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What conditions on a locally compact ring with identity imply that it is the

topological direct product of finitely many topological algebras over indiscrete

locally compact fields? In [11, Theorem 4] it was shown that for an equicharacter-

istic ring A (an equicharacteristic ring A is a commutative ring with identity such

that ¿/m has the same characteristic as A for every maximal ideal m) a necessary

and sufficient condition is that A be a semilocal ring none of whose maximal ideals

is open (a semilocal ring is a commutative ring with identity that has only finitely

many maximal ideals). The restriction to equicharacteristic rings is unsatisfying,

however, for it rules out cartesian products of algebras over, indiscrete locally

compact fields of differing characteristics.

Our principal purpose is to find necessary and sufficient conditions for a locally

compact ring A with identity to be the topological direct product of finitely many

topological algebras over indiscrete locally compact fields (of possibly differing

characteristics). That the additive order of each element of A be either infinite or a

square-free integer is clearly a necessary condition, and we shall prove (Theorem 8)

that this condition together with the following is both necessary and sufficient:

the center of A contains an invertible element that is topologically nilpotent. En

route, we shall obtain a structure theorem for commutative locally compact rings

having an invertible element that is topologically nilpotent: such a ring is the

topological direct product of finite-dimensional topological algebras over the field

of real numbers and certain locally compact rings that arise naturally from com-

mutative algebra. We shall investigate these rings—suitably topologized total

quotient rings of one-dimensional Macaulay rings—in §1, and use the results

obtained to investigate locally compact rings in §2.

1. Topological quotient rings of one-dimensional Macaulay rings.    Let F be a

commutative topological ring with identity. For each be B, let Lb : x -> bx. The

set 5 of all cancellable elements b e B such that Lb is an open mapping from F into

F is clearly a multiplicative subsemigroup. We topologize Bs, the quotient ring of F

relative to 5 [14, p. 46], by declaring the filter of neighborhoods of zero in F to be a

fundamental system of neighborhoods of zero in Bs. In particular, B is open in Bs ;

consequently Bs is a topological group under addition [1, p. 12], and multiplication
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is continuous at (0, 0). Moreover, for each s e S, Fs-i is continuous at zero in Bs

since Ls is an open mapping from B into B; hence Bs is a topological ring [1, p. 75].

It is easy to see that if M is any multiplicative subsemigroup of B consisting of

cancellable elements, then BM, topologized by declaring the filter of neighborhoods

of zero in B to be a fundamental system of neighborhoods of zero in BM, is a topo-

logical ring if and only if M£S. We are thus led to the following definition.

Definition. Let B be a commutative topological ring with identity, and let A be

the quotient ring of B relative to the multiplicative subsemigroup consisting of all

cancellable elements b such that Lb is an open mapping from B into B. The B-

topology on A is the topology obtained by declaring the filter of neighborhoods of

zero in fi to be a fundamental system of neighborhoods of zero in A. The topological

quotient ring of B is the topological ring A equipped with the fi-topology.

We wish to investigate the topological quotient ring of a local noetherian ring B

topologized with its natural topology (the powers of the maximal ideal of B form a

fundamental system of neighborhoods of zero for the natural topology). By

Theorem 1, we need only consider one-dimensional Macaulay rings (we recall that

a one-dimensional local noetherian ring is a Macaulay ring if and only if its maxi-

mal ideal contains a cancellable element [15, p. 397; 14, Corollary 3, p. 214, and

Remark, p. 215]).

Theorem 1. The topological quotient ring of a local noetherian ring B is a proper

overring of B if and only if B is a one-dimensional Macaulay ring.

Proof. Necessity. By hypothesis, the maximal ideal m of B contains a cancellable

element b such that Lb is an open mapping from B into B. In particular, Bb is open

and hence contains a power of m, so Bb is a primary ideal and m is its radical

[14, Corollary 1, p. 153]; consequently, dim BSl [15, Theorem 20, p. 288]. If

dim B = 0, then B would be a primary ring, so mn = (0) for some n^l [14, p. 204],

and hence m would contain no cancellable elements, a contradiction. Therefore

dim B= 1, so B is a one-dimensional Macaulay ring. The sufficiency of the con-

dition is part of Theorem 2.

The author is indebted to the referee for suggesting the statement of (4) of

Theorem 2 and for a consequent simplification of the author's original proof of

Theorem 3.

