in more than two variables begins with a three sphere theorem due to

Landis [15]. Landis's theorem shows that the continuation problem for the solu-

tions of second order equations in n variables with real coefficients is well behaved,

under additional mild restrictions to be stated.

It seems worth stating Landis's theorem as a convenient reference since the main

result can be viewed as a generalization of it. In order to state the theorem, suppose

the equation has the form

®        XaiÁx)^+%iHx)í+c{x)u=Q-

Assume that the coefficients aik are twice continuously differentiable; that all the

coefficients are bounded in absolute value by the constant M; that all of the partial

derivatives of first and second order of aik are bounded in absolute value by M;

that the remaining coefficients are continuously differentiable and their derivatives

are bounded by M; and finally that c(x)^0.

Theorem (Landis). In a sphere Q of radius r2<l with center at the origin assume

there is defined a solution of equation (i), continuous in the closed sphere. Let

M(r) = max \u(x)\.
l*l-r

Then for any rx and r, 0<rx<r<r2, the following inequality is valid:

,--\ .    .y/ n ^ i    •«  . Incr/r2   ,    .,,  . Incr/rx    ,   ,   c
(ii) In M(r) $ In M(rx) r—77 + ln M(r2) 7—4^ + ln In ->

In rx/r2 In r2/rx r

where c is a constant depending on the ellipticity constant, on M and on the dimension

n of the space.

The result of Landis has recently been extended by Gerasimov in [10]. With

a weaker condition on A¡, Gerasimov has obtained a less explicit version of (ii)

for products of operators of the form (i). His method of proof seems to be a devel-

opment of the method Landis used.
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The idea of Landis's proof is clear, although the details of it are obscure. The idea

is to modify the method of Heinz and Cordes used to establish strong unique

continuation for the solutions of a class of second order elliptic equations. Note

that an elliptic equation is said to possess the strong unique continuation property

if every solution which vanishes at a point of infinite order, that is, tends to zero

faster than any power of the distance from this point, vanishes identically. Strong

unique continuation was established by Carleman [4], Bers [2], Douglis [8] and

Morrey [17] for second order equations in the plane. The proof of Carleman uses

the method of Lx estimates for the solution in terms of the operator with appro-

priate weight functions. The same idea has been used for all later work on the

uniqueness question with the L2 norm taking the place of the Lx norm for more than

two variables. However, the method of Carleman's proof did not generalize to

higher dimensions, and uniqueness theorems for second order operators were first

obtained by Müller [18], Heinz [11], Cordes [5], and Aronszajn [1]. The paper of

Cordes is complicated, for the idea, which Landis applied to obtain a three circle

theorem, is to derive L2 estimates from a polar form for second order operators

that is obtained by a complicated transformation to spherical coordinates. This

generalizes the method of Heinz, valid when the principal part is the Laplacian.

A simplified approach to obtaining L2 estimates, which can be used to prove a

type of strong unique continuation theorem, was given by Protter in [19]. More-

over, it is clear how to modify Protter's derivation to obtain estimates that show

that the continuation problem for second order elliptic equations with real C2

coefficients is well posed. Unfortunately, the dependence on the restriction is not

Holder continuous. Thus, this approach to the problem does not yield an estimate

which is practical. In addition, it does not seem to generalize to higher order

equations.

An approach to the continuation problem based on strong unique continuation

estimates is somewhat misleading. The whole question of finding estimates to apply

to the continuation problem is handled more easily by looking at the estimates

used to obtain weak unique continuation rather than strong unique continuation.

An equation is said to possess the weak unique continuation property if every

solution which vanishes in an open set vanishes identically. When weak unique

continuation estimates are applied to the continuation problem, it becomes

apparent they are a simplification over strong unique continuation estimates. The

simplification is that weak unique continuation estimates do not need to be re-

derived for solutions that are not zero on an open set, whereas strong unique

continuation estimates do need to be modified for solutions without a zero of

infinite order.

