
A  RESULT ON THE WEIL ZETA  FUNCTION

BY

SAUL LUBKIN

1. Results. We recall Weil's conjectures [4] about the zeta function of a

complete, nonsingular algebraic variety X over the field of q elements, q a prime

power. We assume that X is projective and that X admits a projective lifting back

to characteristic zero. Let Nv be the number of points of X rational over the field

kv, where kv is the extension of k of degree v, v^l.

1 (Lefschetz theorem). There exists a doubly indexed sequence

(ahi)liiSßh; 0S>iÉ2n

of algebraic integers, where « is the dimension of X and (ßh)0Shi2n are the Betti

numbers of any lifting of X to characteristic zero such that

nv=     2     (-oft«n(.
lâiéBhiOShSZn

2 (Functional equation). 0ShS2n implies that the sequences

(qn/ah,i,.. -,qn/ah_Bh)   and   («a*_ft,i,..., a2n_Kß2n_h)

are permutations of each other.

3 (Riemann hypothesis). |afti| =qh'2, 1 SiSßn, 0ShS2n.

In addition it was later conjectured that

4. If Ph=Y\fix (l—ahiT), 0ShS2n, then the coefficients of the polynomials Ph

are rational integers.

Conjectures 1 and 2 are now known. (See [1] and [2] for two different proofs.)

Conjectures 3 and 4 are still unknown. (Under the assumption of conjecture 3 for

the usual absolute value on the algebraic numbers, conjecture 4 is equivalent to the

assertion that, for every absolute value on the algebraic numbers extending the

usual absolute value on the rational numbers, conjecture 3 holds.) In this paper I

prove a previously unknown result that would follow if both 3 and 4 were known,

but that is not a consequence of either 3 or 4 alone. The result is:

5. If 0ShS2n then the sequences (qh/allA,.. .,qh/ah¡Bh) and (aftil,..., ahiBl)

coincide up to permutation.

Another way of stating 5 is: If the algebraic integer a occurs m times in the

sequence (a„tl,..., ahBh) then the algebraic integer qh/a likewise occurs m times.

(To see that 3 and 4 would imply 5 note that 3 is equivalent to the assertion

àhi=qh/ahi. 4 asserts that the coefficients of Ph are rational and in particular real.
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Hence complex conjugation: ahi -> ahi defines a permutation of the sequence

Ki)iáiS/¡„- But by 3 âM=qh/ahi. This proves 5.)

Note that for A=« 5 is a special case of the functional equation 2. 2 and 5 imply

5'. 7/0^ A ¿2« ZAe« zAe sequences

(qn~h<*-h,i, ■■■,qn~h<Xh,tsJ   and   (a2n_hil,...,a2n_Kß2n_h)

are permutations of each other.

2, 5 and 5' are such that any two imply the third. Since 2 is known ([1], [2]) and

we prove 5 in this paper all three statements hold.

2, 5 and 5' can be written in terms of the Weil polynomials P„:

2. P2n-h(T)= ±qW-*'2»Ti»Ph(I/q«T),

5. Ph(T)= ±qh0^Te"P>l(llqhT), and

5'. P2n-h(T)=Ph(q"-»T),       0^A^2«.

Another way of stating 5 is:

5. FAe polynomial Ph(q ~ ",2F) is either symmetric or antisymmetric, 0 g A ̂  2«.

5' written in terms of the Weil polynomials is particularly simple. Since 2 is

well known ([1], [2]) the new result 5 proved in this paper is equivalent to 5'.

I also note (and leave it as an exercise to the reader) that if the " Riemann

hypothesis" were known then the new result 5 would be equivalent to the assertion

that the coefficients of the Weil polynomials F„ are real, 0SA^2zz, thus implying

a portion of 4. Also the new result 5 does give some information about the Riemann

hypothesis 3. Namely it implies that those aM such that \ahi\^qh'2 occur in pairs

ahl, ahl. where aM-ahl.=qhl2.

5 is also equivalent to the assertion that each of the Weil polynomials Ph factors,

uniquely up to order, into a product of linear factors: (1 —qhl2T), (1 +qhl2T) and

quadratic factors: l+z^F+aT2 where the w_, are algebraic integers ^ ±2qhl2. The

Riemann hypothesis is equivalent to the assertion that the u, are all real.

Our proof of 5 is elementary. Cohomology is used; either of our well-known

cohomology theories ([1], [2]) suffices. The main new idea is to apply a very simple

and, probably, previously unobserved result about the characteristic polynomial

of a linear transformation of a finite dimensional vector space that preserves some

nondegenerate inner product (2.1).

2. Nondegenerate inner products on a finite dimensional vector space.    Let V be

a finite dimensional vector space over a field k. An inner product on F is a linear

transformation from V ®k F into zc, the image of the element v (g) w being written

as v ■ w, v, w e V. A linear transformation /: V -*■ W of finite dimensional vector

spaces with inner products over k preserves inner products if v, w e V implies

f(v)-f(w) = vw.
An inner product on the finite dimensional vector space V is nondegenerate if

OjíveV implies there exists weV such that v-w^0. (Notice that we do not

require that v # 0 implies v ■ v ̂  0—such an inner product is definite—, that v,weV
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implies v■ w = w■ v—such an inner product is symmetric—or that v, we V implies

v-w= —w-v—such an inner product is antisymmetric?)