Theorem 2. Let A be the topological quotient ring of a one-dimensional Macaulay

ring B. Let m be the maximal ideal of B, px,. .., ps the prime ideals of the zero ideal

ofiB.
(1) Ifib is a cancellable element of B, then Lb is an open mapping from B into B;

thus algebraically A is the total quotient ring of B.

(2) A is a noetherian ring whose maximal ideals are Apx,..., Aps, and these are

also the only proper prime ideals of A.

(3) The Jacobson radical of A is nilpotent.

(4) A is artinian.
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(5) The set G of all invertible elements of A is open, and x -+■ x 1 is continuous

on G.

Proof. As m contains cancellable elements, to show that A properly contains F

it suffices to establish (1). Let A be a cancellable element belonging to m, and let

Bb = qx n- ■ -n qm be a primary representation of FA. By [14, Corollary 3, p. 214], A

belongs to the complement of px u • ■ ■ u ps. Thus as the only proper prime ideals

of F are pu ..., ps, and m, the radical of each q, is tn, and therefore ffl" £ c\i n ■ • ■

n qm = FA for some n^l [14, p. 200]. Thus for each r^O, mrb = mrBb^mr+n, so

Lb is an open mapping from B into B.Ifbxi m, then A is invertible in B, so Lb is a

homeomorphism from B onto B.

By [14, pp. 223-225], A is a noetherian ring whose only proper prime ideals are

Api,..., Aps, and Apk n B=pk for each k e [1, s]. Consequently, each Apk is both

a maximal ideal and a minimal prime ideal of A. The Jacobson radical t of ¿ is

thus Apx n- ■ -n Aps; by [14, Theorem 7, p. 211], each ¿p*. is a prime ideal of the

zero ideal of A, so a suitably high power r" of r is contained in each (isolated)

primary component of the zero ideal; hence rn = (0).

Thus A is a semilocal noetherian ring whose radical is nilpotent. Hence (4) holds,

for such a ring is necessarily artinian. To show this, it suffices by [14, Theorem 2,

p. 203] to show that a proper prime ideal p of ¿ is one of the maximal ideals

mx,..., mn. If not, p n m¡ ctrtj for each i e [1, n], so there exists c¡ g tn¡ such that

Ci xt p. As p is prime, c = cx • ■ ■ cn xt p. But as c e r, c is a nilpotent element not be-

longing to the prime ideal p, a contradiction. Thus A is an artinian ring. By [10,

Theorem 8], (5) holds.

We shall say that a local noetherian ring A is aligned if the set of prime ideals of

¿, ordered by inclusion, is totally ordered. Thus a one-dimensional aligned local

noetherian ring has precisely two proper prime ideals, one contained in the other.

Theorem 3. Let A be the total quotient ring of a one-dimensional Macaulay ring

B. Then A is the direct product of ideals Ax,..., ¿n, where each Ak is the total

quotient ring of a one-dimensional aligned Macaulay ring Bk. Moreover, A, equipped

with the B-topology, is the topological direct product of Ax,..., ¿n, where each Ak is

equipped with the Bk-topology.

Proof. By Theorem 2, A is artinian, and hence A is the direct product of local

artinian rings Ax,..., An [14, Theorem 3, p. 205]. For each k e [1, «], letfk be the

projection on Ak along J_jtk ¿„ and let Bk=fk(B). Let 5 be the multiplicative semi-

group of cancellable elements of B. If s e 5, then s is invertible in ¿, so fk(s) is

invertible in Ak and hence cancellable in Bk. Thus/fc(5) is contained in the set of

cancellable elements of Bk. Clearly every member of Ak is the quotient of an element

of Bk and one of/fc(5). Thus Ak is contained in the total quotient ring of Bk. Hence

if j is a cancellable element of Bk, then y is also a cancellable element of Ak, and

consequently j is invertible in Ak, for as Ak is a local artinian ring, every element of

Ak is either invertible or nilpotent. Therefore Ak is the total quotient ring of Bk.
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Let m be the maximal ideal of B. Then as Bk is a homomorphic image of B, Bk is a

local noetherian ring whose maximal ideal isfk(m), and dim /ifc^dim B= 1. But if x

is a cancellable element of B belonging to m, thenfk(x) is a cancellable element of

Bk belonging to /¡(m), as we saw above. Thus dimßfc^0, as a zero-dimensional

local noetherian ring has a nilpotent maximal ideal. Consequently, Bk is a one-

dimensional Macaulay ring. If pu ..., pr are the distinct associated prime ideals

of the zero ideal of Bk, then Akpx,..., Akpr are the distinct proper prime ideals of

Ak by Theorem 2, since Akp, n Bk = p¡; hence r= I as Ak is local, so Bk is a one-

dimensional aligned Macaulay ring.