The connection of the weak unique continuation property for elliptic equations

with theF2 estimates Hörmander used to prove uniqueness for the Cauchy problem

is that the weak unique continuation property and uniqueness for the Cauchy

problem are equivalent.
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1. Notation.    Let

P(x, D) = J aa(x)D"
laISm

be a partial differential operator, and let Pm(x, D) be the principal part. The follow-

ing notation will be used extensively,

P\1\X, Ö = dPm(x, ¿)/0£„ PmJ(x, f) = 3Pm(x, fl/é*,.

The operator P is obtained from F by conjugating the coefficients of P.

Also, the set CK(Q.) is the set of functions in Q which can be extended to functions

in CK(Rn).

2. Pseudoconvexity and principally normal operators. The concepts defined in

this section are due to Hörmander.

Definition A [13, p. 203]. Let i/ieC2 be a real-valued function defined in a

neighborhood of a point x° and assume that V</r(x°)/0. LetP(x, D) be a differential

operator of order m. The oriented surface defined by the equation i/>(x) = >/j(x0) will

be called pseudo-convex with respect to F at the point x if

i,k = l cxi

for all è¥=0 in /?n, satisfying the equations

(1) Fm(*,f) = 0,    |f«'(x,0|^ = 0.

The surface is called strongly pseudo-convex with respect to P at the point x if,

in addition,

(2) 2  TT-fe" W* O^^Tö + r"1 Im 2PmAx, QPgKxl) > 0
,-./£ = i ox}oxk Y

for all Ç=|4-/t grad </i(x), with ^ e Rn and 0#t e Fl5 satisfying the equations

(3) Pm(x,Q = 0,    ^P'i\x,t)^ = 0.
i oxi

Hörmander, in [13], proved a theorem that gives estimates valid for operators

with real coefficients. These estimates also hold for principally normal operators,

defined below, provided a more restrictive differentiability condition is imposed on

the coefficients. Moreover, operators with real coefficients are principally normal.

Thus, a weaker version of the theorem that gives estimates for operators with real

coefficients is also valid for principally normal operators.
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Definition B [13, p. 199]. Let

C2m_1(x, 0 = 2 Im 2 Pmj(x, OpWJ) = 0
i

if Pm(x, 0 = 0, f e F„, x e LI. F(x, F) is said to be principally normal in Q if the

coefficients of Pm are in C1(£2) and there exists a differential operator Qm-X(x, D),

homogeneous of degree m—l in D, with coefficients in C^D.), such that

C2m- !(x, I) = 2 Re Fm(x, 02m - x(x, 0,       I £ Fn.

3. Derivation of Holder continuity. Assume the hypotheses of the theorem of

Hörmander on Cauchy uniqueness [13, Theorem 8.9.1, p. 224]. Let F(x, D) be a

differential operator of order m with bounded, measurable coefficients in a neigh-

borhood Q. of a point x°. Also assume either F is principally normal and that the

coefficients in the principal part are in C2(Q) or else that Fm has real C1 coefficients

or that Fm is elliptic with C1 coefficients. Let ^bea real valued function in C2(Q)

such that grad i/i(x°) ̂  0 and the level surface defined by 0(x) = </i(x°) is strongly

pseudo-convex at x°.

Following Hörmander, let xb2 he the Taylor expansion of xb of second order at x°.

By [13, Theorem 8.6.1], there is an open set, w, about x° in which xb2 has pseudo-

convex level surfaces. By the same theorem for e>0 sufficiently small, xb'(x) = xb2(x)

-fi|x-x0|2 has pseudo-convex level surfaces in an open set co' about x°. For this e,

there is an open set co" about x° such that

|02(X)-^(X)|  < ie|x-X°|2

in co". It follows that xk'(x)<i/j(x) for x e co" and x#x°. Thus,

{x : xb'(x) = xb(x°), x * x°, x e co"} c {x : xb(x°) < xb(x)}.

Assume the closure of w, the closure of co', and the closure of co" are contained in Q.

