A RESULT ON THE WEIL ZETA FUNCTION

BY SAUL LUBKIN

- 1. **Results.** We recall Weil's conjectures [4] about the zeta function of a complete, nonsingular algebraic variety X over the field of q elements, q a prime power. We assume that X is projective and that X admits a projective lifting back to characteristic zero. Let N_v be the number of points of X rational over the field k_v , where k_v is the extension of k of degree v, $v \ge 1$.
 - 1 (LEFSCHETZ THEOREM). There exists a doubly indexed sequence

$$(\alpha_{hi})_{1 \leq i \leq \beta_h; \ 0 \leq h \leq 2n}$$

of algebraic integers, where n is the dimension of X and $(\beta_n)_{0 \le h \le 2n}$ are the Betti numbers of any lifting of X to characteristic zero such that

$$N_v = \sum_{1 \le i \le \beta_{h_i}, 0 \le h \le 2n} (-1)^h \alpha_{h_i}^v.$$

2 (Functional equation). $0 \le h \le 2n$ implies that the sequences

$$(q^n/\alpha_{h,1},\ldots,q^n/\alpha_{h,\beta_h})$$
 and $(\alpha_{2n-h,1},\ldots,\alpha_{2n-h,\beta_{2n-h}})$

are permutations of each other.

3 (RIEMANN HYPOTHESIS). $|\alpha_{hi}| = q^{h/2}$, $1 \le i \le \beta_h$, $0 \le h \le 2n$.

In addition it was later conjectured that

4. If $P_h = \prod_{i=1}^{g_h} (1 - \alpha_{hi}T)$, $0 \le h \le 2n$, then the coefficients of the polynomials P_h are rational integers.

Conjectures 1 and 2 are now known. (See [1] and [2] for two different proofs.) Conjectures 3 and 4 are still unknown. (Under the assumption of conjecture 3 for the usual absolute value on the algebraic numbers, conjecture 4 is equivalent to the assertion that, for every absolute value on the algebraic numbers extending the usual absolute value on the rational numbers, conjecture 3 holds.) In this paper I prove a previously unknown result that would follow if both 3 and 4 were known, but that is not a consequence of either 3 or 4 alone. The result is:

5. If $0 \le h \le 2n$ then the sequences $(q^h/\alpha_{h,1}, \ldots, q^h/\alpha_{h,\beta_h})$ and $(\alpha_{h,1}, \ldots, \alpha_{h,\beta_h})$ coincide up to permutation.

Another way of stating 5 is: If the algebraic integer α occurs m times in the sequence $(\alpha_{h,1}, \ldots, \alpha_{h,\beta_h})$ then the algebraic integer q^h/α likewise occurs m times.

(To see that 3 and 4 would imply 5 note that 3 is equivalent to the assertion $\bar{\alpha}_{hi} = q^h/\alpha_{hi}$. 4 asserts that the coefficients of P_h are rational and in particular real.

Presented to the Society, January 24, 1967; received by the editors November 7, 1966 and, in revised form, October 24, 1967.

Hence complex conjugation: $\alpha_{hi} \to \bar{\alpha}_{hi}$ defines a permutation of the sequence $(\alpha_{hi})_{1 \le i \le \beta_h}$. But by 3 $\bar{\alpha}_{hi} = q^h/\alpha_{hi}$. This proves 5.)

Note that for h=n 5 is a special case of the functional equation 2. 2 and 5 imply

5'. If $0 \le h \le 2n$ then the sequences

$$(q^{n-h}\alpha_{h,1},\ldots,q^{n-h}\alpha_{h,\beta_h})$$
 and $(\alpha_{2n-h,1},\ldots,\alpha_{2n-h,\beta_{2n-h}})$

are permutations of each other.

- 2, 5 and 5' are such that any two imply the third. Since 2 is known ([1], [2]) and we prove 5 in this paper all three statements hold.
 - 2, 5 and 5' can be written in terms of the Weil polynomials P_h :
 - 2. $P_{2n-h}(T) = \pm q^{\beta_h(n-(h/2))}T^{\beta_h}P_h(1/q^nT),$
 - 5. $P_h(T) = \pm q^{h\beta_h/2}T^{\beta_h}P_h(1/q^hT)$, and
 - 5'. $P_{2n-h}(T) = P_h(q^{n-h}T), \quad 0 \le h \le 2n.$

Another way of stating 5 is:

- 5. The polynomial $P_h(q^{-h/2}T)$ is either symmetric or antisymmetric, $0 \le h \le 2n$.
- 5' written in terms of the Weil polynomials is particularly simple. Since 2 is well known ([1], [2]) the new result 5 proved in this paper is equivalent to 5'.