For each k e [1, n], let ¡Fk be the topology induced on Ak by the fi-topology of A.

Let ek be the identity element of Ak. Then the projection/^ is the function x -> xefc,

so/is continuous. Hence A, equipped with the .fi-topology, is the topological direct

product of (Ax, 3~x),..., (An, ^n). We have left to show that 3~k is identical with the

fijc-topology 9~k of Ak. Let mk=fk(m), the maximal ideal of Bk. Clearly m^ = mrefc

for all r^ 1. Now

utr £ m'ek + 2 Aj,

for if x e mr, then xek e mrek and x — xek e J_^k Aj-, hence o=mrek + Jiji,k A, is a

neighborhood of zero for the fi-topology of A, sofk(o)=mrek=mrk is a neighborhood

of zero for 3~k as the projection function fik is an open mapping from A onto Ak,

equipped with topology ¡?~k. Hence every ^¡.'-neighborhood of zero is a ^.-neighbor-

hood of zero. Let ek = akbk1 where ak e B, bke S. Then

(bkek)mk = bkekmTek = (bkek)mr = akmr £ mr,

so (bkek)mrkçzmr n Ak. Now bkek=fik(bk) is cancellable in Bk as we saw earlier, so

(bkek)mrk is a neighborhood of zero for topology $~k by (1) of Theorem 2. Thus

mr n Ak is a .^¡'-neighborhood of zero. Hence every ^¡.-neighborhood of zero is a

.^¡.'-neighborhood of zero. Thus ^¡. = ^¡'.

2. Application to locally compact rings. An element b of a topological ring is

topologically nilpotent if limn¿zn=Q. We recall that a local noetherian ring A,

equipped with its natural topology, is compact if and only if A is complete and its

residue field is finite [10, Theorem 7]. Moreover, if a compact ring A is algebraically

a local noetherian ring, then the given topology of A is its natural topology [10,

Theorem 4].

Theorem 4. Let A be a commutative locally compact ring with identity. The

following statements are equivalent:

1 °. A is totally disconnected and possesses an invert ¡ble element that is topologically

nilpotent.

2°. A is the topological direct product of a sequence (Ak)Xikén of locally compact

ideals, where each Ak is the topological quotient ring of a compact, one-dimensional,

aligned Macaulay ring Bk.

If A satisfies 1 ° and 2°, then A is semilocal and its Jacobson radical is nilpotent.
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Proof. Let A he the topological quotient ring of a compact, one-dimensional

aligned Macaulay ring B. As F is compact, A is locally compact; as the open

additive subgroups of A form a fundamental system of neighborhoods of zero, A is

totally disconnected. As F is a one-dimensional Macaulay ring, its maximal ideal

contains a cancellable element A; hence A is invertible in A and limn A" = 0. Also A

has a nilpotent maximal ideal as A is artinian by Theorem 2. Thus if 2° holds, then

Io holds, A is semilocal, and its Jacobson radical is nilpotent.

To show that Io implies 2°, let A be totally disconnected, and let c be an in-

vertible, topologically nilpotent element of A. By [8, Lemma 4], A contains a com-

pact open subring B'. As limn cn = 0, there exists s^ 1 such that cs e B'; as cs is

invertible, x -*• c~sx is a topological automorphism of the additive group A. Thus

c~sB' is a compact additive group that contains the additive subgroup of A gen-

erated by 1. Therefore there is a compact open subring F of A that contains 1

[8, Lemma 5]. As lim cn = 0, cm e B for some m¡¡ 1 ; as cm is invertible, we may, by

replacing c with cm if necessary, assume that c e B.