Let C1' = oj n a)' n a>". Set </> = ehr. The L2 estimates now hold with weight function

<j>. More precisely, it follows by [13, Theorems 8.3.1, 8.4.3, 8.5.2, and 8.6.3], for A

sufficiently large, that

(4) 2    \\Dav\2e2^ dx-^ er [\P(x, D)v\2e2z^ dx
lolgm   J J

for v e Co"(ü') if F is elliptic, and

(5) 2    T \\L>av\2e2l'"dx £ c f|F(x, D)v\2e2'é dx
|«ISm-l     J J

for v e Cô(&') if F(x, F) is principally normal or has real coefficients, or is elliptic.

Observe that by the choice of </>', there is an open set 5^0' such that

(6) 5 = {x : x g Q', 4,(x) ä ^(x°), x ?é x0}

and

(7) 5 c {x : 0(jc) > ¿(x°)}.
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Choose x 6 C?(Q') to be 1 in a neighborhood Q." of x°. Let

Q£ = {x : x e Q',¿(x) > ¿(x0)-*},   tf = Ü" n Q, n {x : ./.(x) < <f,(x0)},

and, for S>0,

G = {x : 0 < v(x) < 1} n Q(1+á)£.

Since the inclusions (6) and (7) hold it is possible to pick e and 8 such that G <=

{x : 0(x°)<^(x)}.

If F(x, D)u(x) = 0 in £2, let zz = x«. Since v may be approximated in //(m) by

functions in C", (4) or (5) holds for zz according as whether F is elliptic or whether

P is principally normal or has real coefficients or is elliptic. Assume P is elliptic in

the steps which follow. The case for F not elliptic will be treated later in the section.

Observe that u(x) = v(x) for xeH and that P(x, D)v(x)=0 for xei2(1 + 4)e,

unless x e G. Also, </>(x°) — e < </>(x) for x e 0£ and </>(x) S </>(x°) — (l + S)e for

xeü'\üa + ó)E.

For t sufficiently large, say 0 < r0 S r, it follows from (4) that

2   f  \Dau\2e™ix0)-*dx =    2   Í  \Dav\2e2imx0)-* dx

S   2   í   |F>aiz|2e-2tW,<*0)-£lax

S w f |F(x, /))») V[*(*0)-(1+a)i] dx

+ ctJ |F(x, F>)tz|
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Hence, where uH and vnc are the restrictions of u and v to H and D£ respectively,

Il «H lion) â ||l>nJon) = Cre" f |F(x, F)z;|2 dx

Define a by

Define

and

+ CT f |F(x, x>)t,|Vt[*w-*<x0) + (l + i>tlax.

SUD e2l[l*(;>:) ~ *<*°> + £J   —   g2t(a + i:)

ufe,- f   |F(x, Z>)z>|2 ax,
Jsi'

f |F(x, Z>>|«||£ =  I   |F(x, F)z;|2 dx.\\G

The estimate now reads

KIU = Kl« = Cr"»[«-"|ll|o,+**+«'|li|0]

= c\e ||M||n< + e IImIIgJ>

for some k>0 such that 0<8 —1/zc.  The constant c depends on e, 8, k and t0.

For M0 >0, let

FMo = {u : P(x, D)u(x) = 0, x e Q, ||«||a. £ M0}.

Certainly, for u e UMo,

(8) \\uH\\m í KJ(m) á c{r-""-1'»AÍ,+í*+«+1*w|ii|8l.

For « g t/Mo, choose t^O such that ||K||G = e-I[a+<1 + d>£]A/o.

If T ä t0, it follows that

KIU = Kl<»> = cM¿-a||M||S,

where a = £(8-l/Â:)[a + (l + 8)e]-1.

Observe that if 0¿t¿t0, the estimate (8) is valid with a different constant c.

Again, it follows that

KIU   =   cA/à-«H|S.

In exactly the same way, but with (4) used in place of (5), if F(x, D) is principally

normal or has real coefficients, we obtain

Kilo»-» = Kla.-i> = er-^Mh-'Mi,

for m g UMo, Tf^O. The Holder exponent is, in this case, j8 = £8[a + (l + 8)e]-1.

The conclusions may be summed up in the following more formal statement.

Theorem 1. Let u satisfy F(x, D)u(x) = 0 for x e Q.

