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1. Introduction. In the following we shall be concerned with the behavior of

the solutions of the differential equation

(1) (py')'+qf = 0,

where y 2; 1 is the ratio of odd, positive integers. The functions;? and q are assumed

to be real-valued and continuous on a ray [a, oo). It is further supposed that p and q

are positive and have three continuous derivatives.

Problems of particular interest are :

I. When are all solutions of equation (1) bounded on [a, oo), and when do they

all have limit zero ?

II. When are all solutions of equation (1) oscillatory on [a, oo)?

III. If y is an oscillatory solution of equation (1), can an asymptotic equation be

found for the frequency of y? These three problems are considered in §§2, 3, and 4

respectively.

The special case p(t)=q(t) = t2 is known as Emden's equation and arises in

astrophysics in d'etermining the temperature distribution in polytropic gas spheres

[1, p. 528]. The generalization p(t) = ta and q(t) = tB of Emden's equation is studied

in detail in Chapter 7 of [2].

Classical existence and uniqueness theorems yield solutions of (1), e.g., Theorem

2.3 of Chapter 1 of [3] is applicable. It is also well known that a solution y of (1)

can be extended to [a, oo) if y is bounded on each interval [a, b) on which it exists.

That this is the case for all solutions of (1) will be proved in §2.

2. Boundedness properties. If y is a solution of equation (1), then we define the

function z by

(2) z = 2(y + 1) - V - <"+ "'Y +1 + </>(py')2

where </> = (pq)~2Kr + 3). We shall find the function z useful in finding bounds for the

growth of y and py'. It is to be noted thaty), + 1 is positive if y is negative; hence both

terms of the right-hand side of (2) are nonnegative.

Lemma 1. If y and z are given by (I) and (2) respectively, then

(3) [z-(p<t>')ypy' + 2-1p(p</>')'y2]' = 2-1[p(p</>')'}'y2.
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Proof. Calculating z' from equation (2) and collecting terms gives

z' = 2[r(y+l)iyy'+9(py')(py')']+<p'[-9-iv+3}l2yy+1+(py'n

Since y is a solution of (1), this reduces to

z' = f [-¿-<*+*>v+x+0>/)a]-

Substitution of this equation into the left-hand side of (3) and a reduction of

(P9')y(py'ï by use of (l) proves the lemma.

Lemma 1 for p = 1 and y an odd positive integer is used by Wong in [4] to derive

conditions that yield all solutions of (1) have limit zero at infinity. Our results in

this direction place somewhat different requirements on^ and q than those used by

Wong.

Our analysis now proceeds in a manner analogous to that used in [5] where the

linear equation y = 1 and p= 1 is discussed. We prove that if p and q satisfy certain

order relations, then z has a finite limit at infinity.

Theorem 1. If y and z satisfy equations (I) and (2) respectively and the conditions

(i) \p9'\ -> 0 and \p(p<p')'\<t> -> 0 as t -> co, and

(ii) J" \[p(p<p')']'\<p<co hold, then there is a number F^O such that z(t)-^L as

Z->co.

Proof. First suppose z is not bounded on [a, co). The above conditions imply

that there is a number b such that

(4) j" \[P(P9'ÏY\9 < 2"1[2/(y+ l)]2to+1)

and for t ̂  b,

(5) \p(P9')'9\(t) < 2"1[2/(y+1)]2/(' + 1)

and

(6) iFfKO < 4-1[2/(y+l)]1'<*+».

Since z is unbounded there is an increasing sequence {/(}" such that b ̂  ti, í¡ -> co

and z(t¡) -> co as z -» co, z(tx) > 1 and

z(t¡) = max {z(t) \b è t ^ t¡}.

Applying Lemma 1 and letting

B = \z-(p<p')ypy' + 2-ip(p<p')'y2\(b),

we have the inequality

(7) \z-(p<p')ypy'+2-ip(P<p')'y2\(tl) ú F+2"1 £' \[p(P4>')'}'\y2.