Let P(X) = anXn+ ■ ■ ■ +axX+a0, an^=0, be a polynomial of degree « over a

field. Then the reverse of P is the polynomial a0Xn + axXn~1+ ■ ■ ■ +an-xX+an.

The polynomial is symmetric (respectively : antisymmetric) if it coincides with its

reverse (respectively: with the negative of its reverse).

Theorem 1. Let V be a finite dimensional vector space over a field together with

a nondegenerate inner product. Let f: F —> V be a linear transformation that pre-

serves the inner product. Then the characteristic polynomial off is either symmetric

or antisymmetric.

Proof. Let/': V-> V be the transpose of/with respect to the given inner

product. Then /' is the unique linear transformation such that

(l)ft(v)-w = vf(w),v,weV.

If (e() is a basis of V and if (eJ) is the dual basis of (e¡) with respect to the given inner

product then the matrix of/' with respect to (e[) is the transpose of the matrix of

/with respect to (e¡). Hence /and/' have the same characteristic polynomial.

Since / preserves the inner product we have fit(fi(v))-w=f(v)-fi(w) = v-w,

v, w e V. Hence ft(f(v)) = v, veV,

(2)/'o/= identity.

Hence / is an automorphism of V. Since /' and / have the same characteristic

polynomial they have the same determinant. Taking the determinant of (2) gives

(3) det/=±l..

Considering the definition of the characteristic polynomial as det (identity- X—f)

and using the fact that det (/) = ± 1 we see that the characteristic polynomial of

f'1 is ± the reverse of the characteristic polynomial of/ By (2)/_1=/' which

has the same characteristic polynomial as / Hence the characteristic polynomial

of/is either symmetric or antisymmetric.

Corollary 1.1. Let V be a finite dimensional vector space over a field and let

f: V-*■ V be a linear transformation that preserves some nondegenerate inner product.

Let (ax,...,an) be the sequence of eigenvalues with multiplicities of f. Then the

sequences (ax,..., an) and (afl,..., a~*) coincide up to permutation.

Proof. A polynomial is either symmetric or antisymmetric if and only if the

mapping: a^a-1 is a bijection of the roots preserving multiplicities. Hence the

corollary is equivalent to the theorem.

3. Proof of 1.5. The notations being as in §1 let 0 be a complete discrete

valuation ring with quotient field of characteristic zero such that X admits a

projective lifting X over G. Fix a complex imbedding: 0<=c and let Xc be the

projective nonsingular complex algebraic variety

Xc = Jx spec «5) Spec (C).
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Let K be either the ring of g'-adic integers, q' a rational prime unequal to the

characteristic of k, or the quotient field of G. Let H*(X, K) be either the g'-adic

[1] or the F-adic [2] cohomology of X respectively. If K=Zq. then let K<^C be a

complex imbedding of the ring K. In either case let H*(X, C) = H*(X, K) ®x C

Then the ring H*(X, C) is canonically isomorphic to the classical complex coho-

mology algebra H*(XC, C) of the complex algebraic variety Xq. Identify these two

rings.

Let ue H2(Xc, C) denote the "Kahler class" ([5], see also [3])—the class,of a

generic hyperplane section of Ac- Then ue H2(X,C) = H2(X, K) <g>KC is the

canonical class of a generic hyperplane section H of X ([1], [2]). Hence if/* =

(/")oshS2n denotes the maps induced by the Frobenius ([1], [2]) on the cohomology

groups H*(X, C) = (H\X, C))0«S2n then

(l)f2(u)=q-u.

/*: H*(X, C)-»- H*(X, C) preserves cup products. Hence if we define

(2) g» = q-w.f\   0^h^2n,

then g*: H*(X, C)-> H*(X, C) preserves cup products and g2(u) = u.

By the functional equation 1.2, to prove 1.5 it suffices to consider the case

O^h^n.

IfO^h^n and v,weHh(Xc,C) then define v-w = un~h u v u w. Then [5] the

assignment (v, w) -*■ v- w is a nondegenerate inner product on the finite dimensional

vector space Hh(Xç, C). Since g* preserves cup products and g2(u) = u it follows

that gh preserves this nondegenerate inner product. Hence by 2.1.1 if (ahJ)xiiibh

are the eigenvalues of gh with the appropriate multiplicities then

(3) The sequences (ö*.Diais»Ä and (ahA)xSiSbh are permutations of each other.

The sequence (ahfi)x^isßll of §1 is the sequence of eigenvalues with multiplicities

of the linear transformation /*: Hh(X, C) -*■ Hh(X, C), modified in a manner

similar to the Remark, p. 253 of [2] to make all the «fc>j algebraic integers. Hence

by (2)

(4) The sequences (ah,i)inseh and (qhl2ah,i)iSiibh coincide up to permutation.

(3) and (4) imply 1.5.
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