Under the assumptions made at the beginning of this section about the operator

and about the level surface xb(x) = xb(x°), it follows that

Kilo»-» á KIL-D = cT-u'Mh-'WuW
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when P(x, D) has real coefficients or is principally normal, and

(9) Kllcm, Ú K||(m) S cJfá-«||ii||5

when P(x, D) is elliptic, where zz = yw for u e C£(Q.') and x=l on a neighborhood

of x°. The Holder exponents are

ß = e8[a+(l + 8)e]-1   and   a = e(8-l/k)[a + (l + 8)e]~1.

The constant k satisfies 0<8—l/lc. The positive constants e and 8 are chosen suffi-

ciently small to meet requirements imposed by the geometry. The constant a is a bound

for (f>(x) — <f>(x°) if x is in G. As G depends only on x, a depends only on </> and x- The

constant c depends on e, 8, t0, and k. The constants t0 and k depend only on P and 8

respectively.

4. Pointwise estimates. If u is the solution of an elliptic equation F(x, D)u(x)=0

in D with zwth order derivatives that are Holder continuous, it is possible to convert

the bound M0 and the norms \\u\\H and ||m||g in (9) respectively to a pointwise

bound on |w| in Q and the uniform norm of m in H and the uniform norm of « in an

open set containing the closure of G.

Before a statement of the formal result can be given, it is necessary to observe

that a version of (9) holds true for some F satisfying F > e. Thus, let

(10) G' = {x :0 < x(x) < 1} n Qa+<)t,,   a' = £'(S-l/A:)[a+(l + â>']-\

and let 8 be the same as in Theorem 1. Choose e>e such that

G' <=-{x: Kx°) < <A(x)}.

This choice of e is possible since the set {x : </j(x°) < ¡/>(x)} contains the closure of

G = {x : 0 < x(x) < l}n£l(lt))t.

The derivation in §4 may be repeated with e, a, and G' in place of e, a and G

respectively. The result is that

(ii) Kll<m>= K.IU á cm¿-«-|«is:.

Let A be a neighborhood of x° in {x : i/<(x0) < </>(x)}. Observe that the constant F

may also be chosen such that if G is contained in the interior of 7Y, then G' is

contained in the interior of N as well.

Theorem 2. Let N, e and G' satisfy the definitions and properties in the para-

graphs just above. Let P(x, D) be an elliptic operator for which (9) is valid and let u

satisfy P(x, D)u(x) = 0 in Q. Assume u and the derivatives of u up to order m are

defined and continuous on the closure ofil. Also assume that the mth order derivatives

ofu are Holder continuous in Ù with, say, exponent ß. Let M be an upper bound for

\u(x)\ for x e H. Let i e H. Let B(£, R) denote the ball of radius R with center at £.

Choose R such that B(Ç, R) <= £2£.. For a defined in (10), it follows that:
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(i) Ifn/2<m, then

|w(f)| S cJt-tf1-"'K|S;

(ii) if2^mSn/2and3<n,then

I«(01 è o/?-HMs,p[A/1-ar'||wJvp1/p

where l/p+l/q=l, s=\/(q—l), p, = n—n/q, v=[q(m — n) + n]~llQ and q is chosen

such that q(m — n) + n>0. The constant c depends on m, Ü, Ü', A', G, e', 8, the ellip-

ticity constant ofP and bounds for the LX(Q) norms of the coefficients of P.

Proof. Let u satisfy P(x, D)u(x) = 0 in £1 Recall that M0 is an upper bound for

||«||n-, that is,

HIE. =  f   \P(x, D)v\2 dx Ú Ml
Jn'

By taking the maximum on ii' of the quantities inside the integral, it is clear that

m-l

II«!?,, è const 2 suP \D"u(x)\2.
lfl|=0 *sn'

Recall that LV <= Q. Since the zzzth order derivatives of u are Holder continuous,

Schauder type interior estimates (see [3, p. 232]) can be applied to show that the

sum
m-l

2   sup \D"u(x)\
lfl| = 0 xen'

is bounded by a constant, c, times the maximum of |«| on Ù and hence by cM.