From equation (2) we conclude that

(8) |j| è [(y+l)/2]1""+iyV(y+1)

and

(9) \py'\ è <p-ll2z112.



1969] SOME STABILITY CONDITIONS 351

Inequalities (4), (8) and (9) imply that

2-1 £ \[pip<p')']'\y2

(10) S 2-*[(y+1)/2]2'<> + 1> £' |[K/>f)']«i)2,(y+1)

S 4-1z(ti)2Kr+1) S 4-^(0-

Applying inequalities (8) and (9) and equations (5) and (6), we obtain

(11) 2-1|Jp(/zf)'y2|(íi) ¿ 4-Mff)a'<y+" S 4"Míi)

and

(12) \(p4>')(ypy')\(td â 4-1z(z-i)(v+3),2('+1) s 4-^).

Application of inequalities (10), (11) and (12) to equation (7) yields that

z(ri)-2-1z(?0 = B+A-^Q

or z(r¡)^4fi. This inequality however is a contradiction to z(z¡) -s> oo as z'-^co.

Thus z is bounded.

Since z is bounded we have from equation (8) that (f>'1y2 is bounded and thus

JT |[F(F^')']'|y2<0°. This implies that the function

(13) r = z-(p</>')ypy' + 2-1p(p</>')'y2

has a finite limit F at infinity. From (8) and (9) and condition (i) of the theorem it is

clear that both (p</>')ypy' and p(p<j>')'y2 have limit zero at infinity. Thus z has limit

L at infinity, and F is nonnegative since z is positive.

Two corollaries are now immediate.

Corollary 1.1. Suppose conditions (i) and (ii) of Theorem 1 hold. If for some

c>0, pq^c, then all solutions of (I) are bounded on [a, oo). If(pq) —> oo as t —> oo,

then all solutions of (I) have limit zero at oo. <9zz the other hand ifpq S cfior some c> 0,

then (py') is bounded on [a, oo) if y is a solution of (I), and ipy') -*■ 0 as t —> oo if

(pq) ->■ 0 as t -^ oo.

Corollary 1.2. If conditions (i) and (ii) o/ Theorem 1 /zoW azzt/ s>0, //ze«

J"" </>sl2<co is a sufficient condition that for all solutions y of (I) we have J"" |y|s<co.

For /z= 1 and zz(0 = i + 3 sin ? on [1, oo), Corollary 1.1 applies, and all solutions

of (1) have limit zero at infinity. Considering the equation

(14) á(ía|) + 'W = 0'

we find conditions (i) and (ii) of Theorem 1 hold if and only if

(15) -2(a + ß)<(l-a)(y + 3).
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Thus if (15) holds and 2(a + ^)>(y + 3), then all solutions of (14) are square in-

tegrable on [1, oo) and have limit zero at infinity.

For our discussion in §4 we need to have the limit F>0. A more immediate

result of F>0 is that if y in Theorem 1 is oscillatory, then

lim sup XO2 ^ [F(y+l)/2]a/(' + 1)-liminf¿(r)
Í-.00 Í-.00

and
lim sup (py')(t)2 £ F lim inf9(t)~\

(-♦ CO Í-» 00

These inequalities follow from equation (2) since at a zero of y, the first term on the

right-hand side of (2) is zero, and at a zero of y' the second term on the right-hand

side of (2) is zero. We note that when the above inequalities are satisfied, then

(pq) -*■ oo as t -* oo implies that the limit superior of \py'\ at infinity is infinite and

(pq)-^-0 as Z->co implies that the limit superior of |j>| at infinity is infinite. In

such cases we cannot have stability in the Lyapunov sense for the identically zero

solution of (1).

We now state four theorems which give conditions that imply F >0. For each of

these theorems we assume y, z and F are as in Theorem 1 and conditions (i) and (ii)

are satisfied.

Theorem 2. Ify=l, then L>0.