I also note (and leave it as an exercise to the reader) that if the "Riemann hypothesis" were known then the new result 5 would be equivalent to the assertion that the coefficients of the Weil polynomials P_n are real, $0 \le h \le 2n$, thus implying a portion of 4. Also the new result 5 does give some information about the Riemann hypothesis 3. Namely it implies that those α_{hi} such that $|\alpha_{hi}| \ne q^{h/2}$ occur in pairs α_{hi} , $\alpha_{hi'}$ where $\alpha_{hi} \cdot \alpha_{hi'} = q^{h/2}$.

5 is also equivalent to the assertion that each of the Weil polynomials P_h factors, uniquely up to order, into a product of !inear factors: $(1-q^{h/2}T)$, $(1+q^{h/2}T)$ and quadratic factors: $1+u_jT+q^hT^2$ where the u_j are algebraic integers $\neq \pm 2q^{h/2}$. The Riemann hypothesis is equivalent to the assertion that the u_j are all real.

Our proof of 5 is elementary. Cohomology is used; either of our well-known cohomology theories ([1], [2]) suffices. The main new idea is to apply a very simple and, probably, previously unobserved result about the characteristic polynomial of a linear transformation of a finite dimensional vector space that preserves some nondegenerate inner product (2.1).

2. Nondegenerate inner products on a finite dimensional vector space. Let V be a finite dimensional vector space over a field k. An inner product on V is a linear transformation from $V \otimes_k V$ into k, the image of the element $v \otimes w$ being written as $v \cdot w$, v, $w \in V$. A linear transformation $f: V \to W$ of finite dimensional vector spaces with inner products over k preserves inner products if v, $w \in V$ implies $f(v) \cdot f(w) = v \cdot w$.

An inner product on the finite dimensional vector space V is nondegenerate if $0 \neq v \in V$ implies there exists $w \in V$ such that $v \cdot w \neq 0$. (Notice that we do not require that $v \neq 0$ implies $v \cdot v \neq 0$ —such an inner product is definite—, that $v, w \in V$

implies $v \cdot w = w \cdot v$ —such an inner product is *symmetric*—or that $v, w \in V$ implies $v \cdot w = -w \cdot v$ —such an inner product is *antisymmetric*.)

Let $P(X) = a_n X^n + \cdots + a_1 X + a_0$, $a_n \neq 0$, be a polynomial of degree n over a field. Then the *reverse* of P is the polynomial $a_0 X^n + a_1 X^{n-1} + \cdots + a_{n-1} X + a_n$. The polynomial is *symmetric* (respectively: *antisymmetric*) if it coincides with its reverse (respectively: with the negative of its reverse).

THEOREM 1. Let V be a finite dimensional vector space over a field together with a nondegenerate inner product. Let $f: V \to V$ be a linear transformation that preserves the inner product. Then the characteristic polynomial of f is either symmetric or antisymmetric.

Proof. Let $f^t: V \to V$ be the transpose of f with respect to the given inner product. Then f^t is the unique linear transformation such that

- (1) $f^t(v) \cdot w = v \cdot f(w), v, w \in V$.
- If (e_i) is a basis of V and if (e'_i) is the dual basis of (e_i) with respect to the given inner product then the matrix of f^t with respect to (e'_i) is the transpose of the matrix of f with respect to (e_i) . Hence f and f^t have the same characteristic polynomial.

Since f preserves the inner product we have $f^t(f(v)) \cdot w = f(v) \cdot f(w) = v \cdot w$, $v, w \in V$. Hence $f^t(f(v)) = v, v \in V$,

(2) $f^t \circ f = identity$.

Hence f is an automorphism of V. Since f^t and f have the same characteristic polynomial they have the same determinant. Taking the determinant of (2) gives (3) det $f = \pm 1$.

Considering the definition of the characteristic polynomial as det (identity X-f) and using the fact that det $(f) = \pm 1$ we see that the characteristic polynomial of f^{-1} is \pm the reverse of the characteristic polynomial of f. By (2) $f^{-1} = f^t$ which has the same characteristic polynomial as f. Hence the characteristic polynomial of f is either symmetric or antisymmetric.

COROLLARY 1.1. Let V be a finite dimensional vector space over a field and let $f: V \to V$ be a linear transformation that preserves some nondegenerate inner product. Let $(\alpha_1, \ldots, \alpha_n)$ be the sequence of eigenvalues with multiplicities of f. Then the sequences $(\alpha_1, \ldots, \alpha_n)$ and $(\alpha_1^{-1}, \ldots, \alpha_n^{-1})$ coincide up to permutation.