Thus,
m-l

¡«H2,. ̂ const  2  sup |F"«(x)|2 g const M2.
\p\ = o *ei1'

It follows that the global bound M0 in (11) may be replaced by the pointwise bound

M for |«(x)|, x g Q.

The interior estimates also yield a uniform bound for

IMS, =  f   |F(x, F>(x)|2 dx.
Jo-

Thus, ||u||G-¿const K||oo. Hence,

(12) Klo», Ú K.|o»> = cAfi-'WusWi

where the constant c depends on m, 0-, Q.', N, G', the ellipticity constant of F(x, D)

and bounds for the L^Ù) norms of the coefficients of F(x, D).

It remains to replace the Sobolev norm K||(m) by the uniform norm Kl,».

Let | g FT. Choose F such that F(f, Ä)cüs, There are two cases according as

whether n/2<m or whether (2¿) mún/2.
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If zz/2 < m, then by the lemma of Sobolev [9, p. 282], it follows that

where c depends only on «. Observe that zz/2 < m when n S 3, which is the case of

greatest physical significance.

If m S n/2, a pointwise estimate can be derived under the assumption that \u\ is

bounded on Ü. The derivation begins with the remark that in one proof of a

version of the Sobolev lemma [9, p. 282], the following identity is established:

M(f) j do = (- iy/(m-1)! j Ç r—* J^ (hu) dr da

where r=|x — £|, a is the (n — l)-dimensional unit sphere, h(t)=g(t/R) and g is a

C°° function such that g(t) = l for tS\ and g(t)=0 for 1 St. Holder's inequality

implies that

ff I fm \p     -iiip r f   i-R -ii/«
(13)       \u(0\ S const —x(hu)\  dx\ ¿m-n»rn-idrda\    t

Us(i.Zi) I or S        tJa Jo J

where l/p+l/q=l, p and q positive.

Recall that 3 <zz. Since 2SmSn/2, it follows that zz/2Sn — mSn — 2. The second

integral above on the right is bounded if (m—n)q+n >0. This condition is satisfied

by the proper choice of q such that 1 <q<2. In fact, q<n/(n-m) and n/(n-2)

Sn/(n — m)S2. Hence,

f   f   r^-^r11-1 drdo = R^m-n) + n[q(m-n) + n}-1 [ do.
Jo Jo Ja

Schwarz's inequality shows that the first integral of (13) is bounded by

f        I dm I2        f
\^(hu)\dx

Jbu.r) I or j¡BU.RI

| 8m(hu)

8rm
dx

where s=p— 1 = l/(q— 1). Since \dkh(t)/dtk\SAk/Rk, Leibniz's rule implies that

dr'
(hu) S const R-m  2

MSm

8»u

dx"

Therefore,

/Jb(í,r)

dm

cV-{hu) dx S const R-2m    2        f d"w

Sx'
í/x

const R-2m\\uH\\fm),

and
8m

^-s (Am)
r  ^    i g«» h2s

; const/?"2-     2    \j£\\   ■

If Mis the bound on |w| in Ü, given in the hypothesis, then, by the interior estimates
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[3, p. 232], a constant multiple of M is a bound on the derivatives of« up to order m

in B(è, R). Hence

\em(hu)/drm\2s <, const M2sR~2sm.

It follows that

rr       | dm        \p    I2
^ (Aw) \  dx \   ^ const F-2m|Mfm)M2sF-2sm.

LJbíí.b) I or J

Hence, (13) becomes

\u(i)\ è [F-",||MH||Cm)F-smMs]1'p[F'I(m-'l,+n/o(zz^-z^)-l-z^]1",

= M*ipvR-»[\\uH\\,n)f'p $ M'»vR-,'[\\v0..\\im)\1'*

where p = n—n/q and v = [q(m—n)+n]~1"'. The estimate in (ii) now follows from

(12).