Proof. It follows from (8), (9) and (13) that rjz -> 1 as t -> co. Now

r' = 2-i[p(p<p')']'y2 = {2-1[p(P9J}'y2/r}r

and y2/rfi<pz/r. Thus the above equation is of the form r'—Ar where J" |^4| <oo.

Since r(t) = r(a) exp j^ A, the limit F at infinity is nonzero.

Theorem 3. If [p(p<p')'Y ̂0 and y has a zero, then L>0.

Proof. Since r' = 2~1[p(p<f>')']'y2, we have that r is nondecreasing. At a zero b of

y, r(b)=z(b) > 0. Hence F > 0.

Theorem 4. 7/f" ¡(pqyKpq)-1 <co, thenL>0.

Proof. From the calculation of z' in Lemma 1, it follows that

z'z-l = tp'y-^-y-ty + Myy + i + ftpy'y^-1.

This equation implies the inequality

Iz'lz-1 5¡ |f \9-i(y + 3)/2 = \(pq)'\(pqY\

which in turn yields J™ |z'|z_1 <oo. This relation implies that z does not have limit

zero at infinity.

The inequality \z'\z~íík\(pq)'\(pq)~1 implies that

|ln [zí^Ma)-1]! ú  f YipqyWpqY1
Ja

for b* < b. Thus if a solution y of (1) exists on a half-open interval [a, b), it follows

that z and hence y are bounded on [a, b). By our earlier remarks, this means every

solution of (1) is extendable to [a, co).
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Theorem 5. If(pq)'^0, g(t) = c/>(t)-1 tf \[p(p<p')']'\<p, y is oscillatory and g is

bounded on [a, co), then L>0.

Proof. A calculation proves that

(Z<p-iy =  _(y + 3)(y+l)-i^-(v + 5)/2^y + i ;> 0j

and thus the limit of z</> ~x as t -> co is positive or infinity. Suppose that F = 0 and

the zeros of y are tx, t2,.... Then by Lemma 1,

z(ti) = -2-1 f [p(p<f>')']'y2
(16) Jti r„

S 2"1t(y+l)/2]2'(' + 1>       \[piPm\<l>z2Ky+1).

After multiplying both sides of equation (16) by (/»(tí)'1 we find that the limit as

i -> oo of the right-hand side of (16) is zero. This however implies that z(t¡)</>(t?) ~1

-> O as i —> oo which is a contradiction.

Returning to equation (14) we see by Theorems 2, 3 and 5 respectively, that

L > 0 if (15) is satisfied and one of the following conditions : (i) y = 1, (ii) y has a zero

and a+^3^0 and (iii) y is oscillatory and a+¿82:0.

3. Conditions for oscillation. Some of our previous theorems required that a

solution y of (1) be oscillatory. For y=l, effective conditions for detecting oscil-

lation are given in [6]. We concern ourselves here with the nonlinear case.

Theorem 6. // y > 1, then a necessary and sufficient condition that all nontrivial

solutions of (I) be oscillatory is that

(17) °° ( f /z(0_1 dv)q(t) dt = oo    if P/?(0-1 do = oo

and

/»oo    /  /»oo \y /»oo

(18) I      p(v)-xdv\ q(t)dt = co    if \    p(v)'x dv < co.

Proof. This result is a corollary of a result of Atkinson's [7, Theorem 1] which

states that all solutions of y" +qyy = 0 are oscillatory if and only if J" tq(t) dt = co.

Actually, Atkinson states his theorem for y an odd positive integer; the more

general case is given by Licko and Svec [8] whose results are also applicable to

higher order equations.

For the case J™^(0_1 dv = co, let h(t) = ^a l/p and g be the inverse of h, i.e.,

g(h(t)) = t for all t^a. Let y be a solution of (1) and define w(s)=y(g(s)) for sä0.