Let r be the Jacobson radical of B. By [7, Corollary of Theorem 13], r is closed,

and by [7, Theorem 16], B/x is topologically isomorphic to the cartesian product

fi Fa of a family of finite fields (each equipped with the discrete topology). Clearly

c + r is a topologically nilpotent element of B/x. But the zero element is certainly

the only topologically nilpotent element of n Fa, as each Fa is a discrete field.

Hence c ex. Consequently, as x -*■ ex is a homeomorphism from A onto A, Be is

an open ideal of F that is contained in r. Thus r is open, so B/x is compact and

discrete and hence finite. Consequently, B/x is isomorphic to the cartesian product

of a finite family of finite fields, so B has only finitely many maximal ideals

ml5..., mn. As r is a topologically nilpotent ideal [7, Theorem 14], F is suitable for

building idempotents [11, Lemma 4]. Hence there exist orthogonal idempotents

ex, ..., en in B such that ei+ ■ ■ ■ +en=l and, for each ke[l,n], ek=l mod mk,

e¡ = 0 mod mk if/V/V [4, Proposition 5, p. 54]. For each k e [1, n] let Ak be the ideal

Aek. Asx-+ xek is continuous, A is the topological direct product of the ideals

¿!,..., ¿„ [1, Proposition 2, p. 72]. Also Bk = Bek is a compact open subring of Ak,

since Bek = Aek n B. Clearly vcxk is the only maximal ideal of Bk, and ck = cek is an

invertible element of Ak that belongs to mk and is topologically nilpotent. Thus

x —»■ ckx is a homeomorphism from Ak onto Ak, so Bkc2 is an open ideal of Bk

contained in tn2; hence nt2 is open. By [7, Theorem 20], Bk is a local noetherian ring

and the topology it inherits from A is its natural topology.

We wish next to show that Ak is the topological quotient ring of Bk. Every

element of Ak belongs to the topological quotient ring, for if a g Ak, then ack -> 0,

so ack e Bk for some m ̂ 0, whence a=(ack)ckm belongs to the topological quotient

ring of Bk asx^ ckx is a homeomorphism from Ak onto Ak. Conversely, let A be a

cancellable element of Bk such that x -> Ax is an open mapping from Bk into Bk.

As ck is an invertible, topologically nilpotent element of Ak and as Bk is a compact

open subring of Ak, (Bkck)niX is clearly a fundamental system of neighborhoods
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of zero in Ak. Therefore as Bkb is open, there exists m such that Bkck^Bkb, whence

ck=zb for some z e Bk. As ck is invertible in Ak, so is b; thus Zz_1 e Ak. Con-

sequently, Ak is the topological quotient ring of Bk. Since ck e mk, c^1 is an element

of Ak not belonging to Bk. Thus by Theorem 1, Bk is a one-dimensional Macaulay

ring. The desired conclusion now follows from Theorem 3.

We recall two classical theorems of algebra : the radical of a finite-dimensional

algebra over a field is nilpotent (as the radical of an algebra is an algebra ideal

[4, Theorem 1, p. 18], the classical argument [4, Theorem 1, p. 38] in the context

of algebras requires only the descending chain condition on algebra right ideals); a

finite-dimensional algebra over a field has only finitely many regular maximal ideals

(a consequence of Wedderburn's Theorem on semisimple finite-dimensional

algebras).

The following theorem is essentially due to Jacobson and Taussky [5,

Theorem 3].

Theorem 5. Let A be a connected locally compact ring. Then A contains a

compact ideal f) such that Al) = (0) and A/\) is a finite-dimensional topological algebra

over the field R of real numbers. Moreover, A contains only finitely many regular

maximal ideals.

Proof. By the Pontrjagin-van Kampen Theorem [13, p. 110], the additive

topological group A is the topological direct sum of a subgroup topologically

isomorphic to Rn for some zz^O and a compact group Í). By [8, Theorem 1],

Al) = (0), so f) is a closed ideal of A. Thus A/Í) is a locally compact ring that,

considered as an additive topological group, is topologically isomorphic to Rn. By

[5, Lemma 2], we may regard 4/Ï) as an «-dimensional topological Ä-algebra.

Consequently, 4/1) has only finitely many regular maximal ideals. Every regular

maximal ideal of A contains h since I) is a nilpotent ideal. Hence A has only

finitely many regular maximal ideals.

A Cohen algebra [12] is a local algebra over a field whose maximal ideal has

codimension one. The following is our structure theorem for commutative locally

compact rings possessing an invertible, topologically nilpotent element.