5. Pseudo-convexity. In order to obtain Holder continuous dependence across

a surface through a point x° for the continuation of a solution of an elliptic equa-

tion, it is sufficient to know there exists a real-valued function xb e C2(Q) such that

Vi/i(x°) t¿ 0 and the surface defined by xb(x) = <A(x°) is strongly pseudo-convex at x°

with respect to the operator. The existence of xb is simplified for some second order

elliptic operators. The operators discussed here for which this simplification is

possible are those with real coefficients and those that can be factored. In fact for

the class of second order operators with real C1 coefficients, the existence of xb is a

complete triviality.' For, suppose we have an operator with real coefficients

ajk e C^Q.) that is elliptic in D. Let £ = i+irVxb(x), where xb is any C2 function for

which V</>(x)^0. The condition (3) in the definition of strong pseudo-convexity,

namely,

Fm(0 = 0   and   2 PÜ\x, 0^ = 0,

takes the form Fm(£) = 0 and

Therefore,

0 = 2 «*(*) |r (*) f£ (*) = "WM]2 > 0,

where a is the ellipticity constant. Hence, there is no £ for which (2) must be verified,

and xb meets the requirements of the second half of the definition. The first half is

satisfied even more trivially since the operator is elliptic. This completes the case

for F with real coefficients.

The assumption that the polynomial F(x, Ç) can be factored at x considerably

simplifies the computations that are necessary to make in order to verify strong
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pseudo-convexity. This is the other kind of second order operator we discuss. Thus,

suppose

F(x,0=F(Ç)=(2^)(2^).

If F is elliptic, only (2) must be verified when (3) is fulfilled. Hence, assume, P(l) =0,

and

2^0)(o^w = o

where £ = £ + hVi/r(x).

First, observe that F(,)(Q/0 for somey" is a necessary condition that a strongly

pseudo-convex function ¡/j must satisfy. For, if </< is strongly pseudo-convex, and if

<7> = eAl* for A sufficiently large, then, by [13, Theorem 8.6.3],

2    Ta<™-i«i> flT^z/IV^ax 5 AV [|F(x, D)u\2e™ dx,
lalSm J J

m e Co°(i2'), for some neighborhood ÍF of x. For this estimate to hold, it is necessary

[13, Theorem 8.1.1] that

|t|io-i> á 2AÍ2 g£^Fü,(x,OF^^) + T-Mm2Ffc(x,ÖF^^ol

for £ = £ + /crV</>(x), with | eRn and O^e^ satisfying F(x, 0 = 0. Since |£|^0

and Vi/i(x) = cxV</>(x), the estimate cannot hold if P(k)(x, £ + /tVi/i(x)) = 0 for each k.

The fact that Pm(Q^0 for some & implies only one of the factors, say 2z bfa, of

F(£)=0 can be zero. For,

Pm(0 = ak 2 W,+k 2 % = A* 2 «a # °
Z .' J

implies 2j fl/£/#0.

The condition 2;F^(0 8i/>(x)/dXj = 0 now yields

0 = 2F(0 = £/*»(£& = 2^(0^

ox,-
+2p,í,©'víw = 2^06 - o.

But,

o = 2pU)(0ii = 2 (fl^+ • ■ • +«»f.)0,&

-(2«a)(Jv*) =0-
Therefore, 2, 6,F,,=0 since J,,-a^j-^O. Therefore,

F(o = (2«z6)(2^) =0'

which is impossible as F is elliptic and | is real, unless f=0.
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Hence, it remains to verify that (2) can hold when £=0. When it is written out

for the case

P(z)= (ja,i,)(|;u)

with Z;Aj£j=0 and PU)(Q = b, %k ak{k, verification of condition (2) reduces to

showing that

2 a& ' 2 -A^AÄ + r-1 Im  2 «¿ ' 2 fe Ê* £/) fi* > °-
i i.k 1 k   \ j   vxk     I

Let bj=ß, + iyj and r¡j = 8xb/dxj(x). It follows, since £ = 0, that

^äxt+^ak      \   j    ^k      / ;,fc

Therefore, (2) reduces to

All quantities are fixed in the second sum in the brackets. Hence, the term is posi-

tive whenever the eigenvalues of (d2xb(x)/dXi dxk) are sufficiently large, since

[2.Ía,l,j\j=0 and since (bx,..., 6n)^0.
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