It follows readily that w satisfies the differential equation

(19) w"(s) + ß(sMs)" = 0,

where Q(s) = [pq](g(s)). Conversely, if w is a solution of (19) and y<(t) = w(h(t)), then

y is a solution of (1). Clearly, y is oscillatory if and only if w is, and Atkinson's
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result states that w is oscillatory if and only if J™ sQ(s) ds = ao. The change of

variable s = h(t) proves that this condition is equivalent to (17).

For the case J"™ p(v)~l dv<co, let zz(0 = (J7 1/p)"1 and £ De tne inverse of«.

For a solution y of (1) we define w by w(í)=íj(t?(Xz)- The function w is then a

solution of w"(j) + ô(i)w(i)>'=0 where Q(s)=s~(y+3)[pq](g(s)). The proof now

proceeds as above and follows from the relation

/•oo /»oo    / /»oo \ y

50(5)*= /»OO"1*) ?(r)A.
Jft(a) Ja     Vf /

Returning to (14), we find for y > 1 that conditions (17) and (18) are respectively

a-j3g2if aal andß + (l-a)y^-l if ot>l.

We mention also that Kurzweil [9] has given a sufficient condition that the

equation y"+qy2n~~1 = 0 have an oscillatory solution, and Atkinson [7, Theorem 2]

states a sufficient condition that no solution of y"+qy2n'1 = 0 be oscillatory.

Surprisingly, more effective criteria for the detection of an oscillatory solution

seems to be available for higher-order equations. A result of J. W. Heidel [10] states

that if «^3 is odd and y>l, then the equation yM+qyy=0 has an oscillatory

solution if ¡2 xn~2 + yq(x) dx = oo.

4. Asymptotic distribution of zeros. The following lemma will be useful in the

sequel.

Lemma 2. Suppose f is a continuously differentiable positive function on [a, co)

and for some p.^0, \f'(t)\f(t)~" -+ 0 as t -> co. Ife and K are positive numbers, then

there is a number B such that ift and s are ^ F and \t—s\ £¡ Kf(s)x ' ", then

\f(t)f(s)^-l\ <e.

Proof. Choose F such that t ̂  B implies that

\f(t)\f(ty^e/2K(i+ey.

Let s^B and define g(t)=f(t)f(s)-1 for all t such that t^B and \t-s\^Kf(s)1-'1.

Since g(s)=l, if \g(t)-l\^e for some t, then there is a number t* such that

\g(t*)— 1| =e and |g(0 —1| <«for all t between í and f*. In such case we then have

for some t between í and t* that

t- \g(t*)-i\ = |*'(0II'*-*I
= \f'(t)\f(s)-'\t*-s\ ^f(tyf(s)-^\t*-s\/2K(i+ey.

Since \t*-s\ ^Kf(sy~u, the above inequality reduces to

e úf(tyf(sye/2(i+ey - eg(ty ¡2(1+£y.

Hence (1 -+-«)«<2(1 +EySg(ty. Now  \g(t)-l\<e implies that g(ty^(l+Ey,

contrary to the above inequality. Hence B chosen as above establishes the lemma.

We shall now prove a theorem which describes the asymptotic behavior of the

zeros of an oscillatory solution of (1).
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Theorem 7. Suppose p= 1, y is an oscillatory solution of (I) with zeros tx, t2,...

and intermediate zeros of y', t'x, t2,..., z is given by (2) and z(t) —*■ L>0 as t -> oo.

V l«¿'(0| -»• 0 as t -> oo, then

(20) [t¡-tiWt)2Ky + 3)-^'nyC   asi^ao

and

(21) [ti + i-t',]q(t'i)2Ky + 3)^TlyC   asi^cc

where

ny =  f   [l-uy + 1]~ll2du   and   C = [L(l+y)l2]a-»'2(-1 + »[(l+y)/2]112.