Theorem 6. Let A be a commutative locally compact ring with identity. The

following statements are equivalent:

Io. A contains an invertible element that is topologically nilpotent.

2°. A is semilocal, and none of its maximal ideals is open.

3°. A is the topological direct product of a sequence (Ak)XSkSn of ideals where each

Ak is either a locally compact finite-dimensional Cohen algebra over R or the field C

of complex numbers or the topological quotient ring of a compact one-dimensional

aligned Macaulay ring.

Proof. 1° implies 2°: If A is connected, then A is a finite-dimensional topological

algebra over R by Theorem 5 as A has an identity element; consequently, A is
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semilocal, and none of its maximal ideals is open (as a topological vector space

over R contains no proper open subspaces). We shall assume, therefore, that A is

not connected. Let c be the connected component of zero in A. Then A/t is totally

disconnected and has an invertible element that is topologically nilpotent, so by

Theorem 4, A/t is semilocal. Consequently, A has only finitely many maximal ideals

that contain c. As c is an ideal of A, for each regular maximal ideal n of c there is a

unique maximal ideal m of A such that m n c = n [9, Chapter I, Exercise 6(c)] ;

conversely, if m is a maximal ideal of A that does not contain t, then m n c is a

regular maximal ideal of c as c/(m n c) is canonically isomorphic to (c + m)/m

=A/m. Thus m -> c n m is a bijection from the set of maximal ideals of A not

containing c onto the set of regular maximal ideals of c, a finite set by Theorem 5.

Hence A is semilocal. If b is an invertible element of A such that lim ¿zn=0, then

for no zz^O does bn belong to a proper ideal of A, as bn is invertible; hence A has

no open maximal ideals.

To show that 2° implies 3°, we shall first show that if A is totally disconnected

in addition to satisfying 2°, then A has an invertible element that is topologically

nilpotent and the Jacobson radical of A is nilpotent. The argument of [12, Lemma 3]

shows that A contains a compact open subring B whose radical R is open. Therefore

A is a ß-ring, and hence all the maximal ideals mx,..., mn of A are closed [7,

Theorem 2]. By hypothesis, none of them contains an interior point, so as each m¡

is closed, (Jj*= ! m¡ also contains no interior point. Therefore the complement G

of U"=i mi is dense, and in particular, G n R^=0. But each element of G is in-

vertible, and each element of R is topologically nilpotent [7, Theorem 14]. Thus

A has an invertible element that is topologically nilpotent, and consequently by

Theorem 4 its radical is nilpotent.

Next we shall show that, in general, the radical r of A is nilpotent. Let c be the

connected component of zero in A. Either A/t is a zero ring, or A/t is a totally

disconnected semilocal ring none of whose maximal ideals is open. By the pre-

ceding, the radical of A/t is nilpotent. But (r + c)/c is contained in the radical of A/t

[4, Proposition 1, p. 10]. Thus rm£c for some rnï: 1. The proof of the latter half of

[12, Lemma 6] now establishes that r is nilpotent. Consequently by [12, Lemma 2],

A is the topological direct product of a sequence (Ak)xskán of ideals where each Ak

is a locally compact local ring whose maximal ideal is nilpotent and not open. By

[12, Lemma 7], each Ak is either connected or totally disconnected. If Ak is totally

disconnected, then Ak has an invertible element that is topologically nilpotent by

what we proved above, and hence by Theorem 4, Ak is the topological quotient ring

of a compact, one-dimensional, aligned Macaulay ring as Ak is local. If Ak is

connected, then Ak is a finite-dimensional topological algebra over R by Theorem 5

(as A has an identity element), so by [12, Lemma 5], Ak is a Cohen algebra over

either R or C as these are the only connected locally compact fields.

To show that 3° implies 1°, it suffices by Theorem 4 to show that if Ak is a locally

compact Cohen algebra over R or C, then Ak possesses an invertible element that
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is topologically nilpotent. But Ak has an identity element ek; if A is any nonzero

real number such that |A| < 1, then Xek is invertible and topologically nilpotent.

Thus 3° implies Io.

Corollary. Let A be a locally compact integral domain. Statements 1° and 2°

of Theorem 6 are equivalent to the following assertion: A is an indiscrete locally

compact field.

