A RESULT ON THE WEIL ZETA FUNCTION

BY
SAUL LUBKIN

1. Results. We recall Weil’s conjectures [4] about the zeta function of a
complete, nonsingular algebraic variety X over the field of ¢ elements, g a prime
power. We assume that X is projective and that X admits a projective lifting back
to characteristic zero. Let N, be the number of points of X rational over the field
k,, where k, is the extension of k of degree v, v=1.

1 (LEFSCHETZ THEOREM). There exists a doubly indexed sequence

(eni)1 SiZBp; 0Sh=2n
of algebraic integers, where n is the dimension of X and (Bh)osn<on are the Betti
numbers of any lifting of X to characteristic zero such that
No= 2> (=D
1Si<By;0shS2n

2 (FUNCTIONAL EQUATION). 0=<h<2n implies that the sequences

(@"fon,15 - - 5§ on,5,) and  (Can_p,15- > %an—n g, _p)
are permutations of each other.
3 (RIEMANN HYPOTHESIS). |ay;|=¢"2, 1 i<y, 0Sh=2n.
In addition it was later conjectured that

4. If P=T1¢f (1 —o,;T), 0Sh<2n, then the coefficients of the polynomials P,
are rational integers.

Conjectures 1 and 2 are now known. (See [1] and [2] for two different proofs.)
Conjectures 3 and 4 are still unknown. (Under the assumption of conjecture 3 for
the usual absolute value on the algebraic numbers, conjecture 4 is equivalent to the
assertion that, for every absolute value on the algebraic numbers extending the
usual absolute value on the rational numbers, conjecture 3 holds.) In this paper I
prove a previously unknown result that would follow if both 3 and 4 were known,
but that is not a consequence of either 3 or 4 alone. The result is:

5. If 0sSh=2n then the sequences (q"/oy 1, ...,q" ey z,) and (op 1, ..., @y g,)
coincide up to permutation.

Another way of stating 5 is: If the algebraic integer « occurs m times in the
sequence (a1, ..., @, 4,) then the algebraic integer ¢"/« likewise occurs m times.

(To see that 3 and 4 would imply 5 note that 3 is equivalent to the assertion
@p=q"oy;. 4 asserts that the coefficients of P, are rational and in particular real.
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Hence complex conjugation: «,; — &, defines a permutation of the sequence
(oni)1=i<p,. But by 3 &,;=¢"/ey;. This proves 5.)
Note that for h=n 5 is a special case of the functional equation 2. 2 and 5imply

5. If 0Sh=<2n then the sequences

~h -h
(" "an,1s s g P p,) and (g, ®on—hBan 1)
are permutations of each other.

2, 5 and 5’ are such that any two imply the third. Since 2 is known ([1], [2]) and
we prove 5 in this paper all three statements hold.

2, 5 and 5’ can be written in terms of the Weil polynomials P,:

2. Py n(T)= £g°r"~®2T5P(1/g"T),

5. P(T)= +q"*»2T*P,(1/¢q"T), and

5. Pop_n(T)=P,(q"~"T), 0<h=2n.
Another way of stating S is:

S. The polynomial P,(q~"2T) is either symmetric or antisymmetric, 0 Sh<2n.

5" written in terms of the Weil polynomials is particularly simple. Since 2 is
well known ([1], [2]) the new result 5 proved in this paper is equivalent to 5'.

I also note (and leave it as an exercise to the reader) that if the ‘‘ Riemann
hypothesis”” were known then the new result 5 would be equivalent to the assertion
that the coefficients of the Weil polynomials P, are real, 0 <h < 2n, thus implying
a portion of 4. Also the new result 5 does give some information about the Riemann
hypothesis 3. Namely it implies that those «;,; such that |«,|#¢"2? occur in pairs
oy, 0y Where ey - oy =gM2,

5 is also equivalent to the assertion that each of the Weil polynomials P, factors,
uniquely up to order, into a product of linear factors: (1 —g™2T), (1+¢"*/*T) and
quadratic factors: 1+u,T+¢"T? where the u; are algebraic integers # +2¢"2. The
Riemann hypothesis is equivalent to the assertion that the u; are all real.

Our proof of 5 is elementary. Cohomology is used; either of our well-known
cohomology theories ([1], [2]) suffices. The main new idea is to apply a very simple
and, probably, previously unobserved result about the characteristic polynomial
of a linear transformation of a finite dimensional vector space that preserves some
nondegenerate inner product (2.1).

2. Nondegenerate inner products on a finite dimensional vector space. Let V' be
a finite dimensional vector space over a field k. An inner product on V is a linear
transformation from ¥V @, V into k, the image of the element » @ w being written
as v-w, v, we V. A linear transformation f: ¥ — W of finite dimensional vector
spaces with inner products over k preserves inner products if v, we V implies
J@)-fw)=v-w.