Proof. Since </>=q~2Ky+3\ the condition \</>'(t)\ -^ 0 as r-s-oo is equivalent to

l'7'(0l»7(0~<,'+6>/<''+3> -^ 0 as i -> oo. We first derive an inequality for t't—t, with the

aid of Lemma 2. Let

K = 2(y+l)(2F)1/2/[F(l+y)/4ri + '')

and consider y on [í¡, t¡]. For t e [z¡, t¡) such that

(22) \t-ti\S Kq(t¡)-2Ky + 3)

we have by integrating (1),

(23) y'(0 = JV.

Since y is concave on [t¡, ri+1], |y(s)| ä |y(j*í)l(j—OW-O"1 f°r tSsSt'ù hence it

follows from (23) that

|y'(OI =ï Çt q^lWd^-mi-t)-^ ds

^qtWi)\\t'i~t)/(y+l)

where qt is the minimum of q on [t, t¡]. Since «¿(0y'(02 = ZW an(^

z(rO = 2(y+l)-1Mr<r+1)/M'i)r+1.

the above inequality reduces to

m, <t'-t\< •(y+iM01/V(0"1/a^«')"ra
^   J li    ;=      ft[^0(l+V)/2p'a+rt

It is sufficient to consider i sufficiently large so that

(y+lMQ1/a       <    (y+l)(2Fy2

[z(fi)(l+y)/2}y"1 + y) = [L(l+y)l4Y'll + »     A/Z'

hence (24) reduces to

(25) (f-t) <   K   \qM r^r,(y+3>
(25) (ti    t) = 2q(ti)2^[qt\[q(t;)\
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Applying Lemma 2 for f=q and p- = (y+5)/(y + 3), we may consider i sufficiently

large so that

fo/«GDr1[«(0/«(íD]1K,+") = 3/2

in which case (25) reduces to

(26) (t',-t) Ú 3K/4q(t',)2Kr+a\

Since (26) holds for those t e [tt, t[] satisfying (22), we conclude that (22) holds for

t=ti and all sufficiently large i.

With the aid of (22) we now prove (20). For / £ [tu t¡], it follows after an in-

tegration of y"y'= -qyyy' that

(27) y'(t)2 = 2J\yy.

Denote by a¡ and Qt the minimum and maximum respectively of a on [í¡, t¡]. From

(27) we then have that

2qi[y(t¡y + 1-y(ty + 1]/(y+l) S y'(t)2 Í 2Qi[y(t'iy^-y(ty^}/(y+l)

and thus

[2q,y(W+íJ(y+l)Y<3 á |/(0|[1-WOM'Or T1'2

^ [2ßo<iOy+1/(y+i)]1,a.

Integrating this inequality over [t¡, t[], it follows that

[2?o<firv(y+i)ro-'«) = bw)inr
^ PöiXiO^VCy+i)]1'2^'-^)-

Since IX'DI =[(y+lMO/2]1,<" + 1,aW)-1/(v + 3),

[2?i/(y+l)]1,2|v(z!')|(1'-1)/2 = [2/(y+l)]1'2[ai/a(r0]1/2

• [(y+ l)z(?1')/2](,'-1,/2('' + 1)a(Zi')2,<)' + 3).

By Lemma 2, qi/q(t'i)-> 1 as z'-^oo; hence applying (29) to the left-hand side of

(28) yields

limsupa(z;)2,<' + 3)(z('-Zi) ̂  nyc.
¡-.00

Similar considerations yield the opposite inequality for the limit inferior of

q(t'i)2Ky + 3)(t'i —1¡). These two inequalities imply Equation (20). Equation (21) is

derived in an analogous manner.

As a consequence of this theorem and Lemma 2, we have that if sx, s2,... is a

sequence such that tiúSi^ti+x for each i, then q(s<)/q(t'¡)-> 1 as z'-^-co. Thus

equations (20) and (21) remain valid if q(t¡) is replaced by q(s¡).