- **Proof.** A polynomial is either symmetric or antisymmetric if and only if the mapping: $\alpha \to \alpha^{-1}$ is a bijection of the roots preserving multiplicities. Hence the corollary is equivalent to the theorem.
- 3. **Proof of 1.5.** The notations being as in §1 let \mathcal{O} be a complete discrete valuation ring with quotient field of characteristic zero such that X admits a projective lifting X over \mathcal{O} . Fix a complex imbedding: $\mathcal{O} \subset C$ and let X_C be the projective nonsingular complex algebraic variety

$$X_C = X \times_{\text{Spec}(\mathcal{O})} \text{Spec}(C).$$

Let K be either the ring of q'-adic integers, q' a rational prime unequal to the characteristic of k, or the quotient field of \mathcal{O} . Let $H^*(X, K)$ be either the q'-adic [1] or the K-adic [2] cohomology of X respectively. If $K = \hat{Z}_{q'}$ then let $K \subset C$ be a complex imbedding of the ring K. In either case let $H^*(X, C) = H^*(X, K) \otimes_K C$. Then the ring $H^*(X, C)$ is canonically isomorphic to the classical complex cohomology algebra $H^*(X_C, C)$ of the complex algebraic variety X_C . Identify these two rings.

Let $u \in H^2(X_C, \mathbb{C})$ denote the "Kähler class" ([5], see also [3])—the class of a generic hyperplane section of X_C . Then $u \in H^2(X, \mathbb{C}) = H^2(X, K) \otimes_K \mathbb{C}$ is the canonical class of a generic hyperplane section H of X ([1], [2]). Hence if $f^* = (f^h)_{0 \le h \le 2n}$ denotes the maps induced by the Frobenius ([1], [2]) on the cohomology groups $H^*(X, \mathbb{C}) = (H^h(X, \mathbb{C}))_{0 \le h \le 2n}$ then

- (1) $f^2(u) = q \cdot u$.
- $f^*: H^*(X, \mathbb{C}) \to H^*(X, \mathbb{C})$ preserves cup products. Hence if we define
 - (2) $g^h = q^{-h/2} \cdot f^h$, $0 \le h \le 2n$,

then $g^*: H^*(X, \mathbb{C}) \to H^*(X, \mathbb{C})$ preserves cup products and $g^2(u) = u$.

By the functional equation 1.2, to prove 1.5 it suffices to consider the case $0 \le h \le n$.

If $0 \le h \le n$ and $v, w \in H^h(X_C, \mathbb{C})$ then define $v \cdot w = u^{n-h} \cup v \cup w$. Then [5] the assignment $(v, w) \to v \cdot w$ is a nondegenerate inner product on the finite dimensional vector space $H^h(X_C, \mathbb{C})$. Since g^* preserves cup products and $g^2(u) = u$ it follows that g^h preserves this nondegenerate inner product. Hence by 2.1.1 if $(a_{h,i})_{1 \le i \le b_h}$ are the eigenvalues of g^h with the appropriate multiplicities then

- (3) The sequences $(a_{n,i}^{-1})_{1 \leq i \leq b_h}$ and $(a_{h,i})_{1 \leq i \leq b_h}$ are permutations of each other. The sequence $(\alpha_{h,i})_{1 \leq i \leq b_h}$ of §1 is the sequence of eigenvalues with multiplicities of the linear transformation $f^h \colon H^h(X, \mathbb{C}) \to H^h(X, \mathbb{C})$, modified in a manner similar to the Remark, p. 253 of [2] to make all the $\alpha_{h,i}$ algebraic integers. Hence by (2)
 - (4) The sequences $(\alpha_{h,i})_{1 \le i \le \beta_h}$ and $(q^{h/2}a_{h,i})_{1 \le i \le b_h}$ coincide up to permutation.
 - (3) and (4) imply 1.5.

BIBLIOGRAPHY

- 1. S. Lubkin, On a conjecture of André Weil, Amer. J. Math. 89 (1967), 443-548.
- 2. ——, A p-adic proof of Weil's conjectures, Ann. of Math. (2) 87 (1968), 105-255.
- 3. J.-P. Serre, Analogues kählériens de certaines conjectures de Weil, Ann. of Math. (2) 71 (1960), 392-394.
- 4. A. Weil, Number of solutions of equations over finite fields, Bull. Amer. Math. Soc. 55 (1949), 497-508.
- 5. ——, Introduction à l'étude des variétés kählériennes, Actualités Sci. Indust., No. 1267, Hermann, Paris, 1958; Russian transl., IL, Moscow, 1961.

University of California, Berkeley, California