An inner product on the finite dimensional vector space V is nondegenerate if
0#ve V implies there exists w e V such that v-w#0. (Notice that we do not
require that v50 implies v-v#0—such an inner product is definite—, that v, we V
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implies v-w=w-v—such an inner product is symmetric—or that v, w € V implies
v-w= —w-v—such an inner product is antisymmetric.)

Let P(X)=a, X"+ - +a,X+a,, a,#0, be a polynomial of degree n over a
field. Then the reverse of P is the polynomial aoX"+a, X" '+ ... +a,_; X+a,.
The polynomial is symmetric (respectively: antisymmetric) if it coincides with its
reverse (respectively: with the negative of its reverse).

THEOREM 1. Let V be a finite dimensional vector space over a field together with
a nondegenerate inner product. Let f: V — V be a linear transformation that pre-
serves the inner product. Then the characteristic polynomial of f is either symmetric
or antisymmetric.

Proof. Let f*: V— V be the transpose of f with respect to the given inner
product. Then f* is the unique linear transformation such that

1) fiv)-w=v-f(w), v, we V.
If (e,) is a basis of ¥ and if (e]) is the dual basis of (e;) with respect to the given inner
product then the matrix of f* with respect to (e;) is the transpose of the matrix of
f with respect to (e;). Hence f and f* have the same characteristic polynomial.

Since f preserves the inner product we have f'(f(v))-w=f(v)-f(W)=v-w,
v, we V. Hence fi(f(v))=v, ve V,

(2) f* o f=identity.
Hence f is an automorphism of V. Since f* and f have the same characteristic
polynomial they have the same determinant. Taking the determinant of (2) gives

(3) detf==+1..
Considering the definition of the characteristic polynomial as det (identity- X —f)
and using the fact that det (f)= + 1 we see that the characteristic polynomial of
f~tis + the reverse of the characteristic polynomial of f. By (2) f~'=f* which
has the same characteristic polynomial as f. Hence the characteristic polynomial
of f'is either symmetric or antisymmetric.

COROLLARY 1.1. Let V be a finite dimensional vector space over a field and let
f: V — V be a linear transformation that preserves some nondegenerate inner product.
Let (o, ..., a,) be the sequence of eigenvalues with multiplicities of f. Then the
sequences (o, . .., ;) and (a1 1, ..., ay ) coincide up to permutation.

Proof. A polynomial is either symmetric or antisymmetric if and only if the

mapping: « — «~! is a bijection of the roots preserving multiplicities. Hence the
corollary is equivalent to the theorem.

3. Proof of 1.5. The notations being as in §1 let 0 be a complete discrete
valuation ring with quotient field of characteristic zero such that X admits a
projective lifting X over 0. Fix a complex imbedding: @<C and let X¢ be the
projective nonsingular complex algebraic variety

X c= X X spec () Spec (C)



300 SAUL LUBKIN

Let K be either the ring of g’-adic integers, ¢’ a rational prime unequal to the
characteristic of k, or the quotient field of @. Let H*(X, K) be either the ¢'-adic
[1] or the K-adic [2] cohomology of X respectively. If K=Z,. then let K<C be a
complex imbedding of the ring K. In either case let H*(X, C)=H*(X, K) Q« C.
Then the ring H*(X, C) is canonically isomorphic to the classical complex coho-
mology algebra H*(X¢, C) of the complex algebraic variety Xc¢. Identify these two
rings.

Let u € H%(X¢, C) denote the “Kahler class™ ([5], see also [3])—the class.of a
generic hyperplane section of Xc¢. Then ue H3(X, C)=H*X, K) Qx C is the
canonical class of a generic hyperplane section H of X ([1], [2]). Hence if f* =
(f™)o < < 2n denotes the maps induced by the Frobenius ([1], [2]) on the cohomology
groups H*(X, C)=(H™X, C))osns2. then

M) fAw)=q-u.

[*: H*(X, C)— H*(X, C) preserves cup products. Hence if we define

(2 g'=q~"2-f", 0=hs=2n,
then g*: H*(X, C) - H*(X, C) preserves cup products and g*(u)=u.

By the functional equation 1.2, to prove 1.5 it suffices to consider the case
0<h=zn.

If0<h<n and v, we H*X¢, C) then define v-w=u""" U v U w. Then [5] the
assignment (v, w) — v- wis a nondegenerate inner product on the finite dimensional
vector space H"(Xc, C). Since g* preserves cup products and g%(u)=u it follows
that g* preserves this nondegenerate inner product. Hence by 2.1.1 if (ay )1 =i=o,
are the eigenvalues of g" with the appropriate multiplicities then

(3) The sequences (a,:,})l‘ sisb, and (@)1=, are permutations of each other.

The sequence (ay ;); =125, Of §1 is the sequence of eigenvalues with multiplicities
of the linear transformation f*: H*(X, C) — H™X, C), modified in a manner
similar to the Remark, p. 253 of [2] to make all the «, ; algebraic integers. Hence
by (2)

(4) The sequences (xy ;)1 =155, and (¢"'%ay ;)1 <i<p, coincide up to permutation.

(3) and (4) imply 1.5.
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