Another conclusion that is an immediate consequence of Theorem 7 is that the

zeros of y' are spaced approximately halfway between the zeros of y in the sense

that (ti + x-t'i)(t[-ti)~1^l as i -> co.
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The asymptotic result given by Bellman [2, p. 163] for the distance between

zeros of solutions of u" + t"u=0 follows readily by combining equations (20) and

(21) to obtain an asymptotic expression for ?1+i —1{. The formula given by Kigur-

adze [11, p. 136] for the distance between zeros of solutions of u" + auy = 0 with

a'äO is obtained by combining equations (20) and (21) and replacing í/by tt.

We can use Theorem 7 to solve the more general problem where p£ 1.

Theorem 8. Suppose y, z, ?¡, t[ and L are as in Theorem 1 and p satisfies the

conditions: (i) J"™ l/p = ao, (ii) \p<f>'\ -> 0 as t ->- oo and (iii) for some p^O, p"</> is

bounded on [a, co) and \p'\p~ß-^0ast^*cc. Then

(30) (tl-tdlp^m'dV'^flyC   ösz'->oo

and

(31) (íz+i-aFfoW)]-1-*!!^   as i-*-co.

Proof. Let h, g', w and Q be defined as in the first half of the proof of Theorem 6.

Choose tt such that $ l/p = (t'i-tl)/p(t?) and let s,=/z(¡¡), s¡=h(t¡) and s?=h(tt*).

Then the zeros of w are Si, s2,... and the zeros of w' are si, s'2,.... For

<s>(s) = ô(0"2/(y+3) = <Kg(s)),

we have ^'(s) = (p</>')(g(s)); hence |0'(s)| ^0 as s->oo. For

Z(s) = 2(y+l)-1<D(s)-(" + 1)/2H'(s),' + 1 + (D(s)H''(02 = z(g(s)),

it follows that Z(s) -> L as s -> oo and thus Theorem 7 applies to w. Applying

Theorem 7 and the remarks following the proof of Theorem 7, we conclude that if

SiSs'!Ssi+i for each i, then

(32) (si-ji)ß(sJT(y+3)-*IIrC   asz'->oo.

Since Sj'-s¡=j^ l//z = (z,'-ii)//z(ii*), the above limit is for s"=sf,

(ti-tdipitrm?)]-1 -> n.c as /^ oo.

Since /z"i^ is bounded there is a number M such that

ci-oMr?)"-1 = (ti-tdipwmtyi-ntrrKt?) s m
for all z. From Lemma 2 for f=p the limit p(t¡)/p(t*) -> 1 as z'->oo is obtained.

Using this limit and (32) for s" = s,' yields the equation (30). Equation (31) is derived

by similar considerations.

Theorem 9. Suppose that y, z, th t'¡, L andp are as in Theorem 8. Let N(b) be the

number of zeros of y in [a, b]. Then

AW-1!! (pt)-1] ->2fIyC   asb-xxi.
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Proof. Choose t" for each i so that

jt,

Employing now the limit (32) for s¡ = h(t'í) yields

(t[-td[p(ti*m¡)}-l^flyC   as z -^ co.

In the same manner that we proved p(t'i)/p(t*) ->■ 1 as z ->■ co in Theorem 8, it

follows that p(t")/p(t*) —> 1 as i—> co. This remark, together with above equations

implies that /jj (py)'1 -*■ I~lyC as i-*■ oo. Similarly we have

fi + i
(p</>) 1->UyC   as/-»-oo

Jti
and these limits yield

(33) ¡>+1[p<f>]-1^2UyC   as/->oo.

The limit (33) implies that the arithmetic means have the same limit, i.e.,

(34) r1 [i + 1(p4>)-1-^2ÏIyC   asi->oo.
Jti

For z¡á¿)<íi+1, N(b) = i. Thus the theorem is an immediate consequence of (34).

In the linear case y= 1, C= 1 and IIy = n/2. Thus the limits in Theorems 8 and 9

are independent of F. In particular the conclusion of Theorem 9 becomes

N(b) -x Í (q/p)112 -> n    as é -> oo.
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