Proof. By Theorem 6, Io implies that A is a local artinian ring and hence is a

field. Also by Io, A is indiscrete. By Io and [8, Theorem 8], A is therefore an

indiscrete locally compact field.

Theorem 7. Let A be a commutative locally compact ring with identity. The

following statements are equivalent:

1°. A contains an invertible element that is topologically nilpotent, and the additive

order of each element of A is either infinite or a square-free integer.

2°. A is semilocal, none of its maximal ideals is open, and the additive order of

each element of A is either infinite or a square-free integer.

3°. A is the topological direct product of finitely many topological algebras over

indiscrete locally compact fields.

4°. A is the topological direct product of finitely many finite-dimensional Cohen

algebras over indiscrete locally compact fields.

Proof. 3° implies Io: Let¿ be the topological direct product of ideals (Ak)Xékén

where each Ak is a topological algebra over an indiscrete topological field Fk. As A

has an identity element, each Ak has an identity element ek. As the topology of Fk

is defined by a proper absolute value [6, Theorem 8], Fk contains a nonzero element

Afc such that A™ —>0, whence (\ek)m —>0. Thus 2*-i K^k is an invertible, topo-

logically nilpotent element of A. Certainly 3° also implies that the additive order of

each element of Fis either infinite or a square-free integer. By Theorem 6, Io and 2°

are equivalent, and clearly 4° implies 3°.

It remains, therefore, to show that Io and 2° imply 4°. By Theorem 6 and (5) of

Theorem 2, we may assume that A is local and totally disconnected and that

x -> x_1 is continuous on the set of all invertible elements of A. The characteristic

m of A is then either zero or a prime, for otherwise m =pq where p and q are

relatively prime; consequently, A would be the direct product of the ideals

{xe A : px = 0}   and   {xe A : qx = 0},

so A would have at least two maximal ideals, a contradiction. As observed in the

proof of Theorem 4, there is a compact open subring B of A that contains the

identity element of A and an invertible, topologically nilpotent element a. We also

observed in the proof of Theorem 6 that by virtue of 2°, the maximal ideal m of A

is closed (but not open). Thus A/rn is an indiscrete locally compact field.

Assume first that the characteristic of A is a prime p. Then a+m is an invertible,

topologically nilpotent element of A/m which therefore cannot be algebraic over
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the finite prime subfield of A/m. Hence for every nonzero polynomial g over the

prime subfield P of A, g(a) $ m and thus g(a) is invertible. Therefore the subring

P[a] of A generated by F and a is a principal ideal domain contained in B that admits

a quotient field P(a) contained in A, and with its induced topology, P(a) is a topo-

logical field since x —> x"1 is continuous on the set of invertible elements of A. By

applying Correl's Theorem [3, Theorem 3], as in the proof of [12, Theorem 1], and

[12, Lemma 5], we conclude that A is a finite-dimensional Cohen algebra over an

indiscrete locally compact field.

Assume finally that the characteristic of A is zero. As m is nilpotent by Theorem

4, the characteristic of A/m is zero, for otherwise there would exist a nonzero integer

p belonging to m, whence pn=0 for some «2:0, a contradiction. An argument

similar to the preceding now establishes the result in this case, for A contains an

indiscrete topological field ß that is the quotient field of the subring Z of A gen-

erated by 1, and ZgB, so Correl's Theorem is applicable as in the proof of [12,

Theorem 2].

Theorem 8. Let A be a locally compact ring with identity. The following state-

ments are equivalent :

1°. The center of A contains an invertible element that is topologically nilpotent,

and the additive order of each element of A is either infinite or a square-free integer.

2°. A is the topological direct product of finitely many (necessarily finite-di-

mensional) topological algebras over indiscrete locally compact fields.

Proof. The first part of the proof of Theorem 7 shows that 2° implies 1 °. To

show that Io implies 2°, let C be the center of A. Then C is locally compact and

contains the identity element of A, so by Theorem 7, C is the topological direct

product of ideals Cex,..., Cen, where (ek)x SfcSB is an orthogonal set of idempotents

in C whose sum is 1, and where each Cek contains an indiscrete locally compact

field Fk whose identity element is ek. But then A is the topological direct product

of the ideals Aex,..., Aen, and each Aek is a topological algebra over Fk.
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